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Unlocking the potential of
iPSC-derived immune cells:
engineering iNK and iT cells for
cutting-edge immunotherapy
Minggang Fang*, Alexander Allen, Chong Luo and
Jonathan D. Finn

Cell Therapy, Tome Biosciences, Watertown, MA, United States
Induced pluripotent stem cells (iPSCs) have emerged as a revolutionary tool in

cell therapies due to their ability to differentiate into various cell types, unlimited

supply, and potential as off-the-shelf cell products. New advances in iPSC-

derived immune cells have generated potent iNK and iT cells which showed

robust killing of cancer cells in animal models and clinical trials. With the advent

of advanced genome editing technologies that enable the development of highly

engineered cells, here we outline 12 strategies to engineer iPSCs to overcome

limitations and challenges of current cell-based immunotherapies, including

safety switches, stealth edits, avoiding graft-versus-host disease (GvHD),

targeting, reduced lymphodepletion, efficient differentiation, increased in vivo

persistence, stemness, metabolic fitness, homing/trafficking, and overcoming

suppressive tumor microenvironment and stromal cell barrier. With the

development of advanced genome editing techniques, it is now possible to

insert large DNA sequences into precise genomic locations without the need for

DNA double strand breaks, enabling the potential for multiplexed knock out and

insertion. These technological breakthroughs have made it possible to engineer

complex cell therapy products at unprecedented speed and efficiency. The

combination of iPSC derived iNK, iT and advanced gene editing techniques

provides new opportunities and could lead to a new era for next generation of

cell immunotherapies.
KEYWORDS
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1 Introduction to immunotherapy

In the past decade, the field of cancer therapy has been significantly transformed by

the advent of CAR-T cell immunotherapy, which has emerged as a pivotal treatment

modality alongside traditional methods such as surgery, radiation, and chemotherapy.

This innovative approach of engineering T cells with chimeric antigen receptors (CARs)
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to redirect T cells to recognize antigens such as CD19 or BCMA

have shown remarkable efficacy against certain types of leukemia,

lymphoma, and multiple myeloma (1). Since 2017, six CAR-T

therapies have been approved by the U.S. Food and Drug

Administration (FDA), with many more products at various

stages of clinical development (2). CAR-T cells are also being

explored for a multitude of nononcologic indications, including

transplant rejection, infection, autoimmunity, cardiovascular

disease, fibrosis, and senescence (3–6). However, the limitations

of autologous FDA approved CAR-T therapies, such as cost,

donor variability and time required for manufacturing, are

widely recognized barriers to the wide adoption of CAR-T

therapy (7–9). iPSCs have the potential to serve as a lower-cost

source of high-quality engineered, off-the-shelf therapy, with

scalable manufacturing and consistent product quality. To

realize this vision and enable large-scale manufacturing,

researchers have worked to develop and improve iPSC-to-T cell

differentiation protocols.

Natural killer (NK) cells are another type of immune cell that

can kill target cells via cytotoxic mechanisms. CAR-NK cells may

have some notable benefits over CAR-T cells, such as: (1)

increased safety (no neurotoxicity or cytokine release syndrome,

and avoidance of GvHD), (2) several ways to trigger cytotoxic

action, and (3) great likelihood of “off-the-shelf” production (7,

10). CAR-NK cells could be engineered to target a broad range of

antigens, with the potential to deliver potent responses for cancer

and autoimmune conditions (11, 12). The development of CAR-

NK cells represents an exciting frontier in immunotherapy, with

the potential to overcome the limitations of current CAR-T cell

therapies and provide patients with more accessible and effective

treatment options (7, 13).

Other immune cell types being studied for their potential in

immune cell therapy are phagocytic cells, such as macrophages

and dendritic cells. They patrol the body and assist in cleaning up

infection and activating other immune cells. For solid tumors,

macrophages can efficiently infiltrate into tumors and are

abundantly present in tumor microenvironment (TME). As

major immune regulators, CAR macrophage can turn cold TME

(absence of T cells and pro-inflammatory cytokines) to hot

(presence of T cells and pro-inflammatory cytokines) and attract

and activate adaptive immune cells, in addition to directly killing

tumor cells (14). As a result, there is a great interest in creating

CAR macrophages for cancer immunotherapy in order to get

around some of the problems that CAR T/NK treatment has,

particularly with solid tumors (7, 14). Dendritic cells are a

specialized type of phagocytic cell presenting antigen to bridges

innate and adaptive immunity. Dendritic cells are crucial in the

induction of immune responses to pathogens and tumors as well

as for the maintenance of self-tolerance. Understanding the

strengths and limitations of different cell types is highly needed

to engineer cell therapies. The traits of CAR T, NK and

macrophage are summarized in Table 1. Given that the current

focus of cell-based immunotherapy are T cells and NK cells, we

have focused the rest of this review on those two cell types.
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2 Generation and engineering of
iPSC-derived iNK and iT cells

2.1 Overview of the generation process of
iPSCs differentiation into iNK and iT cells

iPSCs are a type of stem cell derived from somatic cells, usually

skin fibroblast or white blood cells by expression of Yamanaka

factors (15, 16). Due to their unique features: unlimited expansion,

the ability to differentiate into different cell types, and ease of

editing, iPSCs have been developed as a new method to generate

transplantable immune cells.

The differentiation of iPSCs to immune cells is a multiple step

process. First, iPSCs undergo mesoderm induction in embryonic

bodies (EB) upon the loss of pluripotency-related gene expression

as well as increased expression of mesodermal genes to form

multipotent progenitor cells. Second, hematopoietic progenitor

cells (HPC) are induced and produce a population of cells capable

of committing to various cell lineages (Figure 1). HPC are guided

toward common lymphoid progenitors (CLP) cells, which

subsequently develop into iNK or iT cells with a particular set

of factors and extracellular matrix supports. As the focus cell type

of this review, the procedures of iNK, iT generation are discussed

in detail in following sections. In order to differentiate into iPSC-

derived macrophages (iMACs), floating EBs are reseeded for

attachment to culture vessels. This creates myeloid factories that

give rise to progenitor macrophages, which then mature into M1

or M2 macrophages after incubation with specific cytokines

(17, 18). For iPSC-derived dendritic cells (iDC), HPC are

directed to CD11c+ DCs through exposure to a cocktail of

growth factors (19, 20). These cell types are at different stages of

research in preclinical and clinical settings and iNK cells are the

most advanced and have demonstrated clinical efficacy in

hematological malignancies.
TABLE 1 Characterization and comparison of current CAR T, NK and
macrophage immunotherapies.

CAR T CAR NK
CAR
Macrophage

Cell source auto, allo, iPSC allo, auto, iPSC auto, iPSC

Off-the-shelf no yes yes

Toxicities
CRS,
ICANS common less common no clinical data

Cytotoxicity
mechanisms CAR-dependent

CAR-dependent
and-independent

multiple,
immunostimulatory
TME

Infiltration
into tumors poor poor abundant

Clinical
experience

Proven efficacy, 6
FDA approved

Limited
but promising

very limited
clinical experience
CAR, chimeric antigen receptor; auto, autologous; allo, allogenic; CRS, cytokine release
syndrome; ICANS, Immune effector cell-associated neurotoxicity syndrome.
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2.2 Methods of iNK differentiation
from iPSC

The differentiation of iNK cells from iPSCs is a complex but

fascinating process which has evolved in the past 20 years. As was

recently and excellently reviewed (21–23), a number of research

groups have developed methods for producing NK cells from iPSC

and embryonic stem cells (ESCs), including stromal cells and

stroma-free protocols, or 2D and 3D differentiations.

