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The liver is vulnerable to various hepatotoxins, including carbon tetrachloride

(CCl4), which induces oxidative stress and apoptosis by producing reactive

oxygen species (ROS) and activating the mitogen-activated protein kinase

(MAPK) pathway. Cereblon (CRBN), a multifunctional protein implicated in

various cellular processes, functions in the pathogenesis of various diseases;

however, its function in liver injury remains unknown. We established a CRBN-

knockout (KO) HepG2 cell line and examined its effect on CCl4-induced

hepatocellular damage. CRBN-KO cells exhibited reduced sensitivity to CCl4-

induced cytotoxicity, as evidenced by decreased levels of apoptosis markers,

such as cleaved caspase-3, and aspartate aminotransferase (AST) and alanine

aminotransferase (ALT) activities. CRBN deficiency enhanced antioxidant

defense, with increased superoxide dismutase activity and glutathione ratios

(GSH/GSSG), as well as reduced pro-inflammatory cytokine expression.

Mechanistically, the protective effects of CRBN deficiency appeared to involve

the attenuation of the MAPK-mediated pathways, particularly through decreased

phosphorylation of JNK and ERK. Overall, these results suggest the crucial role of

CRBN in mediating the hepatocellular response to oxidative stress and

inflammation triggered by CCl4 exposure, offering potential clinical

implications for liver injury in a wide range of liver diseases.
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1 Introduction

The human liver plays a crucial role in the detoxification and

metabolic conversion of chemicals, drugs, and harmful substances

(1). Detoxification generates reactive oxygen species (ROS) that

contribute to oxidative damage, cellular disturbance, and

hepatotoxicity. Excessive ROS levels pose a significant risk of

cellular toxicity, resulting in oxidative stress (2).

Oxidative stress exhibits several detrimental effects on cells.

Oxidized proteins become vulnerable to proteasomal degradation,

and reactive oxygen species (ROS) disrupt mitochondrial integrity,

altering permeability and releasing pro-apoptotic factors, such as

cytochrome C (3). Increased mitochondrial permeability activates

caspase-3, leading to cell death (4). Oxidative stress, resulting from

an imbalance between ROS production and antioxidant defense

mechanisms, is implicated in various diseases, including cancer,

arteriosclerosis, diabetes, neurodegeneration, and acute and chronic

liver conditions (5–7).

Carbon tetrachloride (CCl4) is a hepatotoxin frequently used to

induce liver damage in experimental models. In the liver, CCl4
induces free radical generation via metabolic processes. CCl4
undergoes metabolic activation through a cytochrome P-450-

dependent process, further leading to the production of free

radicals that initiate inflammation (8). CCl4 also causes the

peroxidation of cellular and organelle membrane lipids, inhibits

protein synthesis, and disrupts cell morphology, ultimately

culminating in apoptosis and necrosis of hepatocytes (9, 10).

Thus, understanding the mechanisms of cellular antioxidant

defenses is crucial for mitigating the liver damage caused by

oxidative stress.

Cereblon (CRBN) is a multifunctional protein that plays diverse

roles in cellular physiology and disease pathogenesis. Initially

identified as a gene associated with mild forms of autosomal

recessive non-syndromic mental retardation (ARNSMR) (11),

CRBN has been implicated in various cellular processes (12–14).

CRBN is a target for thalidomide-induced birth defects and a

substrate receptor within the Cullin-RING E3 ubiquitin ligase

(CRL) complex (15). Through direct interaction with the alpha

subunit of AMP-activated protein kinase (AMPK, a pivotal

metabolic sensor), CRBN inhibits the enzymatic activity of

AMPK, suggesting its potential role in metabolic disorders (16,

17). The dysregulation of CRBN function has been implicated in

various diseases, including cancer, neurodegenerative disorders,

and developmental abnormalities (18–20). However, the

physiological role(s) of CRBN in liver injury and its underlying

molecular mechanisms have not been investigated yet.

