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Nrf2 is a master transcriptional regulator of a number of genes involved in the

adaptive response to oxidative stress. Among the genes upregulated by Nrf2,

heme oxygenase-1 (HO-1) has received significant attention, given that the

products of HO-1-induced heme catabolism have well established antioxidant

and anti-inflammatory properties. This is evidenced in numerous models of

inflammatory and autoimmune disease whereby induction of HO-1 expression

or administration of tolerable amounts of HO-1 reaction products can ameliorate

disease symptoms. Unsurprisingly, Nrf2 and HO-1 are now considered viable

drug targets for a number of conditions. In recent years, the term ‘inflammaging’

has been used to describe the low-grade chronic inflammation observed in

aging/aged cells. Increased oxidative stress is also a key factor associated with

aging and there is convincing evidence that Nrf2, not only declines with age, but

that Nrf2 and HO-1 can reduce cellular senescence and the senescence-

associated secretory phenotype (SASP) which is now considered an underlying

driver of age-related inflammatory disease. In this review, we describe the role of

oxidative stress in ‘inflammaging’ and highlight the potential anti-aging

properties of the Nrf2-HO-1 system. We also highlight established and newly

emerging Nrf2 activators and their therapeutic application in age-related disease.
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Introduction

According to demographics published by the World Health Organization, by the year

2050, the number of individuals over the age of 60 is expected to grow to 2 billion

worldwide (1, 2). While this reflects a positive development in society, representing many

successful endeavors to combat life-threatening diseases, we are now faced with the

growing issue of chronic age-related diseases and co-morbidities. One of the major

challenges that occurs in the ageing process is dysregulation of the immune response

(3–6). Under normal homeostatic conditions, activation of the immune system following

infection or traumatic injury, is a tightly regulated and temporal process. However, in

ageing individuals, immune cell function becomes altered leading to a chronic
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inflammatory state. The condition, referred to as “inflammaging,” is

characterized by the presence of high circulating levels of pro-

inflammatory cytokines such as IL-1, IL-6, IL-8, C-reactive protein,

IFN proteins a and b, and TNF (7, 8). The persistent presence of

low-grade inflammation has detrimental effects on tissue

homeostasis, promoting sustained activation of circulating

immune cells and impairing processes such as tissue repair and

effective surveillance against potential invading pathogens (9–12).

As a result, older individuals have a higher risk of developing a

number of chronic immune-mediated diseases (6, 7, 13). In this

review, we discuss drivers of inflammaging with particular focus on

oxidative stress as well as the protective and potential ‘anti-

inflammaging’ effects of the Nrf2 HO-1 system.
Drivers of inflammaging

Numerous factors are thought to contribute to inflammaging,

including genetic predisposition, changes in metabolic function of

immune cells, changes to the gut microbiome, chronic infections (e.g.

HIV) and lifestyle habits (e.g. diet, smoking etc) (8). In particular,

there is significant discussion regarding the role of senescent cells and

their corresponding senescence associated secretory phenotype

(SASP) (14). Induction of a senescent phenotype in immune cells,

now referred to as ‘immunosenescence’, occurs in part due to the

accumulation of DNA breaks following exposure to increased levels

of reactive oxygen species (ROS). Senescent cells undergo epigenetic

alterations, simulate chronic antigen stimulation and in turn secrete a

number of soluble factors including matrix metalloproteases and

growth factors as well as pro-inflammatory cytokines and

chemokines (15). Both in vivo and in vitro models of ageing reveal

SASP-mediated activation of immune cells, characterized by

increased infiltration of neutrophils, monocytes and macrophages,

NK cells, and T-cells, as well as corresponding expression of pro-

inflammatory surface markers and cytokines (16, 17). Senescent

immune cells display a significant impairment of function and

regulation, thus further contributing to the chronic inflammatory

environment observed in inflammaging (6). In support of this,

increased numbers of senescent cells have been observed in

individuals presenting with age-related diseases, while removal of

senescent cells has recently been shown to attenuate inflammation

and improve physical function in aged mice (18). This suggests that

immunosenescence is a major risk factor for age-related disease and

that targeting senescent cells could represent a potential strategy to

treat age-related illness and inflammaging.