In initial 2D studies from the Kaufman group, human ESCs

were co-cultured with murine bone marrow (BM) stomal cells in

cytokine-enriched media with BMP4, FGF2, VEGF, and SCF (24,

25). During the first step in differentiating iPSCs into iNK cells,

hematopoietic lineage is induced to form hemogenic endothelium

(HE). From the HE, CD34+ CD45+ hematopoietic progenitors are

generated, then sorted and co-cultured with a second stromal feeder

cells in medium containing interleukin IL-3 (during the first week),

IL-7, IL-15, SCF, IL-2, and Flt3L (24, 26). Although Notch signaling

is required for the stimulation of T cell development, it also plays a

role in the effective development of NK cells in humans (27–29).

This 2D protocol was then modified to 3D, the “spin EB

(embryoid bodies)” method. This method capitalizes on the fact

that when iPSCs are cultured in suspension without feeder layers

(stroma and serum free), they spontaneously form aggregates known

as EB, before differentiation toward the NK-cell lineage (30–32). The

“spin EB” protocol produces hematopoietic organoids that contain

HPC, as well as endothelial and mesenchymal cells. These HPC then

differentiate into NK cells under defined conditions (31, 32). This

approach enhances the reproducibility and uniformity of the

resulting iNK cells. IL-3 and IL-7 are commonly used to promote

CLP which are a precursor to NK cells. From CLPs NK cell

precursors begin to form in response to IL-15, which is required

for proper differentiation and maintenance of NK cells. The emerging

iNK cells are expanded and matured in culture. During this phase,

they acquire the necessary receptors and functional capabilities that
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characterize mature NK cells, such as the ability to recognize and kill

tumor cells. Feeder cells, such as K562 or EBV-LCL cell which are

susceptible targets for NK cells, have been engineered withmembrane

bound IL-21 and 4-1BBL to improve expansion and cytotoxicity (33–

36). Similar to PB-NK and UCB-NK cells, hESC/iPSC-derived NK

cells express both activating and inhibitory receptors, including TNF-

a, CD16a, NKG2D, TRAIL, NCR receptors (NKp44, NKp46), IFN-g,

and NKG2D. The interplay of different cytokine combinations on NK

cell differentiation and maturation are still being explored and

warrant further research.

The differentiation of iNK cells from iPSCs represents a significant

achievement in the field of regenerative medicine and immunotherapy.

By leveraging the plasticity of iPSCs and the power of modern cell

culture techniques, scientists are able to produce iNK cells that could

potentially be used to treat a variety of cancers and autoimmune

conditions. While still in its infancy, iPSC derived iNK cells from

multiple groups are already showing promise in the clinic, where they

have demonstrated deep depletion of target B cells in oncology, and

currently being evaluated in autoimmune diseases (12, 37).
2.3 Methods of iT differentiation from iPSC

The stem cells used to make iPSC-derived T cells can come from

different types of somatic cells. The iPSC derived T cells express

random TCR due to rearrangement after differentiation from non-T

cells that contain germline TCR genes. Cell therapy can be

accomplished by introducing the exogenous TCR into iPSCs.

Transgenic TCRs generate the CD3 signal during T cell

differentiation, which inhibits the rearrangement of endogenous

TCRs, allowing T cells derived from iPSCs to target specific antigens

(38). Studies to engineer exogenous TCRs to generate potent T cells

from iPSCs have produced excit ing results (38, 39) .

Reprogramming of iPSCs can also be derived from peripheral

blood T cells. In this case, the rearranged TCR gene is retained in
FIGURE 1

Differentiation of iPSC to immune cells. Human iPSC can be induced to differentiate to hematopoietic cells usually through generation of mesoderm
in embryoid bodies (EBs). During differentiation to mature blood cells, hematopoietic progenitor cells (HPCs) are generated, leading to a diverse
group of cells that can differentiate into various specialized cell types. Under specific cytokines and stimulating factors, HPC can be directed various
immune cell types. Created with BioRender.com.
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iT cells. Antigen-specific T cell clones can be reprogrammed to

produce antigen-specific T cells, or T-iPSCs can be engineered with

a CAR to improve tumor specificity for use in cell therapy. The only

iT cell candidate in clinical trials is FT819, derived from T-iPSC

cells, where TRAC is knocked out and a CD19 CAR is inserted into

iPSC before differentiation into iT cells (40). The results of phase 1

clinical trial are promising: no dose related toxicity, no ICANS or

GvHD, no grade 3 CRS, and evidence of anti-tumor activity, with 3/

15 patients demonstrating complete response (41).

iT cell differentiation from iPSCs has been historically

challenging. The most challenging part of iPSC derived T cells is

how to generate potent iT cells from iPSC in serum and stromal cell

free conditions. For the natural T cell development process in vivo,

CD34+CD43- hemogenic epithelial (HE) cells at AGM (Aorta-

ganod-mesonephros) undergoes endothelial-to-hematopoietic

transition (EHT), in which the HE is rounded up and releases the

floating cells with HPC markers CD34 (42, 43). In a process

dependent on Notch signaling, HPC differentiate into CD5/CD7

double positive T cell progenitor cells. Under reduced Notch

signaling and increased TCR signaling, CD4/CD8 double positive

cells are produced and mature to single positive T cells (44–46).

This understanding of endogenous T cell differentiation has

informed multiple efforts (reviewed below) to recreate the T cell

differentiation in vitro.

The Zuniga-Pflucker group at Toronto University has done

seminal work to recreate T cell development in vitro, by expressing

Notch ligand DL1, DL4 in thymic stromal cells (47). Subsequent

feeder-based systems, such as the artificial thymic organoid (ATO)

platform, have been developed to better replicate the three-

dimensional structure of the thymus (39, 48). The latest

breakthrough is chemically defined differentiation with DL4 and

VCAM1 in feeder cell free condition (44, 45, 49, 50). The stromal cell-

free, DL4 microbead-based approach that supports efficient in vitro

development of human progenitor T cells from pluripotent stem cells

(PSCs), provides a simple, robust and potentially scalable platform to

both study human T cell development and facilitate the development

of engineered T cell therapies from renewable sources (50).

All the pioneering groups started the same iT differentiation

process from iPSCs with EB formation and isolated CD34 HE cells

from EB. The major difference was the different coating matrix.

Kaneko group seed HPCs on to plates coated with recombinant

DL4 and retronectin, a fragment of the fibronectin protein that can

also bind to integrin as VCAM1. This process yielded CD8 single

positive (CD8SP) cells that expressed the original TCR, but they

failed to generate iT cells from non-T iPSC lines where the TCR

locus is unrearranged (49). This limitation indicates that this

protocol fails to capture some key aspects of T cell development.

A major milestone was from the Zandstra group, which showed

synergistic effect of VCAM1 and DL4 to enhance Notch signaling

and progenitor T cell differentiation (51). This group demonstrated

that primary human HPC from CB could be directed to become T

cell progenitors on DL4, VCAM1 coated plates and mature T cells

in vivo with T cell progenitor transplantation. VCAM1 is a stromal

matrix protein and a ligand for integrin which is highly expressed in

HPC cells. Closely following Kaneko’s work, the Zandstra and

Daley group finally differentiate iPSCs to mature T cells in a
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feeder free system in 2022. They isolated CD34 positive HE cells

from EB, seeded them on DL4+VCAM1 coated plates, grew them

with SCF, TPO, IL-3, IL-7 and TNFa, for another 14 days, resulting

in CD5CD7 double positive cells. The addition of VCAM1

significantly increased the percentage of CD5CD7 double positive

progenitor cells, and TCRab, gdT cells were generated with diverse

TCR repertoire from TCR locus sequencing (44, 45).
2.4 Limitations of iPSC
derived therapeutics

While iPSCs hold great promise for regenerative medicine,

there are a few potential limitations that need to be addressed.