In this study, we investigated the potential hepatoprotective role

of CRBN in hepatocellular injury. We specifically explored the effect

of CRBN knockout on CCl4-induced liver damage in HepG2 cells

and the underlying molecular pathways through which CRBN

mitigates hepatocellular injury. Our findings provide insights into

novel therapeutic approaches for liver diseases in multiple

pathological contexts.
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2 Materials and methods

2.1 Cell culture and CCl4 treatment

HepG2 human hepatoblastoma cell line was purchased from

the Korean Cell Line Bank (Seoul, South Korea) and cultured in

Dulbecco’s modified Eagle’s medium (DMEM; GIBCO, Waltham,

USA) supplemented with 10% heat-inactivated fetal bovine serum

(FBS; Hyclone), 100 units/mL penicillin, and 100 µg/mL

streptomycin sulfate. a-Mouse liver 12 (AML12; immortalized

mouse hepatocytes) cell line was a kind gift of Prof. Hueng-Sik

Choi (School of Biological Sciences and Technology, Chonnam

National University, Republic of Korea) and cultured in DMEM/F-

12 medium (Gibco, Eggenstein, Germany) supplemented with 10%

heat-inactivated FBS, 0.1% insulin-transferrin-selenium (ITS; Sigma,

Burligton, USA), 40 ng/ml dexamethasone (Sigma, USA), 100 units/

mL penicillin, and 100 µg/mL streptomycin sulfate. The cells were

maintained at 37°C in a humidified atmosphere containing 5% CO2.

For the following experiments, the cells were seeded in a 12-well plate

and allowed to reach 90% confluency. Subsequently, the cells were

treatedwith 1mLof the indicated concentrations ofCCl4 dissolved in

DMEM containing 0.25% DMSO (21). The control treatment

included only DMEM containing 0.25% DMSO. After 1 h of CCl4
treatment, the cells and culture medium were collected separately.

The cells were lysed with RIPA buffer for western blot analysis,

homogenized according to the manufacturer’s protocol for

measuring SOD activity and GSH/GSSG ratio, and total RNA was

extracted using TRIzol reagent. The culture medium was used to

measure the AST and ALT activities.
2.2 Generation of CRBN knockout cell line
using CRISPR-Cas9-mediated gene editing

The CRISPR/Cas9 Gene Knockout Kit specific for the human

CRBN gene (sc-418922) or control (sc-412142) was purchased from

Santa Cruz Biotechnology (Santa Cruz, CA, USA). Plasmids

containing the CRISPR/Cas9 system were transfected into HepG2

cells using the Lipofectamine transfection reagent (Invitrogen,

Carlsbad, CA, USA), following the manufacturer’s instructions.

Two days after transfection, the cells were treated with 2 mg/mL

puromycin (Sigma, St. Louis, MO, USA) for 3 days to select for

transfected cells. Subsequently, serial dilutions were performed in

96-well plates to obtain one cell per well for clonal selection. The

expression of CRBN was analyzed using western blotting.
2.3 AST and ALT activity

AST and ALT activities in the supernatant after exposure of

cells to 0.1% CCl4 were determined using the colorimetric assay kit

(AST; #K753-100, ALT; #K752- 100, Biovision Co., CA, USA),

according to manufacturer’s instructions.
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2.4 Antioxidant parameters

SOD activity and the GSH/GSSG ratio were determined using

commercially available assay kits (SOD; #S311, GSH/GSSG; #G257,

Dojindo Molecular Technologies, Kumamoto, Japan), according to

the manufacturer’s instructions.
2.5 Western blotting

Proteins were separated using sodium dodecyl sulfate-

polyacrylamide gel electrophoresis and transferred onto

polyvinylidene fluoride membranes. After blocking with 3% BSA in

TBS-T (137 mM NaCl, 20 mM Tris-Cl, pH 7.6, 0.1% Tween 20), the

membraneswere incubatedwithvariousprimary antibodies, including

anti-cleaved caspase-3 (cell signaling 9664), anti-CRBN (cell Signaling

71810), anti (MAPK; Erk1/2) (R&D systems MAB1576), anti-

phospho-p44/42 MAPK (Erk1/2) (cell signaling 4377), anti-p38

MAPK (cell signaling 8690), anti-phospho-p38 MAPK (cell

signaling 4511), anti-JNK (cell signaling 9252), anti-phospho-JNK

(cell signaling 4668), and anti-tubulin (Sigma-Aldrich T6199). The

blots were then incubated with a secondary antibody [anti-rabbit

horseradish peroxidase-conjugated or anti-mouse horseradish

peroxidase conjugate; Santa Cruz Biotechnology)], and the protein

bands were visualized using an enhanced chemiluminescence

detection system.
2.6 Cell viability assay

Cell viability was measured using the water-soluble tetrazolium

salt 1 assay (WST-1; EZ-CyTox, Dogen, Korea), according to the

manufacturer’s instructions. The optical density of the control cells

was considered 100% viable.
2.7 Quantitative realtime PCR

IL-1b, IL-6, TNF-a, and COX-2 gene expression was quantified

using quantitative real-time polymerase chain reaction (qRT-PCR).