Damage-associated molecular patterns (DAMPs) have also

been implicated in inflammaging, given their accumulation in

older individuals, as well as their established role in inflammation

(19). Typical DAMPs include the by-products of necrotic cells,

extracellular ATP, uric acid, amyloid fibrils, misfolded/modified

proteins, atherosclerosis-associated cholesterol crystals and

osteoarthritis (OA)-associated basic calcium phosphate crystals,

all of which are known to drive inflammation via activation of

innate immune cells (20). Similar to senescent cells, the

accumulation of DAMPs is associated with a number of age-

related pathologies. For example, in cardiovascular disease
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(CVD), cholesterol crystals play a significant role in atherogenesis

via recruitment and activation of inflammatory macrophages (21,

22). In Alzheimer’s disease, accumulation of extracellular amyloid

beta in senile plaques is thought to be a significant contributor to

disease progression, promoting sterile inflammation via activation

of the NLRP3 inflammasome (23). Similarly in aged related macular

degeneration, the most common cause of blindness in older

individuals, disease progression is in part attributed to NLRP3-

mediated inflammation driven by the accumulation of drusen

deposits in the retina (24). DAMP-mediated inflammation is also

thought to be further exacerbated in older individuals, due to

impaired autophagy which is otherwise responsible for efficient

removal and recycling of cell debris (25).
Oxidative stress and inflammaging

Arguably, the largest contributor to inflammaging is oxidative

stress, which not only promotes inflammation through the

generation of DAMPs, senescent cells and activation of

inflammatory signaling pathways, but also creates a relentless and

destructive cycle as inflammation itself results in the production of

ROS and thus further oxidative stress (26). Excessive levels of ROS

generate DAMPs through oxidation and alteration of various

proteins (via modification of cysteine residues), and nucleic acids

(via DNA damage) leading to the production of abnormal or

misfolded proteins. Oxidation of lipids by ROS forms lipid

peroxidases such as malondialdehyde (MDA) and 4-hydroxy-2-

nonenal (HNE) which further contribute to protein misfolding

given their high affinity for the NH2 groups of proteins. These

abnormalities ultimately disrupt normal cell function and

eventually lead to cell death, whereby the abnormal proteins are

released from the rupturing cells as DAMPs, along with oxidized

lipids and other damage-associated cell debris (27).

ROS also contribute to cellular senescence through several

mechanisms including disruption of mitochondrial function

(either through direct damage of mitochondrial DNA (mtDNA)

or through damage to the mitochondrial membrane via

perioxidation of membrane phospholipids), inhibition of

autophagy (mediated by activation of p53 signaling) and

interactions with telomere regulatory enzymes such as telomere

reverse transcriptase (TERT) (28–30). The combined effect of these

interactions drives the onset of cell senescence, and production of

the accompanying SASP. As well as contributing to the generation

of DAMPs and senescent cells, ROS can also activate inflammatory

signaling pathways such as those leading to NF-kB activation (31,

32). For example, high levels of ROS can activate the PI3K/AKT

pathway which in turn promotes phosphorylation of the IkB kinase

(IKK) complex (33). Phosphorylation of the IKK complex results in

the ubiquitination and subsequent degradation of the NF-kB
inhibitor, IkB, thus releasing NF-kB and allowing it to translocate

to the nucleus whereby it induces pro-inflammatory gene

expression (34).