First, iPSCs can be prone to genetic instability, including point

mutations, copy number variations, and chromosomal

rearrangements that can result from donor somatic cells, during

reprogramming, or during extended cell culture (52, 53). Residual

undifferentiated iPSCs have the potential to form teratomas or other

types of tumors if transplanted into patients (54). During the iPSC

creation and differentiation process, routine genetic screening and

monitoring are carried out utilizing high-throughput sequencing

and other cutting-edge genomic technologies to identify and

remove cells with genetic abnormalities. Advanced differentiation

techniques can be developed to ensure that all iPSCs fully

differentiate into the intended cell types, and the final

differentiated cell products can be purified with selection in order

to remove residual iPSCs. Furthermore, as discussed in section 3.1,

suicide genes/safety switches can be inserted into iPSCs and

activated to eradicate any undifferentiated iPSCs that may still

exist, further improving the safety profile of iPSC derived cells.
3 iPSC engineering for next
generation iNK, iT cells

FDA approved T cell therapies have had a remarkable impact

on patient care for a subset of hematological malignancies. This

foundation has motivated the development of off-the-shelf

engineered T and NK cell therapies for a broad range of

indications. Achieving this vision will require cost-effective

manufacturing of precision cell products capable of addressing

multiple process and clinical-design challenges. In addition,

expanding the breadth of indications possible with cell therapy

and ensuring highly effective and safe therapies will require

sophisticated cell engineering. For next generation iT, iNK cell

therapies, the strategies outlined below could overcome current

challenges and limitations of iPSC derived therapies and lead to

better success of immune cell therapies, summarized in Figure 2

and Table 2.
3.1 Safety switches

Safety switches provide a mechanism to eliminate the infused

cells in case of adverse events, thus increasing the safety of these
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therapies. There are several types of safety switches used in cell

therapy as summarized in Table 3.

Inducible apoptosis: This method involves a safety switch based

on the fusion of human caspase 9 to a modified FK-binding protein,

which can be activated by a synthetic dimerizing drug (55, 56).

When the drug is administered, it induces apoptosis in the cells

expressing this construct, effectively eliminating them. This

approach has been clinically validated, where the Inducible

Caspase 9 (iCaspase-9) safety switch allowed for the rapid

elimination of more than 90% of the modified T cells within 30

minutes after administration of a dimerizing drug, effectively

ending GvHD without recurrence (57). The iCaspase-9 system is

advantageous because it’s derived from human proteins, reducing

the potential for immunogenicity. It also doesn’t rely on DNA

synthesis for its activity, meaning it can control both dividing and

non-dividing cells. This makes it a valuable tool for improving the

safety of various cell therapies.

Antibody-mediated cytotoxicity: In order to destroy the

therapeutic cells, monoclonal antibodies are used to target

particular antigens on their surface. Unlike small-molecule

targeting, T cell expression of cell surface markers allows for

targeted elimination through the administration of target-

specific antibodies, which also allows for monitoring by flow
Frontiers in Immunology 05
cytometry. This strategy includes the use of truncated human

epidermal growth factor receptors (58, 59), RQR8 (60), CD20

(61), and permits the clearance of specific cell populations

(expressing the specific receptors) for el imination by

administration of FDA-approved antibodies like cetuximab or

rituximab. In preclinical models this approach has the potential

drawback of slow and insufficient cell ablation that have poor

receptor expression (62).

HSV-TK suicide gene: HSV-TK (herpes simplex virus

thymidine kinase) based suicide switch is a safety feature that

has been previously used in cell therapy for control of GvHD in

patients (63), particularly in the context of adoptive cell transfer

like T-cell. HSV-TK is a cell cycle-dependent suicide gene, that

catalyzes the generation of triphosphate ganciclovir (GCV), which

is toxic to proliferating cells by inhibiting DNA chain elongation

(64–66). In addition to cell-cycle dependence, another limitation

of HSV-TK is the immunogenicity of the viral TK protein. Various

clinical studies with HSV-TK transduced donor lymphocyte have

been conducted, confirming its safety and efficacy (63, 66).

These safety switches are designed to manage potential side

effects associated with advanced cellular therapies and expand their

clinical applications by providing a controlled way to eliminate

therapeutic cells if necessary.
FIGURE 2

Engineering strategies for next generation iNK, iT cell. To overcome the challenges and limitation of CAR T or NK cell for immunotherapy, 12
strategies are proposed to engineer iPSC for with safety switches, stealth edits, specific targeting, avoiding GvHD, lymphodepletion, in vivo
persistence, efficient differentiation, T cell stemness, metabolic fitness, homing/trafficking, overcoming suppressive tumor microenvironment and
stromal cell barrier. OiCaspase 9, orthogonal inducible caspase 9; iCaspase 9, inducible caspase 9; GvHD, graft versus host disease; KO, knockout;
KI, knockin; hnCD16, high affinity non-cleavable CD16; mIL-15RF, membrane bound IL15-receptor fusion; NICD, notch intracellular domain; Flt3L,
FMS‐like tyrosine kinase 3 ligand; IL-7RF, IL-7 receptor fusion; ICI, immune checkpoint inhibitor; DNTGFbR, dominant negative TGFb receptor;
IL10DR, IL-10 decoy receptor; FAP, fibroblast activated protein. Created with BioRender.com.
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3.2 Stealth edits

Because of its potential cost-effectiveness, scalability, and on-

demand availability, allogeneic cellular immunotherapies hold

considerable promise for the treatment of cancer and

autoimmunity. A significant barrier to achieving therapeutic

responses similar to those seen with existing autologous CAR-T

cell treatments is immunological rejection of adoptively transferred

allogeneic T and NK cells. For immunotherapy, four different kinds

of genetic modifications for immune evasion have been investigated
Frontiers in Immunology 06
(Table 4). Human Leukocyte Antigens (HLA) genes play a crucial

role in graft rejection. Differences between the recipient’s and graft’s

HLA class I and II genes can lead to activation of host CD8+ and

CD4+ T cells, respectively, resulting in direct killing of graft cells.

Researchers are investigating ways to modify HLA expression on T

or NK cells to be immunologically silent and evade the host versus

graft (HvG) response, sometimes termed “stealth”.

3.2.1 Global disruption of HLA molecules: B2M
KO, TAPi

HLA class I contains the polymorphic HLA-A, HLA-B, and

HLA-C surface proteins. These molecules are heterodimers that

consist of two polypeptide chains: the polymorphic HLA-encoded

alpha chain and B2-microglobulin (B2M). HLA class I molecules

are expressed in all nucleated cells and are the anchors to present

intracellular peptides to CD8+ T cells (20). Direct targeting of the

specific alpha chain HLA-A evades the immune response (67). The

knockout of B2M to achieve reduced allorecognition by CD8+ T

cells is by far the most common strategy in allogeneic cell

transplantation and was first described in the stem cells (68–71),

a finding which has been shown in iPSC derived cells (72, 73) In T

cell therapies, HLA class I disruption is often combined with

disruption of the TRAC locus to prevent surface expression of the

T cell receptor (TCR) and preclude GvHD (74, 75).

Reducing HLA class I expression (via B2M KO) is not sufficient

for full stealth, as HLA class I molecules have an important function

as inhibitory ligands for NK cells. HLA-C and certain HLA-A and

HLA-B alleles are ligands for Killer-cell immunoglobulin-like

receptors (KIRs). HLA class I interactions with KIRs and

NKG2A/CD94 play a major role in self-tolerance of NK cells,

such that when these interactions are lost, the balance between

activating and inhibitory signals on NK cells is shifted towards

activation, resulting in a “missing-self” lysis of target cells (76).

Expression of synthetic HLA-E–or HLA-G- b2m fusion proteins on

target cells suppresses activation of NK cells that express the

inhibitory receptor heterodimer NKG2A–CD94 (77, 78). An

alternative approach to avoid CD8+ T cell HvG while minimizing

the induction of NK “missing-self” is to specifically delete the HLA-

A, HLA-B, and HLA-C genes while leaving B2M and HLA-E intact

to engage NKG2A on patient NK cells (72).