Briefly, the total RNA of HepG2 cells was extracted using TRIzol

reagent (Life Technologies, Carlsbad, CA, USA). Total RNA (2 µg)

was used as a template for synthesizing the first-strand of cDNA

using the reverse transcriptase reaction mixture (Takara, Shiga,

Japan). For qRT-PCR, the PCR mix (FastStart Universal SYBR

Green Master; Roche, Switzerland) used in the reaction system and

thermocycler conditions were set according to the manufacturer’s

instructions. Relative expression data were normalized to GAPDH

and are presented as a ratio relative to the control. The primer

sequences used for the PCR analyses are listed in Table 1.
2.8 Statistical analysis

Significant differences between groups were determined using

two-tailed unpaired Student’s t-tests, and multiple comparisons

were performed using one-way or two-way repeated-measures
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ANOVA. Data are expressed as the mean ± standard error of the

mean (SEM) of at least three independent experiments. Statistical

significance was set at P < 0.05, as indicated in the figure legends.
3 Results

3.1 Dose-dependent cytotoxicity of carbon
tetrachloride in HepG2 cells

To establish a baseline for understanding the effect of CCl4 on

hepatocytes, we initially assessed the cytotoxicity of various

concentrations of CCl4 in HepG2 cells, a human liver cancer cell

line that is used to model hepatocyte function in vitro (22, 23). This

was crucial for determining the effective dose that induced

observable cellular damage without immediate lethality, thereby

facilitating subsequent investigations into the protective role of

CRBN. Treatment with 0.05–0.08% CCl4 did not significantly

affect cell viability compared to the untreated controls. However,

0.1% CCl4 exhibited a significant reduction in cell viability,

establishing this as the optimal concentration for inducing a

measurable and consistent toxic effect (Figure 1A). We confirmed

these effects by measuring the activity of caspase-3, an indicator of

apoptosis, using western blotting (24). Increased cleaved caspase-3

levels were evident at 0.1% CCl4 (Figures 1B, C).
3.2 CRBN deficiency prevented CCl4-
stimulated hepatotoxicity in vitro

To investigate the functional involvement of CRBN in liver

injury, we used CRISPR-Cas9 technology to develop CRBN

knockout (CRBN KO) and control (Ctrl) HepG2 cells. The cells

were treated with CCl4 and its morphological changes were

evaluated with inverted microscopy and quantitative analysis of

cell viability using the WST-1 assay. CCl4 treatment significantly

inhibited cell confluence and caused cell death in control cells,

which is in agreement with previous studies (1, 25, 26). However,

CCl4-induced morphological alterations were prevented in the

CRBN KO HepG2 cells (Figure 2A). A comparison of cell

viability between Ctrl and CRBN KO cells in the presence of CCl4
TABLE 1 Oligonucleotide sequences used in RT-PCR analysis.

Gene Direction Sequence (5′to 3′)

IL-1b
Forward
Reverse

CCACAGACCTTCCAGGAGAATG
GTGCAGTTCAGTGATCGTACAGG

IL-6
Forward
Reverse

ACTCACCTCTTCAGAACGAATTG
CCATCTTTGGAAGGTTCAGGTTG

TNF-a
Forward
Reverse

CTCTTCTGCCTGCTGCACTTTG
ATGGGCTACAGGCTTGTCACTC

COX-2
Forward
Reverse

TGCATTCTTTGCCCAGCACT
AAAGGCGCAGTTTACGCTGT

GAPDH
Forward
Reverse

GACTCATGACCACAGTCCATGC
AGAGGCAGGGATGATGTTCTG
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revealed that CRBN KO cells exhibited improved viability against

CCl4-induced cytotoxicity (Figure 2B).