The phenomenon of oxidative stress-driven inflammaging is

described as the “oxi-inflamm-aging” theory. First proposed by De

La Fuente et al., it is extensively discussed in the literature in the
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context of age-related inflammatory diseases (35–38). In brief, this

theory builds on the previously established “free-radical theory of

ageing” which proposed that ageing is a consequence of damage

accumulation caused by the cumulative oxidation of biomolecules,

due to the increased presence of free radicals and ROS (39). The

‘oxi-inflamm-aging’ theory further adds that the immune response

is greatly implicated in this process, with increased oxidative stress

shown to sustain activation of immune cells, thus leading to

increased low-grade systemic inflammation and elevated risk of

disease (35). In CVD for example, excessive ROS production is

known to promote oxidation of low-density lipids, which largely

comprise the arterial plaque (40). Ox-LDL in turn promotes

recruitment of monocytes and macrophages which become

polarized towards a classically activated inflammatory state, and

further contribute to plaque formation (41). Classically activated

macrophages produce additional ROS, which amplifies the

inflammatory response in the arterial wall and progresses the

disease (42). Following myocardial infarction, ROS greatly impair

effective healing of the cardiac tissue, promoting dysfunction of

endothelial cells and disrupting immune cell-mediated tissue repair

processes. As a result, extensive fibrosis is associated with increased

levels of oxidative stress and reduced cardiac function in patients

(43, 44).

Similar disruptions to tissue repair and regeneration are

observed in OA due to oxidative stress (45, 46). For example,

excessive levels of ROS have been shown to reduce the sensitivity of

chondrocytes to growth factors in articular cartilage, thus impeding

tissue repair (47). Furthermore, ROS inhibits collagen synthesis in

an IL-1 dependent manner, demonstrating the dual role of

inflammation and oxidative stress in this disease (48). In

neurodegenerative conditions, increased ROS promotes apoptosis

of neural cells, and thus the release of DAMPs which drive local

inflammation and further accumulation of amyloid-beta plaques in

Alzheimer’s disease (AD) (49). ROS is also known to drive Tau

phosphorylation in rat models of AD, which represents an

additional marker of AD progression (50). Finally, in cancer, ROS

are known to enhance tumorigenesis through Ras signaling, which

is responsible for a number of tumorigenic processes including cell

growth, proliferation and migration (51). This effect is mediated

through activation of the NF-KB signaling pathway, and enhanced

in inflammatory settings, highlighting the cohesion between

oxidative stress and chronic inflammation in cancer progression.
The Nrf2/HO-1 axis and
oxidative stress

The clear and established links between oxidative stress and

age-related disease underscore the importance of an effective

antioxidant response to support healthy aging. Central to this

defense mechanism is nuclear factor erythroid 2 (NF-E2)-related

factor 2 (Nrf2), a redox sensitive transcription factor that induces

the expression of a wide range of antioxidant and detoxification

genes (52). Under homeostatic conditions, Nrf2 is bound to protein

Kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm.
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Keap1 forms part of an E3-ligase complex and promotes continuous

proteasome-dependent degradation of Nrf2, thereby suppressing its

activity (53, 54). Activation of Nrf2 occurs in the presence of Nrf2

activators, including ROS, which modify cysteine residues on

KEAP1, allowing for the release and stabilization of Nrf2. The

transcription factor can then translocate into the nucleus where it

dimerizes with one of the small musculoaponeurotic fibrosarcoma

(sMAF) proteins and binds to the antioxidant response element

(ARE), or Maf protein recognition element (MARE), to promote

expression of various cytoprotective and antioxidant genes,

including HMOX1, NQO1 and SOD (52, 55). Under basal

conditions, sMAF proteins heterodimerize with the transcription

factor BTB and CNC homology 1 (BACH1), which competes with

Nrf2 for binding to the ARE site (56). However, ROS increases

intracellular levels of free heme which is a ligand for Bach1. Upon

heme binding, BACH1 dissociates from the ARE and is exported

from the nucleus allowing Nrf2 to take its place (57, 58).