HLA class II is frequently knocked out on the surface of

adoptive cells in order to elude recipient CD4+ T cells. Major or
TABLE 3 Summary of different safety switch types.

Type Characterization Advantage Disadvantage References

HSV-TK Express HSV-TK kinase and in
combination with antiviral
drug ganciclovir

Ganciclovir clinical available;
confirmed safety

Only work in dividing cells;
immunogenicity;
Not suitable to CMV patients

(63, 66)

Antibody-based targeting Express an epitope at the engrafted
cell surface in combination with
antibody targeting

Clinical available antibodies Slow and incomplete ablation
with low epitope expression

(58–61)

iCaspase 9 Inducible caspase suicide gene
combination with bio-inert
small molecule

Rapid;
Human protein
no immunogenicity

Potential iCasp9 resistance (55–57)
HSV-TK, herpes simplex virus thymidine kinase; iCaspase 9, inducible caspase 9.
TABLE 2 Summary of edits for engineering iNK, iT cells.

Strategies Edits Examples

Safety switches OiCaspase 9, iCaspase 9, epitope-
Ab targeting

iCaspase 9 (55, 56)

Stealth edits B2M, CIITA DKO +B2M-HLAE,
CD47 KI

B2M KO (68–73)

GvHD TRAC KO or antigen specific
TCR KI

TRAC KO (98–100)

Specificity Multiple CAR, hnCD16 KI CAR (101–103)

Lymphodepletion CD52 KO for CD52
Ab conditioning

Not available

In vivo persistence mIL-15RF, CISH KO IL-15 KI (121) CISH
KO (127)

Differentiation/
expansion

NICD, EZH1 KO, Flt3L, BMP4 EZH1 KO (45)

T cell stemness IL-7RF KI, FOXO KI FOXO KI (114)

Metabolic fitness CD38 KO, mbIL-21 CD38 KO (23, 130)

Homing/
infiltration

Chemokine receptors KI CXCR4 KI (147)

Suppressive TME ICI PD1, CTLA4, LAG3 decoy
receptor,
DNTGFbR, IL10DR KI

DNTGFbR
(154–156)

Stromal
cell barrier

FAP CAR FAP CAR (169)
OiCaspase 9, orthogonal inducible caspase 9; iCaspase 9, inducible caspase 9; GvHD, graft
versus host disease; KO, knockout; KI, knockin; hnCD16, high affinity non-cleavable CD16;
mIL-15RF, membrane bound IL-15-IL-15 receptor fusion; NICD, notch intracellular domain;
Flt3L, FMS‐like tyrosine kinase 3 ligand; IL-7RF, IL-7-IL-7 receptor fusion; ICI, immune
checkpoint inhibitor; DNTGFbR, dominant negative TGFb receptor; IL10DR, IL-10 decoy
receptor; FAP, fibroblast activated protein.
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small mismatches with HLA class II during an allogeneic

encounter activate CD4+ T cells, which then promote allo-

reactive CD8+ T cells and cause direct cytotoxicity from CD4+

T cells. A master regulator of MHC-II (major histocompatibility

complex II) expression, the transcription factor class II major

histocompatibility complex transactivator (CIITA) decreases

surface expression of HLA class II when CIITA is knocked

down (79). CIITA-KO hypoimmunogenic iPSC lines have been

produced by a number of research groups employing CRISPR

technology, either alone or in conjunction with B2M-KO (72, 73,

80, 81). A cell therapy lacking both HLA class I and II (B2M KO

plus CIITA KO) will be required to prevent host CD8+ and CD4+

T cell responses and avoid any potential donor HLA antibodies

the patient may produce or have already developed.

Another strategy for avoiding immune recognition is based on

decreasing expression of MHC molecules and the antigen

processing and presentation machinery (APM), including latent

membrane protein (LMP) 2 and LMP7, transporter associated with

antigen processing (TAP) protein. This is a mechanism by which

malignancies are known to escape immune recognition (82, 83).

These molecules mediate and regulate efficient antigen processing

and presentation; subsequent T-cell responses have been abolished

by shRNA-mediated TAP1 knockdown in combination with CIITA

depletion in engineered adoptive cells (84). In addition, genetic

disruption of TAPBP1 significantly reduced immunological

rejection in mice (85).

3.2.2 Harnessing immune checkpoints: CD47,
PD-L1, CTLA4

Another strategy to prevent HvG is to overexpress CD47 (80).

CD47 is a transmembrane protein with a well-described role as a

“don’t eat me” signal due to its binding to signal regulatory protein

a (SIRPa) on myeloid cells (86) and high CD47 expression on

tumor cells is thought to protect tumor cells from immune

responses (87). Recently, it was found that IL-2 stimulated NK

cells upregulate SIRPa and can be inhibited through high levels of

CD47 expression on B2M-KO target cells (81). PD-L1

overexpression alone or in combination with CTLA-4 was

shown to improve iPSC-derived islet function and persistence of

in a humanized mouse (88, 89). Altogether, the concept to express

ligands for inhibitory receptors is a promising strategy to evade

patient NK cells for T cell-based therapies, however for NK cell

therapies, a careful evaluation is necessary to ensure that trans

inhibition does not limit their function.
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3.2.3 Targeted killing of alloreactive cells:
alloimmune defense receptor

Following initial stimulation, T cells and NK cells upregulate

surface expression of several costimulatory molecules of the tumor

necrosis factor receptor (TNFR) family, including CD27, 4-1BB,

OX40 and CD30. These TNF family receptors are markers for

activated lymphocyte populations, distinguishing them from naive

populations (90). A new synthetic receptor called alloimmune

defense receptor (ADR) selectively recognizes 4-1BB. The ADR-

expressing T cells resist cellular rejection by targeting alloreactive

lymphocytes in vitro and in vivo, while sparing resting lymphocytes.

Cells co-expressing CAR and ADR persisted in mice and produced

sustained tumor eradication in two mouse models of allogeneic T-

cell therapy of hematopoietic malignancies and solid tumors. This

approach enables generation of rejection-resistant “off-the-shelf”

allogeneic T-cell products to produce long-term therapeutic benefit

in immunocompetent recipients (91, 92).

3.2.4 Disruption of immune synapse
Immune synapse formation is required for NK cell and T cell

cytolytic function and enables the precise delivery of lytic-granule

contents onto a susceptible target cell. Immune synapse formation is

mediated by binding of the adhesion molecules CD54 (also known as

ICAM-1) and CD58 (also known as LFA-3) on target cells to their

cognate receptors, the integrin CD11a/CD18 (also known as LFA-1

or ITGAL) and adhesion and costimulatory receptor CD2 on

immune cells (93, 94). Recent combined genetic deletion of CD54

and CD58 had shown significantly better in vivo persistence

compared to both B2M -/- CAR T cells and HLA-E +B2M -/-

CAR T cells in the presence of PBMC from healthy donors (95).

Overall, there are many proposed strategies to avoid the HvG

response, and their efficacy will need to be determined in clinical

trials. Importantly, better characterization of patient immune

responses against administered allogeneic NK or T cell therapies

will facilitate improved stealth approaches in the future.
3.3 Avoid GvHD: TRAC KO or choose an
antigen specific TCR

Following allogeneic T cell transplantation, GvHD still presents a

challenge for successful treatment. When immunocompetent donor

T cells identify the recipient host as alien, they initiate an immune

response against allogeneic antigen-bearing cells, which results in the
TABLE 4 Features of stealth editing strategies in cell therapy.