Thus, we next performed western blotting for the protein

expression of cleaved caspase-3 to confirm the resistance to cell

death conferred by CRBN KO (Figure 2C). CCl4-treated CRBN KO

cells showed a significantly decreased cleaved caspase-3 level

compared with CCl4-treated ctrl cells (Figures 2C, E). Notably,

endogenous CRBN expression was not affected by CCl4 treatment

(Figures 2C, D). These results suggested that CRBN is an essential

component of apoptotic signaling in CCl4-induced hepatocellular

injury in vitro.

To further validate the functional role of CRBN in CCl4-stimulated

hepatotoxicity, we attempted to rescue the phenotype of the CRBN

deficiency by exogenously expressing HA-tagged CRBN in CRBN KO

HepG2 cells followed by CCl4 treatment (Figure 2F). Western blotting

revealed that overexpression of CRBNmarkedly increased the levels of

cleaved caspase-3 in CRBN KO cells compared to mock-transfected

CRBN KO cells treated with CCl4 (Figure 2G), further confirming the

critical role of CRBN in mediating CCl4-induced hepatocellular injury

and indicating that the observed protective effects are attributable to

CRBN deficiency.
3.3 CRBN deletion ameliorated CCl4-
induced oxidative stress in HepG2 cell lines

To clarify the protective effect of CRBN KO against

hepatocellular injury, we examined aspartate aminotransferase
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(AST) and alanine aminotransferase (ALT) activity in HepG2

cells after exposure to CCl4. AST and ALT are enzymes primarily

found in hepatocytes and are released into the bloodstream upon

liver injury. Therefore, measuring AST and ALT activity serves as a

sensitive and reliable method for assessing hepatocellular injury (8).

CCl4-treated ctrl cells exhibited markedly elevated AST and ALT

activities compared with CCl4 untreated ctrl cells (Figures 3A, B).

This observation is consistent with previous studies that

demonstrated the hepatotoxic effects of CCl4 and the release of

AST and ALT into the culture media as markers of hepatocellular

injury (8, 27). In contrast, CRBN KO HepG2 cells treated with CCl4
exhibited a notable reduction in AST and ALT activities compared

with control HepG2 cells treated with CCl4.

Oxidative stress is essential in the progression of liver injury.

Intracellular antioxidants, such as superoxide dismutase (SOD)

and glutathione (GSH), play crucial roles in protecting the liver

from oxidative stress-induced damage by neutralizing harmful

reactive oxygen species (ROS) (28). Thus, SOD activity and the

GSH/GSSG ratio were also examined. CCl4-treated ctrl cell

showed a notable decrease in SOD activity and the GSH/GSSG

ratio compared with CCl4 untreated ctrl cells (Figures 3C, D).

These reductions in SOD activity and the GSH/GSSG ratio

indicate an imbalance between ROS production and antioxidant

defense mechanisms, resulting in oxidative stress and cellular

damage caused by CCl4 treatment. In contrast, CRBN deficiency

group exposed to CCl4 exhibited the preservation of endogenous

SOD activity and the GSH/GSSG ratio compared with the control

group exposed to CCl4.
A

B

C

FIGURE 1

Toxic effects of carbon tetrachloride (CCl4) on HepG2 cells. (A) Cytotoxicity of CCl4 on HepG2 cells. (B) Western blot of the cleaved caspase-3 in
HepG2 cells. (C) Relative band intensity of cleaved caspase-3 quantified using densitometric analysis and then normalized to that of tubulin. HepG2
cells were incubated with different concentrations of CCl4 (0.05, 0.08, 0.1, and 0.15%) for 1 h. Values in the bar graphs are the mean ± SEM of at
least three independent experiments. ***P < 0.005, significantly different from the control group.
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These findings further support the protective role of CRBN KO

against hepatocellular damage, implying a potential mechanism by

which CRBN modulates oxidative stress and protects against

liver injury.
3.4 CRBN deficiency resulted in the
defective expression of the genes involved
in CCl4-induced inflammation

Inflammation plays a critical role in hepatic injury progression.

To evaluate the effect of CRBN deficiency on CCl4-induced
Frontiers in Immunology 05
inflammation, we assessed the mRNA levels of proinflammatory

genes, including IL-1b, IL-6, TNF-a, and COX-2, in cells following

CCl4 exposure. CCl4-treated ctrl cells showed a significant

upregulation in IL-1b, IL-6, TNF-a, and COX-2 expression

compared with CCl4 untreated ctrl cells (Figure 4). This

demonstrated that CCl4-induced pro-inflammation, indicating an

inflammatory response triggered by hepatocellular injury.