HMOX1 encodes heme oxygenase (HO-1), which together with

its constitutively expressed counterpart, HO-2, catalyzes the first

and rate-limiting step in the breakdown of heme, an iron-

containing porphyrin that functions as a component of biological

proteins such as hemoglobin and myoglobin, cytochromes, and

enzymes (e.g: hem peroxidase). Heme breakdown by HO enzymes

yields carbon monoxide (CO), iron, and biliverdin, which is further

reduced to bilirubin by biliverdin reductase A (BVR-A). Nrf2 and

BACH1 are the primary regulators of HO-1, however it is worth

noting that other transcription factors such as HIF1a have been

shown to regulate HO-1 expression (59). The products of heme

catabolism have proven anti-inflammatory, antioxidant, and

antiapoptotic activity, and given the critical link between

oxidative stress and inflammation in driving disease progression,

activation of the HO system has become an attractive therapeutic

strategy to mitigate oxidative stress and modulate inflammatory

pathways (60).
The Nrf2-HO-1 system
and inflammaging

Numerous studies in humans and mouse models have linked

HO-1 deficiency to chronic inflammation (61–66). HMOX1-/- mice

display significantly higher production of pro-inflammatory

cytokines such as IL-6, IL-12, and TNF compared to wild-type

mice (62), and increased IFNb production when challenged with

LPS (67). On the other hand, HO-1 induction has shown benefit in

dampening inflammation linked to inflammatory diseases such as

atherosclerosis and autoimmune conditions (68, 69). The

importance of HO-1 in tissue protection has also been

demonstrated in patients with HO-1 genetic deficiencies that

exhibit damage to the liver, kidneys, and vasculature as a result of

heme and iron accumulation (70), and in murine models in which

HO-1 deficiency leads to high levels of circulating heme and

inflammation (71).

Recent studies have demonstrated that induction of HO-1 with

hemin blocks senescence in chronic obstructive pulmonary disease
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lung fibroblasts by improving mitochondria function and reducing

ROS levels (72). Similarly, BVR-A which reduces BV to bilirubin

has been shown to protect lens epithelial cells against oxidative

stress and senescence which has implications for age-related

cataract (ARC) (73). Finally, it was recently demonstrated that

HO-1 is required for an effective DNA damage response (DDR) and

protection from senescence in multiple cells types including

macrophages (74), further establishing the role of HO-1 in

maintaining tissue homeostasis. This protective role was observed

to be mechanistically regulated via activation of the mammalian

target of rapamycin (mTOR)/S6 signaling pathway, which has

already been previously acknowledged for its therapeutic benefit

as both an anti-inflammatory and anti-inflammaging strategy (75).

Nrf2, has also been implicated in protection from inflammaging

(see ref (76) for a detailed review). Levels of Nrf2 are decreased in

aged rats and this is accompanied by increased oxidative stress (77).

While most studies have focused on rodents, Nrf2 was found to be

reduced during the aging of human skin fibroblasts while

pharmacological activation of Nrf2 delays senescence and increases

longevity in these cells (78). Furthermore, Nrf2 was found to be

dysfunctional in the skeletal muscles of sedentary elderly people (79),

suggesting that direct activation of Nrf2 can promote healthy aging.

There is a caveat however, given that prolonged activation of Nrf-2

can actually enhance the survival of cancer cells and protect them

from oxidative damage (80). Finally, excessive Nrf2 activation may

drive ROS production by increasing the expression of enzymes such

as NADPH oxidase (81), and thereby promote cellular senescence.

Therefore, transient rather than sustained activation of Nrf2 may

represent a more appropriate approach when exploring the anti-

inflammaging potential of the Nrf2/HO-1 system.
Targeting the Nrf-2/HO-1 axis to
treat inflammaging

Nrf2 activators and HO-1 inducers have proven efficacy in a

number of inflammatory and autoimmune disease models (82–84),

as well as models of organ rejection and graft failure (85–87).

Notably, in recent years, HO-1 induction has been implicated as a

possible therapeutic strategy to treat infectious diseases including

COVID-19 (88). Hemin-induced HO-1 was shown to mitigate

cytokine storm and tissue injury in murine models of sepsis and

renal damage (89), while CoPP-induced HO-1 was shown to inhibit

influenza A and RSV viral replication (90). However, certain

limitations surrounding the use of existing HO-1 inducers in a

therapeutic context lie in their poor oral bioavailability and

cytotoxicity making them unsuitable for clinical use (91).

Nonetheless, investigation is ongoing into the identification of

alternative, novel HO-1 inducers that could potentially mitigate

current challenges to clinical translation.