Type Characterization Advantage Disadvantage References

HLA depletionand HLA-E/G-
B2M KI

Direct remove the major
HLA mismatch

Reduced CD8, CD4 T and NK
cell recognition

None reported (68–73)

Immune checkpoint inhibitor Overexpress ICI at cell surface Simple and easy engineering None reported (81, 88, 89)

ADR CAR targeting activated host T,
NK cells

Only target activated lymphocyte, spare
resting cells

Potential resistant (90, 91)

Immune synapse disruption Dissemble of immune synapse New layer of stealth None reported (93, 95)
HLA, human leukocyte antigen; ICI, immune checkpoint inhibitor; ADR, alloimmune Defense Receptor.
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death of host tissues and the development of GvHD. Even with

current preventive measures, GvHD patients still have high rates of

morbidity and mortality, with only about 40% of patients having a

durable response to corticosteroid therapy (96, 97). Knocking out the

TCR alpha chain is a strategy that has been explored to prevent

GvHD. This approach involves genetically modifying donor T cells so

they lack the alpha chain of the TCR, which is necessary for the

recognition of host antigens and the subsequent immune response

that leads to GvHD. Briefly, T cell activation is dependent on antigen

recognition by the TCR. The TCR is composed of multiple subunits,

including the alpha and beta chains. By knocking out the alpha chain,

the TCR is rendered non-functional, which means the T cells cannot

effectively recognize and attack the host tissues. This could potentially

reduce the incidence and severity of GvHD after allogeneic cell

transplantation. Multiple studies have generated CAR T cells with

disrupted endogenous TCR to avoid the risk of GvHD inherent in

allogeneic T cell therapy (98–100).
3.4 CAR insertion for specific targeting
and hnCD16

CARs are synthetic receptors that redirect lymphocytes to

recognize and kill cells expressing the target ligand. CARs have a

modular design with four major components: an extracellular

antigen-binding domain, a hinge, a transmembrane domain and

an intracellular signaling domain (101). Variation of each of these

component parts of CAR constructs enables fine tuning of the

functionality and anti-tumor activity of the resultant CAR T cell

product and has the potential to improve the safety and efficacy of

CAR-T-cell therapy (102). For this purpose, several CAR

generations have been generated, and the fifth generation is

currently being tested in clinical trials (103). Recently, CAR gene

constructs have been modified to express an ‘armoring’ protein,

such as IL-12 or IL-15, to enhance T or NK cell function (101).

CAR-engineered T cell therapeutics were the first to emerge,

demonstrating impressive clinical results, resulting in FDA

approvals for hematological mal ignancies (1) . CARs

conventionally designed for T cells with CD3 zeta and T cell co-

stimulatory signals have also been used for generation of CAR NK

cells, and studies have demonstrated that these cells can effectively

and specifically target tumors, while maintaining a desirable safety

(11). Despite intensive research efforts to define optimal CAR

design for both T and NK cells, a universally improved CAR

structure has not yet been identified. As of now, each CAR

construct needs empirical testing for evaluation, and several

studies indicate that small modifications can have major

consequences on the therapeutic outcome.

NK cells express the activating immunoglobulin gamma Fc

receptor CD16a, which identifies the Fc portion of IgG antibodies

attached to target cells. Patients treated with the high affinity CD16

variant (F158V) and monoclonal antibody have demonstrated

enhanced antitumor responses (104). A second Fc receptor, CD64

binds to IgG with 30-fold greater affinity than CD16. iNKs

expressing the fusion receptor of CD64 extracellular binding

region and CD16a transmembrane, intracellular domain killed
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cancer cells effectively when combined with anti-HER2

trastuzumab or anti-EGFR1 cetuximab antibody. The higher

affinity of CD64 allowed for monoclonal antibodies to be pre-

adsorbed to the NK cells expressing the recombinant CD64 and

improved tumor targeting without additional antibody (105).
3.5 lymphodepletion conditioning: CD52
KO for CD52 Ab

Lymphodepletion is a necessary process for patients undergoing

hematopoietic stem cell transplants in order to make space for the

transplanted cells. They currently need intense, non-specific

lymphodepletion either using ionizing radiation or cytotoxic

agents such as fludarabine and cyclophosphamide (flu/cy).

Replacing non-specific lymphodepletion with targeted antibody-

based conditioning could avoid harming mature hematopoietic cells

and result in significantly less inflammation and unintended

collateral organ damage than existing conditioning regimens. One

way to improve therapeutic efficacy is through recurrent antibody-

based infusion and conditioning after transplanted cells’ cell surface

antigens have been selectively eliminated.

CD52 is highly expressed on mature T and B lymphocytes, with

lower expression on other blood cells, such on monocytes,

macrophages, and natural killer cells. Importantly, CD52 is not

expressed on CD34+ HSCs. Therefore, the use of a depleting anti-

CD52 antibody would specifically target lymphocytes of interest (B

and T cells), while sparing the critical HSCs, required to repopulate

the blood compartment. In support of this, a homozygous CD52

knockout mouse revealed no significant difference on lymphocyte

populations, including resting T- and B-cell numbers (106). Thus,

CD52 is an ideal target to knockout in donor cells in combination

with antibody conditioning. Alemtuzumab is an FDA-approved,

humanized mAb against CD52, which can effectively deplete T- and

B-cell lymphocytes (107). The knockout of non-essential gene

CD52 in combination with an FDA approved antibody is

expected to be an effective combination to avoid current non-

specific lymphodepletion conditioning regimens.
3.6 Novel strategies for efficient iT, iNK
differentiation: inducible NICD, EZH1 KD,
Flt3L and BMP4 KI

Current manufacturing of autologous CAR-T cell therapies

transforms the patients’ own T cells, and this personalized

manufacturing process adds significant cost, time and variability

in producing the final T cell product. Building more robust, scalable,

and reproducible manufacturing workflows for T cell therapies will

help improve product safety and efficacy and will expand access to

these life changing therapies. A major bottleneck on the path to T

cell production is to efficiently differentiate hPSCs into definitive

hematopoietic progenitors with T cell potential. Definitive

hematopoietic stem cells (HSCs) arise from a cell type known as

HE in a process called the endothelial-to-hematopoietic

transition (EHT).
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Prior approaches to generate T lineage-competent HPCs from

hPSCs include the use of DL4-expressing immortalized stromal cell

lines, or more recently developed cultures were coated with DL4,

VCAM1, or DL4 coated microbeads (44, 45, 50). Notch signaling

plays a pivotal role in the differentiation and development of

lymphocytes, which are critical components of the immune

system. There are four Notch receptors (Notch1–4) that interact

with various ligands like Delta-like and Jagged proteins. These

interactions initiate the Notch signaling cascade. Notch signaling

is essential for T cell development in the thymus. It influences the

fate of thymocytes, guiding them to differentiate into various T cell

subsets. Dependent on Notch signaling, HPC differentiate into

CD5CD7 double positive T cell progenitor cells. Under reduced

Notch signaling and increased TCR signaling, CD4CD8 double

positive cells are produced and mature to single positive T cells. To

differentiate iT cells without notch ligand expressing feeder or DL4-

VCAM1 coating and simplify the manufacturing process, an

inducible expression of notch intracellular domain and VCAM1-

VLA4 fusion can be knocked into the iPSC genome (Figure 2),

which is turned on during the transition of CD34+CD45+ HE to

CD5+CD7+ T cell progenitor cells and turned off after for T

cell maturation.

Recent studies have revealed key roles for epigenetic regulators

during definitive hematopoiesis and lymphoid development. The

Daley group discovered that during embryonic hematopoietic

development, EZH1, a part of polycomb repressive complex 2

(PRC2), is a crucial negative regulator of definitive lymphoid

commitment (108). The production of CD3+ T cells was

significantly increased in a subsequent study that used shRNA-

mediated EZH1 knockdown or a doxycycline-inducible CRISPR

interference (CRISPRi) construct into iPSC-derived CD34+ HE

cells to transcriptionally repress EZH1 expression. This was due

to the depletion of EZH1 during T cell specification (week 0-2) (45).