Conversely, CRBN KO HepG2 cells treated with CCl4 exhibited a

notable decrease in IL-1b, IL-6, TNF-a, and COX-2 mRNA levels

compared with control HepG2 cells treated with CCl4. These results

demonstrated that CRBN deletion attenuated the upregulation of

pro-inflammatory genes induced by CCl4 exposure in HepG2 cells,
A B

D E

F G

C

FIGURE 2

Effect of CRBN knockout (KO) on CCl4-induced damage in HepG2 cells. (A) Representative microscopic images of HepG2 cells (Ctrl and CRBN KO)
treated with DMSO or CCl4, respectively. The regions outlined in white in the upper images are shown in the bottom panels. Original magnification,
×100. (B) Relative cell viability presented using the WST-1 of the cells from (A). (C) Representative western blotting analysis of CRBN, cleaved
caspase-3, and tubulin in HepG2 cells (Ctrl and CRBN KO) treated with either DMSO or CCl4. Tubulin was used as a loading control. (D) Relative
band intensity of CRBN quantified using densitometric analysis and then normalized to that of tubulin. (E) Relative band intensity of cleaved caspase-
3 quantified using densitometric analysis and then normalized to that of tubulin. (F) Representative Western blotting analysis of HA, cleaved caspase-
3, and tubulin in CRBN KO treated with either DMSO or CCl4. Tubulin was used as a loading control. (G) Relative band intensity of cleaved caspase-3
was quantified using densitometric analysis and then normalized to that of tubulin. Ctrl-and CRBN KO HepG2 cells were treated with either DMSO
or CCl4 (0.1%) for 1 h. The values in the bar graphs represent the mean ± SEM of at least three independent experiments. *Statistical differences
(*P < 0.05, **P < 0.01, ***P < 0.005) compared to the control HepG2 cells not treated with CCl4.

#Statistical differences (#P < 0.05, ##P < 0.01,
###P < 0.005) compared to the control HepG2 cells treated with CCl4.
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suggesting the importance of CRBN in modulating inflammatory

responses in the liver.
3.5 CRBN KO attenuated CCl4-induced
mitogen-activated protein kinase
(MAPK) pathway

Mitogen-activated protein kinases (MAPKs) are pivotal

regulators of cellular processes and play critical roles in

proliferation, apoptosis, and immune defense (29). MAPKs form

three distinct pathways in mammalian cells, the ERK, JNK kinase,

and p38 pathways. Each pathway responds to specific extracellular

signals, and regulates various cellular processes (30). CCl4-induced

oxidative stress initiates apoptosis via the activation of the MAPK

family (31–33). Therefore, we investigated the function of the
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MAPK pathway in the molecular mechanisms underlying the

protective effects of CRBN knockout against CCl4-induced

cell damage.

CCl4 treatment of control cells significantly increased the levels of

phospho-JNK, phospho-ERK, and phospho-p38 MAPK proteins

compared with CCl4-untreated control cells (Figure 5), consistent with

previous reports (34, 35). However, the absence of CRBN decreased the

CCl4-induced phosphorylation of JNK and ERK, whereas the

phosphorylation of p38 MAPK remained unaffected. (Figure 5).

Notably, the total protein levels of the three MAPKs did not change,

regardless of CCl4 treatment or CRBN knockout. These observations

indicate that CRBNknockout attenuates the activation of JNK and ERK

in response toCCl4-induced oxidative stress, but not that of p38MAPK,

suggesting a molecular mechanism underlying the protective effects of

CRBN knockout against CCl4-induced cell damage and the potential

involvement of the MAPK pathway in mediating these effects.
A B DC

FIGURE 4

Effect of CRBN KO on pro-inflammatory cytokine mRNA expression in the HepG2 cells treated with CCl4. Total RNA was isolated from HepG2 cells
(Ctrl and CRBN KO) treated with DMSO or CCl4, and subjected to quantitative real-time PCR analysis to determine the expression of (A) IL-1b, (B) IL-
6, (C) TNF-a, and (D) COX-2. Expression levels were normalized to GAPDH mRNA levels. Fold changes in mRNA levels relative to that of the control
HepG2 cells not treated with CCl4, which were set arbitrarily at 1.0, are shown. The values in the bar graphs represent the mean ± SEM of at least
three independent experiments. *Statistical differences (*P < 0.05, **P < 0.01, ***P < 0.005) compared to the control HepG2 cells not treated with
CCl4.