In the context of inflammaging, Nrf2 activation has received

greater attention thus far, particularly with respect to age-related

neurodegenerative disease. This is prompted by studies such as

those demonstrating that deficiency of Nrf2 is accompanied by

increased neuroinflammation in the MPTP mouse model (92),

while Nrf2-/- mice exhibit increased amyloid-beta accumulation
Frontiers in Immunology 04
and significantly worse cognitive impairment when compared to

control mice in murine models of AD (93). Nrf2 activators can act

either through inhibition of the repressor proteins Keap1 or

BACH1, or through direct regulation of the MARE/ARE domain.

For example, the antioxidant tert-Butylhydroquinone (t-BHQ)

binds to Keap1 cysteine residues, preventing already bound-Nrf2

from being targeted for ubiquitination, and allowing newly

synthesized Nrf2 to bypass Keap1 and translocate to the nucleus

(94). Administration of tBHQ has been shown to inhibit LPS-

induced NLPR3 inflammasome activation as well as LPS-induced

activation of microglia in mice (95). CDDO-methyl-amide (CDDO-

MA) also induces Nrf2 activity through modification of cysteine

residues in the Broad complex, Tramtrack, and Bric-à-Brac (BTB)

domain of Keap1, which in turn prevents effective binding of Nrf2.

The electrophile dimethyl fumarate (DMF), an established Nrf2

activator and FDA approved therapy for multiple sclerosis (MS),

also operates in a similar manner (96). Both DMF and CDDO-MA

have proven neuroprotective effects in models of age-related

neurodegenerative disease. DMF has been shown to improve

cognitive function in a mouse model of combined tauopathy and

amyloidopathy which is representative of AD-associated pathology,

while CDDO-MA, was found to reduce plaque formation and

improve memory in a transgenic mouse model of AD (97, 98). In

the case of Parkinson’s disease (PD), DMF was also found to protect

from synucleinopathy, further highlighting the therapeutic benefit

of this compound in age-related neurodegenerative conditions

beyond MS (99, 100). It is worth noting however the limitation of

this therapeutic, as DMF can bind non-specifically to other protein

thiol groups, thus creating unwanted alterations to protein function

(101). Other Keap1 inhibitors include synthetic triterpenoid

compounds such as Omaveloxolone, which has recently been

approved by the FDA for the treatment of Friedreich’s ataxia, a

rare inherited neurogenerative disorder (102). There are significant

side effects associated with these alkylating agents and more specific

Keap1 inhibitors are therefore sought after. For example, a number

of direct peptide-based inhibitors have been developed to inhibit the

Keap1/Nrf2 protein-protein interaction (103). Cell permeability can

be a limitation in this case, however it is possible that this can be

overcome with the use of protein-like polymers (PLP), which

consist of Keap1 binding peptides bound to a synthetic lipophilic

polymer backbone (104). Recent in vitro studies revealed that

treatment of HepG2 cells with these types of conjugated peptide

results in a significant increase in ARE activity (104), however

further in vivo exploration is required to fully established their

therapeutic potential.

In addition to Keap1 inhibition, it may be possible to

therapeutically promote Nrf2 activation via BACH1 inhibition

(105). For example, N-(2-(2-hydroxyethoxy)ethyl)-1-methyl-2-

((6-(trifluoromethyl)benzo[d]thiazol-2-yl)amino)-1H-benzo[d]

imidazole-5-carboxamide (HPPE) is a non-electrophilic substituted

benzimidazole which interacts with the heme-binding site of Bach1,

thus preventing binding to the ARE/MARE site (101). It was

recently demonstrated that HPPE administration has protective

effects in the MPTP mouse model of PD (106). This was

accompanied by a significant increase in Nrf2 activity and HO-1

expression, and the effects observed were more potent than hemin
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(106), a synthetic mimic of heme which is not suitable for

clinical use.