EZH1 knockdown T cells displayed a significant increase in CD3

+TCRab+ and decrease in CD3+TCRgd+ T cells, indicating that

EZH1 knockdown promotes differentiation towards ab T cell fate

rather than gd T cells and exhibits a more mature T cell phenotype,

highly diverse T-cell receptor (TCR) repertoire and enhanced

antitumor activities. EZH1 is a positive regulator of Notch

signaling, and this study further emphasizes the importance of

timing and strength of notch signaling during T cell development

(45). Knockin of the tunable EZH1 expression elements in iPSC

could further improve the potency and yield of iT.

Further an elegant study from Zandsra group demonstrated the

engineering of iPSCs with tunable cytokine signaling (109). The

result was the precise control of the differentiation outcome and

complete elimination of the need for exogenous BMP4 by

engineering stem cells to express and secrete BMP4, a factor that

is typically added exogenously to promote germ-layer

differentiation or by using synthetic microRNA to fine-tune

BMP4 expression level (110, 111). FLT3L is also essential for T

cell development and commonly supplemented in the

differentiation process. Integration of genetic codes to control

BMP4 and FLT3L expression will likely be the subject of

future engineering.
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3.7 Increase iT stemness: IL-7RF, FOXO KI

The effectiveness of T cell therapy is limited by the fast

exhaustion and death of T cells. Therefore, one strategy to

improve the efficacy of T cell therapies is to increase the cells’

“stemness,” or their capacity to self-renew and differentiate into

distinct kinds of T cells. T cell stemness is heavily dependent on

the interaction between IL-7 and its receptor IL-7R. In fact,

according to analyses using the PanCancer TCGA and iATLAS

datasets, RNAseq of bulk tumors and scRNAseq of TILs, gene

expression of IL-7R pathway components on tumor bulk is

strongly connected with improved overall survival (OS) or

progression-free survival (PFS) across various malignancies

(112). In addition, expression of IL-7R and/or the IL-7R

pathway is significantly greater in immune checkpoint inhibitors

(ICI) responders versus non-responders in melanoma, NSCLC,

ovarian, TNBC, HNSCC, and/or kidney malignancies (112).

Genes associated with stemness are upregulated in TILs

overexpressing IL7R, while genes associated with exhaustion are

downregulated. Furthermore, IL-7R high TILs express a

significantly higher quantity of BCL2, an anti-apoptotic

molecule, and are less apoptotic.

Another major limitation of CAR T cell therapies is the poor

persistence of these cells in vivo. The expression of memory-

associated genes in CAR T cells is linked to their long-term

persistence in patients and clinical efficacy. Recently, two

separate research teams have found another way to rejuvenate

these cells: make them more like stem cells. Taking into account

that IL-15 improves CAR T cell persistence and metabolism, Chan

et al. set out to discover important transcription factors that are

elevated by this treatment. A Foxo1 gene signature was found to be

significantly enriched when the epigenome and transcriptome of

CAR T cells grown in the presence of IL-15 were analyzed (113).

In CAR T cells generated from either healthy human donors or

patients, overexpression of a constitutively active form of FOXO1

(FOXO1-ADA) promotes a stem-like phenotype, which

corresponds with increased mitochondrial fitness, durability,

and therapeutic efficacy in vivo. Doan et al. discovered that

endogenous FOXO1 gene edit ing or pharmacological

suppression reduced memory-associated gene expression,

induced a state resembling tiredness, and decreased CAR T cell

antitumor activity. In environments of prolonged stimulation,

CAR T cells that overexpressed FOXO1 maintained their

functionality, memory capacity, and metabolic fitness. They also

demonstrated improved durability and tumor control in vivo

(114). Thus, these findings provide an engineering strategy with

translational potential to enhance the effectiveness of CAR T cells

against solid tumors by genetically enforcing a favorable

metabolic phenotype.

Numerous other strategies have been investigated to positively

influence the development of CAR T cells. These include the

overexpression of additional transcriptional regulators IRF4, c-Jun

(115, 116), the application of homeostatic cytokines by tethered

IL-15 (117), and epigenetic regulation with BET bromodomain

inhibitors (118), which has emerged relatively recently.
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3.8 Increase iNK in vivo persistence:
IL-15RF KI, CISH KO

IL-15 plays a crucial role in the differentiation and survival of

NK, it promotes the survival of these cells by maintaining the

expression of anti-apoptotic factors like Bcl-2 (119). Furthermore,

NK cells require IL-15 to mature in order to become responsive to

this cytokine and reach functional maturity (120). Greater in vivo

expansion and longer-term persistence are induced in CB-NK cells

transduced with a fourth-generation vector encoding anti-CD19

CAR and IL-15 compared to nontransduced (NT) NK cells (121).

A key negative regulator of IL-15 signaling belongs to the

suppressor-of-cytokine signaling (SOCS) family of proteins,

known to play a significant role in NK cell biology (122, 123).

One of its components, the CISH gene, is a key negative regulator of

IL-15 signaling; it encodes the cytokine-inducible Src homology 2-

containing protein (CIS) (124, 125). CISH knockout iPSC-NK cells

have improved expansion, enhanced anti-tumor activity, and

persistence in vitro and in vivo, and have exhibited improved

metabolic fitness, which is mediated by the mTOR signaling

pathway (126). CISH gene knockout in IL-15–secreting CAR-NK

cells could improve their metabolic fitness, permitting greater in

vivo persistence and cytotoxic function (127). When IL-15

expression is coupled with the disruption of the cytokine

checkpoint gene CISH, CAR-NK cells’ therapeutic potential may

be significantly amplified in the clinic.
3.9 Increase metabolic fitness: CD38,
mbIL21 KI

CD38 is an enzyme with NAD+ glycohydrolase and its

expression can lead to NAD+ depletion and immune cell

exhaustion. CD38 is a multifunctional ecto-enzyme that plays a

role in metabolism by metabolizing NAD+ and mediating

nicotinamide dinucleotide (NAD+) and extracellular nucleotide

homeostasis, as well as intracellular calcium signaling (128). CD38

knockout has been studied for its potential to increase metabolic

fitness. Knocking out CD38 in mice can lead to increased longevity

and protection against the development of cancers, especially under

high metabolic pressure, such as high-fat diets (129). Additionally,

CD38 knockout NK cells have shown increased resistance to

oxidative stress-induced death and enhanced metabolic fitness due

to a reduction in reactive oxygen species (23, 130). This suggests that

CD38 knockout can be beneficial in improving metabolic fitness and

may have therapeutic potential in conditions associated with

metabolic dysfunction of NK or T cell therapy (131).

Members of the common gamma-chain receptor family, IL-15

and IL-21, have all been shown to have well-documented effects on

NK cells; IL-15 is essential for NK cell development but IL-21 can

improve NK cell viability and functions with increased metabolic

fitness (33, 132). While IL-15 primarily signals through STAT5, IL-

21 is known to largely signal through the STAT3 component of the

JAK/STAT pathway with minimal participation from STAT5.