#Statistical differences (#P < 0.05, ##P < 0.01, ###P < 0.005) compared to the control HepG2 cells treated with CCl4.
A B DC

FIGURE 3

Effect of CRBN loss on the biochemical parameters and antioxidant enzyme activity of CCl4-treated HepG2 cells. (A) AST activity of HepG2 cells. (B)
ALT activity of HepG2 cells. (C) SOD activity. (D) GSH/GSSG ratio. Ctrl-and CRBN KO HepG2 cells were treated with either DMSO or CCl4 (0.1%) for
1 h. The values in the bar graphs represent the mean ± SEM of at least three independent experiments. *Statistical differences (*P < 0.05, **P < 0.01,
***P < 0.005) compared to the control HepG2 cells not treated with CCl4.

#Statistical differences (#P < 0.05, ##P < 0.01, ###P < 0.005) compared to
the control HepG2 cells treated with CCl4.
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3.6 CRBN knockdown mitigated CCl4-
induced hepatic toxicity in AML12 cells

To further validate the protective role of CRBN deficiency

against CCl4-induced hepatocellular injury, we extended our

study to another cell line using TD-165, a well characterized

CRBN degrader (18, 36) in AML-12 cells, which are derived from

mouse hepatocytes.
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We first confirmed the effectiveness of the CRBN degrader by

assessing CRBN expression levels. Treatment with TD-165

significantly reduced CRBN expression in AML12 cells,

demonstrating successful knockdown (Figures 6A, B).

To examine the impact of CRBN knockdown against CCl4-

induced hepatic toxicity, we measured the levels of cleaved caspase-

3. Western blot analysis revealed that CCl4-treated CRBN

knockdown AML12 cells showed a significantly decreased cleaved
A B

D

E F

C

FIGURE 5

Effect of CRBN deletion on ERK 1/2, JNK 1/2, and p38 expression in the HepG2 cells treated with CCl4. (A) Representative western blotting analysis
of JNK and P-JNK. Tubulin was used as the loading control. (B) Relative band intensity of P-JNK quantified using densitometric analysis and then
normalized to that of JNK. (C) Representative western blotting analysis of ERK and P-ERK. (D) Relative band intensity of P-ERK to ERK. (E)
Representative western blotting analysis of p38 and P-p38. (F) Relative band intensity of P-p38 to p38. Ctrl-and CRBN KO HepG2 cells were treated
with DMSO or CCl4. The values in the bar graphs represent the mean ± SEM of at least three independent experiments. *Statistical differences
(*P < 0.05, **P < 0.01, ***P < 0.005) compared to the control HepG2 cells not treated with CCl4.

#Statistical differences (#P < 0.05, ##P < 0.01,
###P < 0.005) compared to the control HepG2 cells treated with CCl4.
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caspase-3 level compared with CCl4-treated ctrl AML12 cells

(Figure 6C), consistent with our findings in HepG2 cells. These

results suggest that the protective role of CRBN deficiency against

CCl4-induced hepatic toxicity is not limited to HepG2 cells and can

be replicated in AML12 cells, further supporting the protective role

of CRBN deficiency against hepatocellular injury.
4 Discussion

The liver is a prime target for reactive oxygen species (ROS),

and it possesses an intricate antioxidant system that preserves redox

balance within its tissues. Elevated ROS levels can disrupt this

balance, leading to oxidative stress, which is heavily implicated in

liver diseases and various chronic and degenerative conditions (9,

37). In a CCl4-induced liver injury model, the triggered oxidative

stress leads to lipid peroxidation that damages the membranes of

hepatocytes. This damage results in a significant release of pro-

inflammatory chemokines and cytokines, ultimately exacerbating

liver damage (38). Given its ability to mimic chronic liver disease,

CCl4 has been commonly used as a hepatotoxin in numerous

experimental models (39–41).