Similar therapeutic effects can also be seen upon direct

induction of HO-1 with CoPP which reduces T cell infiltration

into the CNS in the EAE mouse model of MS (107), while

expression of the enzyme itself is reduced in PBMC from MS

patients (108). Furthermore, the heme metabolites, CO and

bilirubin, produced as a result of heme breakdown by HO-1,

improved disease outcome when administered at low doses in the

EAE model (109–111). Both transgenic over expression of HO-1

and pharmacological induction protected from Ab toxicity in

neuronal cells and while Nrf2-dependent induction of HO-1 is

largely considered cytoprotective, it has been postulated that Nrf2-

independent HO-1 induction, for example by AP-1 or NF-kB, may

exert cytotoxic effects in the CNS (112), hence the mode as well as

duration of HO-1 induction needs to be considered when tailoring

compounds for clinical use, particularly in the CNS where iron

accumulation as a result of heme breakdown can contribute further

to neurodegeneration via ROS production.

While more clinical trials are required, herbal medicine

compounds such as resveratrol and curcumin have reported

neuroprotective effects in AD, however both exhibit poor

bioavailability, and there are likely to be further complications

associated with delivery to the CNS. On the other hand, the Nrf-2

activator/HO-1 inducer, sulforaphane, which is found in certain

cruciferous vegetables, exhibits good oral bioavailability and blood

brain barrier (BBB) permeability (113), and has shown efficacy in

neurodegenerative disease models including AD, PD and MS (114).

The flavonoid, pinocembrin, can also traverse the BBB and was
Frontiers in Immunology 05
found to significantly reduce MPP+-induced neurotoxicity, ROS

production, and neuron cell death via HO-1 induction by Nrf2 (115,

116). Therefore, sulforaphane and pinocembrin represent naturally

derived compounds that could serve as add-on therapies to treat/

slow age-related neurodegenerative diseases.

In addition to neurodegenerative disease, several studies have

also suggested a protective role for Nrf2-HO-1 signaling in OA

(117–119). Increased expression of HO-1 in murine models, due to

Bach1 deficiency, significantly reduces disease severity in aged mice

(118). Nrf2-HO-1 signaling not only combats inflammation,

reducing the production of cytokines such as TNF, IL-1b, IL-6,
and IL-18 (83), but also exhibits a protective effect in the OA tissue,

preventing mitochondrial damage and apoptosis of OA

chondrocytes as a result of exposure to inflammatory cytokines

(120). Furthermore, HO-1 induction can simultaneously promote

the regeneration of damaged cartilage by enhancing the expression

of anabolic factors such as IGF-1, proteoglycan, and COL2A1 in

chondrocytes (121). Similar effects are observed in CVD, where

preclinical murine models reveal Nrf2-HO-1 signaling to also

exhibit a dual anti-inflammatory and cytoprotective function.

Induction of HO-1 by CoPP significantly improved cardiac

function and decreased infarct size in diabetic mice subjected to

myocardial infarction. Reduced inflammation characterized by a

reduction in plasma levels of TNF was also observed in response to

CoPP treatment post MI, while HO-1 induction also increased the

activity of the Akt pro-survival pathway in cardiomyocytes (122).

Further examples of Nrf2 activators/HO-1 inducers, their

mechanism of action (if known) and therapeutic benefits in age-

related disease, are summarized in Table 1.
TABLE 1 Targeting the Nrf2 HO-1 axis in age-related disease.

Nrf2 activator/HO-
1 inducer

Target Effect Species Disease
relevance

Reference

tBHQ Nrf2 via
Keap1 inhibition

Inhibited activation of NLRP3 inflammasome.
Reduced activation of microglia.

Mouse Alzheimer’s Disease (124)

CDDO-MA Nrf2 via
Keap1 inhibition

Reduced plaque formation.
Improved memory.

Mouse Alzheimer’s Disease (98)

DMF Nrf2 via
Keap1 inhibition

Improved cognitive function.
Protective in MPTP mouse model.

Mouse Alzheimer’s Disease
Parkinson’s disease

(97, 99, 100)

HPPE Nrf2 via
Bach1 inhibition

Protective in MPTP mouse model.
Reduced activation of microglia and inflammation.