Human telomerase reverse transcriptase (hTERT) is known to be

activated by STAT3 (133). NK-cell senescence from mbIL15-
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mediated expansion can be reverted through hTERT gene editing

(134). NK cells expanded with membrane bound (mbIL-21) have

longer telomeres and less senescence than those expanded with

mbIL-15, mbIL-21 promotes improved proliferation of human NK

cells (33). IL-21-expanded TILs exhibited a ‘young’ phenotype with

longer telomeres and higher expression of CD27 and CD28, and

this phenotype was linked to stem-cell-like improved lifespan (132,

135). mbIL-21 increased NK cell metabolism with a shift towards

aerobic glycolysis, induced robust and sustained proliferation of

highly cytotoxic NK cells which exhibit increased cytotoxic function

against various cancer cells (34). Inducible expression of mbIL-21 at

expansion stage of iNK production may provide large quantities

and mature, potent cell products for clinical applications.
3.10 Increase homing/infiltration:
chemokine receptor KI

One limitation on the efficacy of CAR T or NK cell therapy is

insufficient homing to or infiltration of the relevant sites (e.g. tumor,

BM, secondary lymphoid tissues). NK cells develop mainly in the BM

and egress into the blood circulation when they mature. They then

migrate to peripheral tissues, though some special subsets home back

into the BM or secondary lymphoid organs (136–138). NK cell lineage

comprises of remarkably diverse population, two major PB NK cell

subsets are CD56bright and CD56dim (139, 140). Normally, BM, lung,

spleen, subcutaneous adipose tissue, and breast tissue are dominated by

CD56dim NK cells. In contrast, the proportion of total NK lineage cells

in the stomach and intestinal mucosa, liver, uterus, visceral adipose

tissue, adrenal gland, and kidney is significantly enriched in CD56bright

NK cells (141, 142). Accordingly, these distinct patterns of tissue

localization correspond with markedly different patterns of

chemokine receptor expression. While both subsets of NK cells

express CXCR4, PB CD56bright NK cells express CCR7, CXCR3, high

levels of L-selectin (CD62L), for homing and/or entry into tissues that

are secondary lymphoid or expresses the reciprocal ligands.

Conversely, PB CD56dim NK cells express sphingosine-1-phosphate

receptor (S1PR5), and CXCR1, CXCR2, and CX3CR1 (141, 143, 144).

CAR T or NK cell trafficking and retention within tumor sites is

essential for optimal anti-tumor efficacy. NK cells’ migration and

homing to the lymph node-associated chemokine CCL19 against

hematological malignancies was improved by NK cells’ induction of

CCR7 expression (145, 146). Enhancing CAR-NK cells targeting the

glioma antigen epidermal growth factor variant III (EGFRvIII) with

CXCR4 expression led to better chemotaxis for U87-MG

glioblastoma cells. These cells release CXCL12/SDF-1a, a CXC

chemokine that interacts with receptors CXCR4 and CXCR7

(147). A novel strategy to improve homing and target NK cell-

based immunotherapies to the BM (critical for ablation of auto-

reactive plasma cells or hematological malignancies) is the ectopic

expression of CXCR4 gain of function mutant R334X on expanded

NK cells, which led to significantly greater BM homing after

adoptive transfer into NSG mice compared to non-transfected

NK cell controls. Additionally, BM migration of CXCR4 knockin

iNK cells targeting various antigens results in superior tumor cell

killing in the marrow in aggressive disseminated heme xenograft
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models (148, 149). Furthermore, inducing expression of CXCR1 in

NK cells with a NKG2D CAR were shown to significantly increase

anti-tumor responses in subcutaneous and intraperitoneal

xenograft models along with an intravenous injection model

against established peritoneal ovarian cancer xenografts (150).
3.11 Overcome suppressive TME: decoy
receptors KI, A2AR KO

The TME is made up of a harsh metabolic environment that is

characterized by a variety of immunosuppressive metabolites,

hypoxia, acidity, upregulation of transforming growth factor beta

(TGFb), and glucose and amino acid deprivation (151). These

factors work together to impede efficient antitumor immunity and

are likely responsible for the challenges in treating solid tumors with

cell therapies.

Because of its suppressive role in the TME, TGFb has been targeted
to boost cell therapy anti-tumor response. TGFb mediates

downregulation of NKG2D, NKp30, TRAIL, and DNAM1 receptors

on activated NK cells (152, 153). To shield adoptive NK cell therapies

from the suppressive effects of TGFb, introduction of a dominant

negative form of TGFb type II receptor (TGFbRII) efficiently blocked
TGFb signaling and maintained cell surface expression of receptors

and cytotoxicity in NK and T cells (154–156). Elegant strategies

embracing the inhibitory cytokine and converting it into a potent

stimulatory signaling have been created by rewiring the recognition

domain into a second-generation CAR-T cell to orchestrate

upregulation of cytokine production (157). Similarly, expressing a

CAR with a TGFbRII extracellular and transmembrane domains

combined with the intracellular domain of NKG2D on NK-92 cells

converted the immunosuppressive signal into increased cytotoxicity

while preventing downregulation of NKG2D surface expression (158).

This strategy has also been applied to other inhibitory receptors such as

PD-1, generating a PD-1 CAR with NK tailored endodomains such as

NKG2D or DAP10/NKG2D to mediate cytotoxicity by NK cells

against solid malignancies in the TME (159, 160).

The A2AR (adenosine A2A receptor) knockout and its role in

the suppressive TME is a significant area of research in cancer

immunotherapy. CD39 and CD73, which are highly expressed in a

variety of TME cell types, regulate the extracellular environment’s

metabolism of ATP and adenosine (161). Tumor cell immune

evasion and inhibition of antitumor immune responses are

facilitated by the CD39/CD73/A2AR pathway, which plays a

critical role in the formation of an immunosuppressive TME

(162). Targeting the A2AR, either through genetic knockout or

pharmacological inhibition, can improve the function of antitumor

immune cells (163, 164).
3.12 Overcome the physical barrier of
stromal cells

The extracellular matrix (ECM) of tumor stroma creates a

physical barrier to cancer therapies by preventing infiltration of

therapeutic agents into tumors. ECM is made up of various
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structural molecules such as fibrous proteins, glycosaminoglycans,

and proteoglycans. These are produced by tumors and cancer-

associated fibroblasts (CAFs) that contribute to tumorigenesis

(144). Normal tissue has thin fibroblasts in elongated spindle

shape. Fibroblasts are thought to be in a resting state most of the

time, but they can become activated in response to stimuli including

stress, hypoxia, and cytokines as well as tissue injury (165).

Following the wound healing, the quantity of activated fibroblasts

decreases, and they most likely return to their resting state (166).

However, in tumors, fibroblasts are often hyper-activated through

mediating factors such as TGF-b, platelet-derived growth factor

(PDGF) and fibroblast growth factor 2 (FGF2). CAFs are therefore

considered as an irreversibly activated heterogeneous population of

fibroblasts with distinct functions (165). They greatly contribute to

the TME’s immunosuppression by secreting various chemokines

and cytokines, including TGF-b, IL-6, IL-8, IL-13, CXCL12, and
VEGF (167).

Fibroblast activation protein (FAP) is a membrane protease that

is highly expressed CAFs. By altering the ECM, FAP can modify the

TME, and its overexpression on cancer reduces the effectiveness of

CAR-T cell therapy in solid tumors and is linked to a poor

prognosis in a number of malignancies (168). One tactic being

investigated to overcome barrier stroma cells is targeting FAP using

CAR-T cells. FAP-targeting CAR-T cells have been engineered to

target CAFs in various solid cancers, such as mesothelioma, lung

and pancreatic cancers (169). A number of studies have shown anti-

tumor activity in preclinical models (170, 171). Anti-FAP CAR-T

cell treatments have been tested in clinical settings. The effectiveness

of CAR T cell treatment may be increased by targeting FAP in

addition to cancer antigen targets.
4 New gene editing technologies
make engineering of complex cell
therapies possible

In the past decade CRISPR–Cas9-based technologies have

revolutionized basic and applied research in biology. However

current gene integration approaches require DNA double-strand

breaks and rely on repair pathways such as homology directed

repair (HDR) that are inactive in terminally differentiated non-

dividing cells. Programmable and multiplexed genome integration

of multi-kilobase DNA cargo is still challenging. Together with the

new families of editing enzymes, which include transposases,

integrases, recombinases and single-stranded DNA-annealing

proteins, new CRISPR/Cas-based long sequence integration

technologies have been developed. This discipline is rapidly

evolving, and it has the potential to spark a new wave of ground-

breaking biomedical applications. These new technologies are

critical to the advancement of cellular therapies given the

multitude of edits mentioned above that are needed to ensure safe

and effective treatments.