CRBN performs multifunctional roles in cellular physiology

and in a wide array of human diseases (42–44). However, the

hepatoprotective role of CRBN against CCl4-induced hepatic injury

remains unknown. Our study demonstrated that CRBN KO may

confer protection against CCl4-induced acute liver injury,

potentially through mechanisms involving the inhibition of

inflammatory responses and attenuation of oxidative stress.

CRBN KO cells exhibited improved viability and reduced

apoptosis in response to CCl4 treatment compared with control

cells. The observed decrease in caspase-3 activation, a hallmark of

apoptosis, along with lower AST and ALT activities, suggests a

substantial reduction in hepatocellular damage. These findings not

only underline the potential hepatoprotective attributes of CRBN

modulation, but also advance our understanding of the molecular

interactions involved in liver toxicity.
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The reduced pro-inflammatory cytokine expression in CRBN-

KO cells following CCl4 treatment also highlights the important

anti-inflammatory effects of CRBN deletion. Given the role of

inflammation in the exacerbation of liver damage, the ability to

suppress inflammatory mediators can be highly beneficial in clinical

settings where inflammation significantly contributes to disease

progression (45). Additionally, we explored antioxidant defense

mechanisms by examining SOD activity and the GSH/GSSG ratios.

The preservation of these antioxidants in the CRBN-KO cells

further supports the role of CRBN in oxidative stress, which is a

key player in the pathogenesis of liver injury. By maintaining a

balance between ROS production and antioxidant defense, CRBN-

KO cells are better equipped to reduce oxidative stress and the

likelihood of cellular damage and death. Our study also revealed

that the protective mechanism likely involved the modulation of

MAPK signal ing pathways . Specifica l ly , the reduced

phosphorylation of JNK and ERK in CRBN KO cells treated with

CCl4 compared with that in ctrl cells treated with CCl4 indicates a

targeted disruption of these pathways, which mediate cellular

responses to stress and damage. Interestingly, p38 MAPK

phosphorylation remained unchanged, suggesting the selective

involvement of certain MAPK pathways in the protective effects

conferred by CRBN deletion. This selectivity may be pivotal for

therapeutic strategies aimed at minimizing hepatocellular injury

without interfering with other cellular functions regulated by

p38 MAPK.

The rescue experiment, where re-expression of CRBN in CRBN

KO HepG2 cells reversed the protective effects, further confirms the

critical role of CRBN in mediating CCl4-induced hepatocellular

injury. Additionally, our observations in AML12 cells suggest that

the protective role of CRBN deficiency extends across different

hepatocyte models, indicating the broader applicability of CRBN’s

protective effects against CCl4-induced hepatotoxicity.

Our study conclusively demonstrates the hepatoprotective

capabilities of CRBN in CCl4-induced hepatocellular injury.

Specifically, we found that CRBN plays a critical role in

mitigating damage, at least in part, through mechanisms that
A B C

FIGURE 6

Effects of CRBN knockdown (KD) against CCl4-induced damage in AML12 cells. AML12 cells were treated with or without TD-165 (1mM) for 24 h and
subsequently exposed to CCl4 (0.1%) for an additional 1 h. Cell lysates were analyzed by Western blot. (A) Representative Western blotting analysis of
CRBN, cleaved caspase-3, and tubulin. Tubulin was used as a loading control. (B) Relative band intensity of CRBN was quantified using densitometric
analysis and then normalized to that of tubulin. (C) Relative band intensity of cleaved caspase-3 was quantified using densitometric analysis and then
normalized to that of tubulin. *Statistical differences (*P < 0.05, **P < 0.01, ***P < 0.005) compared to the DMSO control group without TD-165.
#Statistical differences (#P < 0.05, ##P < 0.01, ###P < 0.005) compared to the corresponding treatment group without TD-165.
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reduce oxidative stress and inflammation, and through the

inhibition of MAPK pathway-induced apoptosis. Although

further animal studies or clinical trials are needed to validate our

findings and enhance the translational potential of our results, the

present study provides deeper insights into the molecular

mechanisms of liver disease and opens new avenues for targeted

therapies to prevent or mitigate liver injury in a range of

pathological contexts.

In conclusion, the present study not only highlights the

protective role of CRBN deletion against CCl4-induced

hepatocellular injury, but also provides a foundation for further

investigations into gene-targeted therapies for liver injury across a

spectrum of liver diseases.
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