Mouse Parkinson’s disease (106)

CoPP HO-1 Protective in MI mouse model.
Improved cardiac function.
Reduced expression of TNF.

Mouse Cardiovascular
disease

(122)

Resveratrol Nrf2/HO-1 Reduced TNF and NO production in murine BV2
microglial cells.
Improved memory in rat AD model.
Reduced inflammation in rat OA model.

Mouse
Rat

Alzheimer’s Disease
Osteoarthritis

(83, 125, 126)

Sulforaphane Nrf2 via
Keap1 inhibition

Reduced Amyloid- beta aggregation.
Improved memory in murine AD model.

Mouse Alzheimer’s Disease (127)

Pinocembrin Nrf2/HO-1 Inhibits neuronal cell death.
Protective in MPTP mouse model.

Mouse Alzheimer’s disease
Parkinson’s disease

(115, 116)

(Continued)
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Concluding remarks

While further study is required, strong evidence is emerging to

suggest that modulation of the Nrf2 HO-1 system may have a

positive impact on inflammaging and age-related inflammatory

disease (Figure 1). However, there still exists certain limitations

surrounding the use of existing Nrf2 activators/HO-1 inducers in

the clinic. It is unlikely that sustained activation of Nrf2/HO-1 is a

viable solution, as a number of reports have found that prolonged
Frontiers in Immunology 06
activation of this axis leads to numerous undesirable consequences,

such as cytotoxicity as well as dysregulation of hematopoietic

regeneration (112, 123). As mentioned previously, many naturally

occurring HO-1 also inducers exhibit poor bioavailability, hence the

mode as well as duration of Nrf2 activation/HO-1 induction needs

to be considered when tailoring compounds for clinical use. Finally,

prolonged Nrf2 activation is reported to promote cancer cell growth

and survival hence potential drug candidates should also be

screened for possible tumorigenic effects. Nonetheless, timely and
TABLE 1 Continued

Nrf2 activator/HO-
1 inducer

Target Effect Species Disease
relevance

Reference

ND-13 peptide Nrf2 Reduced accumulation of intracellular ROS.
Attenuates MPTP toxicity in vivo.

Human
mouse

Parkinson’s disease (128)

Genistein Nrf2/HO-1 Reduced NO, COX-2, MMP-1, MMP-3, MMP-13 in
IL-1b-treated chondrocytes.

Human Osteoarthritis (129)

Myricetin Nrf2/HO-1 via PI3K/
Akt activation

Reduced TNF, IL-6, NO, iNOS, PGE2 in human
chondrocytes.
Protective in murine destabilisation meniscus
model (DMM).

Human
Mouse

Osteoarthritis (130)

Cardamonin Nrf2/HO-1 Reduced TNF, IL-1b, IL-18, IL-6 production.
Reduced expression of fibrotic markers TGFb1 and a-
smooth muscle actin.

Mouse Cardiovascular
disease

(131)

Curcumin Nrf2/HO-1 Reduced levels of MCP-1 and macrophage infiltration
post-injury.

Rat Cardiovascular
disease

(132)
FIGURE 1

Oxidative stress, inflammaging and the Nrf2/HO-1 axis. Under conditions of oxidative stress, ROS react with cysteine residues on KEAP1, allowing for
the translocation of Nrf2 to the nucleus, where it dimerises with sMAF and out competes Bach1 for binding to antioxidant response element (ARE).
This promotes the expression of a number of antioxidant genes including HO-1. The primary function of HO-1 is to breakdown heme, generating
CO and biliverdin which is then further reduced to bilirubin. The products of HO-1 catabolism have proven anti-inflammatory/anti-oxidant
properties, highlighting the Nrf2/HO-1 axis as a potential therapeutic target to combat inflammaging. Created in BioRender. O'rourke, S. (2024).
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controlled activation of this pathway in specific cell types represents

a promising avenue to reduce age-related oxidative stress and

inflammaging. Further study will determine how best to approach

this and may open up a new therapeutic avenue as the demand

grows for the treatment of age-related diseases.
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