Traditional CRISPR/Cas9 systems exploit one of three types of

DNA repair mechanisms: HDR, nonhomologous end joining

(NHEJ), and microhomology-mediated end joining (MMEJ).
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These strategies may result in imprecise insertions or deletions with

substantial indel errors, and the efficiencies vary greatly depending

on cell type. Recent new CRISPR techniques for multi-kilobase

DNA cargo insertion have been developed to help overcome some

of the limitations of previous editing technologies, including: (1) the

transposon-encoded CRISPR/Cas system;(2) recombinase/integrase

with CRISPR/nCas9; (3) single-stranded DNA-annealing protein

(SSAP) editor coupled with CRISPR/dCas9 (Table 5).

Among the instruments discussed above, CRISPR-associated

transposons have mostly been examined in a limited range of

prokaryotes (172–174). Recombination independent, multi-

kilobase DNA insertions at RNA-programmed genomic sites are

made possible by CRISPR-associated transposases (CASTs).

However, substantial off-target integration and a transposition

mechanism that produces a mixture of acceptable simple cargo

insertions and undesirable plasmid cointegrate products limit the

usefulness of type V-K CASTs (172–174). Another programmable

RNA-guided transposon system, called Insert Transposable

Elements by Guide RNA-Assisted TargEting (INTEGRATE), is

capable of transposing cargo genes up to 10 kb in length to the

human genome, however it lacks control over the orientation of

insertion (173). Recently, the 5′ nicking capability required for

cargo excision on the DNA donor was restored by engineering a

nicking homing endonuclease fusion to TnsB (dubbed HELIX).

HELIX allows for cut-and-paste DNA insertion with high

homogenous insertion product purity and significantly higher on-

target specificity than canonical CASTs. However, HELIX has very

low efficiencies (<0.1%) in mammalian cells and requires at least 4

protein co-factors, indicating that more work is needed to fully

realize their potential in genome engineering applications (175).

While HELIX has been examined in several mammalian cell types,

there isn’t any assessment yet available in iPSC.

A new cleavage-free gene editor dCas9-SSAP, which utilizes

microbial single-strand annealing proteins (SSAPs) with

catalytically inactive dCas9, promotes the integration of long

sequences in mammalian cells (176). With an efficiency of up to

20%, it works well for inserting kilobase-scale sequences into

human cell lines in therapeutic places like AAVS1. When

compared to previous editing techniques that rely on single-

strand nicks or DNA double stranded breaks, dCas9–SSAP

produces nearly zero off-target mistakes while facilitating
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(176, 177).

Programmable Addition via Site Specific Targeting Elements

(PASTE) is a novel method that combines the programmability of

Cas9 nickase, the writing ability of reverse transcriptase, and the

size-agnostic DNA integration capacity of large serine integrases

(LSI) to enable the integration of large pieces of DNA into specific

genomic locations (178). This method avoids the generation of

DNA double stranded breaks, which allows for efficient

multiplexing. A similar method has been developed using an

engineered integrase (eePASSIGE) that has shown low efficiency

integration in iPSCs (~4% using 5kb cargo) (179).

Recently, Tome has developed an improved version of the

PASTE technology, Integrase-mediated Programmable Genomic

Integration (I-PGI). I-PGI is capable of efficient gene insertion in

iPSCs cells, achieving >50% integration using nanoplasmid cargos.

Tome has demonstrated the ability to multiplex integration of up to

4 inserts, and have integrated very large cargo (>31 kb) using

adenovirus templates. For one of its iPSC derived therapeutic

programs, Tome has demonstrated to ability to generate 3 knock

outs and insert 12 kb of code in a single process (180). This

capability to create complex cell therapies with relative ease and

high efficiency opens the door to the development of highly editing

cell therapies, including multiple CARs, safety switches, stealth, and

other edits to increase in vivo persistence, cell fitness, and antibody

mediated lymphodepletion.

In conclusion, the development of sophisticated iPSC-derived

cell therapies involving extensive engineering has been made

possible by these novel long-sequence integration technologies.
5 Future directions and
concluding remarks

The field of immunotherapy is on the verge of a revolution,

thanks to the advent of iPSC-derived immune cells and genome

editing technologies. These cells have the potential to become the

cornerstone of treatment for myriad diseases, heralding a new era in

cell therapies. However, before this potential can be fully realized,

several significant challenges must be addressed.
TABLE 5 Summary of new gene editing technologies for precise large DNA insertion in human genome.

Enzymes Technologies Insert size Efficiency References

Transposases INTEGRATE >10kb 1% (HEK293T) (173)

HELIX >10kb 0.04%(HEK293T) (175)

SSAP
REDIT >2 kb 5% (ESC) (176)

dCas9-SSAP >2kb 4% (ESC) (177)

Recombinase/Integrase
eePASSIGE (PASSIGE/TwinPE) <6kb <4% (iPSC) (179)

I-PGI (PASTE) Up to 36 kb 50-60% (iPSC) (178, 180)
shCAST, CRISPR-associated transposase from cyanobacteria Scytonema hofmanni; INTEGRATE, Insert Transposable Elements by Guide RNA-Assisted TargEting; HELIX, HE-assisted Large-
sequence Integrating CAST-compleX; SSAP, single-stranded DNA-annealing proteins; REDIT, RecT Editor via Designer-Cas9-Initiated Targeting; TwinPE, twin prime editing; eePASSIGE,
evolved and engineered prime-editing-assisted site-specific integrase gene editing; PASTE, programmable addition via site-specifc targeting elements; I-PGI, integrase-mediated programmable
genomic integration.
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Optimization of Differentiation Protocols. The journey of an iPSC

to a mature and functional immune cell is complex and requires

precise control over the differentiation process. Current protocols need

refinement to ensure that the resulting cells are not only mature but

also possess the functional capabilities necessary to combat diseases

effectively. This optimization is crucial for the cells to perform their

intended therapeutic roles once administered to patients.

Minimizing Immunogenicity and GvHD. One of the primary

concerns with off-the-shelf cell products is their potential to elicit an

immune response in the recipient, leading to rejection or other

adverse effects. Researchers are working to minimize the

immunogenicity of iPSC-derived cells to ensure they can be used

widely and safely across different patient populations.

Scalable Manufacturing Processes. To bring iPSC-derived

immune cell therapies to the masses, it is imperative to develop

manufacturing processes that can produce these cells in large

quantities without compromising quality. Scalability is key to

making these therapies affordable and accessible to all who

need them.

Overcoming In VivoHurdles. Once inside the body, iPSC-derived

immune cells face numerous challenges, including a suppressive TME,

insufficient trafficking and infiltration, and the need for enhanced

persistence and fitness to maintain efficacy. Researchers are exploring

various strategies discussed in this review to help these cells overcome

these hurdles and perform optimally in vivo.

Mitigating Safety Concerns. The potential for iPSC-derived cells

to cause tumors or other safety issues is a significant concern that

must be addressed. Ensuring the safety of these therapies is

paramount to their clinical success and widespread adoption.

Advancements in Genome Editing Technologies. The use of

advanced editing technologies offers the ability to integrate large

DNA sequences at specific genomic locations in a multiplex fashion.

This precision engineering of iPSCs and their derivatives at

unprecedented speed and efficiency opens up the possibility of

creating advanced immune cells obviating the obstacles of

current immunotherapies.

Conclusion. iPSC-derived iNK and iT cells stand at the

forefront of a promising new avenue in immunotherapy. These

cells offer hope for treatment that could be applied to a wide range

of diseases, from cancer to autoimmune disorders. As research
Frontiers in Immunology 13
continues and technology advances, iPSC-based approaches are set

to revolutionize oncology and regenerative medicine, offering the

potential for improved patient outcomes and a new standard of care

in the years ahead.
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