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Background: Clear cell renal cell carcinoma (ccRCC) poses substantial treatment

challenges, especially in advanced stages where the efficacy of immune

checkpoint blockade (ICB) therapy varies significantly. Elevated expression of

the oncogene TUBA1C has been correlated with poor prognosis in various

cancers, however, its role in ccRCC is unclear, especially concerning

ICB resistance.

Methods: Single-cell analysis was used to examine gene expression variations in

malignant cells post-ICB therapy. This included investigating TUBA1C expression

across different ICB response groups and its relationship with CD274. A general

module of action was identified through pan-cancer and pan-tissue analysis.

TUBA1C expression and its association with clinical characteristics and prognosis

was further validated. Multiple algorithms were employed to explore immune cell

infiltration levels, and the DepMap database was utilized to assess gene

dependency and mutation status in kidney cancer cell lines. The in silico

knockout of TUBA1C was performed using deep learning model,

complemented by immunohistochemical assays, clinical cohort and functional

assays validations.

Results: TUBA1C expression is elevated in malignant cells following ICB therapy

and is correlated with ICB resistance in ccRCC. High TUBA1C expression

activates PI3K/AKT pathway and is associated with increased infiltration of

regulatory T cells and myeloid-derived suppressor cells, which contributes to

an immunosuppressive microenvironment in ccRCC. Patients with high TUBA1C

expression exhibit a greater tumor mutation burden and increased genetic

variation, which causes a worse prognosis. Additionally, TUBA1C dependency

and its effects were evident in kidney cancer cell lines, where mutations

conferred resistance to anti-PD-L1 therapy. In silico knockout analyses

indicated that treatment targeting TUBA1C shifted malignant cells to a state

responsive to ICB therapy. Immunohistochemistry, RT-qPCR and clinical cohort

validation further confirmed that TUBA1C expression was upregulated and
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1457691/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1457691/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1457691/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1457691/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1457691/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1457691/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1457691&domain=pdf&date_stamp=2024-09-05
mailto:caoqingfei@jzmu.edu.cn
https://doi.org/10.3389/fimmu.2024.1457691
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1457691
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2024.1457691

Frontiers in Immunology
contributed to poorer outcome in ccRCC. Finaly, wound healing and CCK-8

assays demonstrated the potent oncogenic function of TUBA1C.

Conclusions: TUBA1C is a pivotal regulator in ccRCC, affecting both disease

progression and the effectiveness of ICB therapy by fostering an

immunosuppressive microenvironment mediated by the PI3K/AKT pathway.

Additionally, TUBA1C holds promise, both as a prognostic biomarker and a

therapeutic target, for enhancing responsiveness to ICB.
KEYWORDS

clear cell renal cell carcinoma, single cell RNA sequencing, tubulin alpha 1c, immune
checkpoint blockade, immunotherapy resistance, immunosuppressive tumor
microenvironment, prognostic biomarker
1 Introduction

Renal cell carcinoma (RCC) is a significant cause of mortality

among kidney diseases, with clear cell RCC (ccRCC) being the most

prevalent pathological subtype (1). Although surgical resection is

the primary mode of treatment in the early stages of the disease,

many patients with ccRCC present with do not display clinically

significant symptoms early on, leading to a delay in treatment (2).

Accordingly, approximately 30% of ccRCC patients are diagnosed

at an advanced stage without the option for surgery (2, 3).

Furthermore, ccRCC patient populations have become

increasingly younger in recent years, characterized by high rates

of metastasis and mortality (4). Collectively, these factors pose

challenges to treatment approaches.

A wide array of treatments are currently available for enhancing

the prognosis of ccRCC patients, including targeted therapy,

immune checkpoint blockade (ICB), and anti-angiogenic therapy,

among others. The integration of ICB with other therapeutic

strategies has significantly extended patient survival. However, the

five-year survival rate for patients with advanced-stage disease

remains unsatisfactory (3, 5). Under physiological conditions,

immune checkpoint pathways play a crucial role in modulating

the processes of infection and tumorigenesis and are intricately

involved in tumor immune evasion mechanisms (6). Additionally,

the efficacy of response to treatments targeting these pathways is

across a range of solid tumors generally limited (7). Despite

widespread resistance to ICB therapies, the genetic and molecular

basis of such resistance remains largely unexplored (8, 9).

Resistance to ICB and tumor metastasis involves complex

intercellular interactions and evolutionary processes. There is

significant heterogeneity in gene expression among cells within

tumors, which greatly affects the makeup of the tumor

microenvironment (TME). Additionally, differences in cell

infiltration levels in the TME play a critical role in tumor

progression, affecting immune adaptation and evasion (10, 11).

Studies have confirmed that ccRCC is among the cancer types most
02
infiltrated by immune and vascular elements (12, 13). Moreover,

substantial evidence supports that the TME is among the most

critical factors impacting the response and resistance to ICB. The

immune cells, stromal cells, metabolic status, and microbial

components in the TME mutually influence each other (6, 14).

Therefore, understanding the genetic and molecular features of the

TME is essential for assessing patient prognosis and developing

effective targeted treatments in ccRCC.

Multiple studies have revealed the oncogenic role of tubulin

alpha-1C chain (TUBA1C) in various cancer types. In lung

adenocarcinoma, TUBA1C has been identified as a robust

prognostic biomarker associated with the abundance of immune

cell infiltration (15).Additionally, TUBA1C promotes the

progression of bladder cancer via the regulation of the cell cycle

(16), and accelerates the progression of gastric cancer by activating

the PI3K/AKT and cell cycle-related pathways (17). Overall,

TUBA1C exhibits a common function across various cancer

types, regulating the PI3K/AKT and cell cycle-related pathways

and reshaping the TME, thereby influencing tumor progression

and, consequently, leading to poor clinical outcomes.

Integrating high-throughput technologies and computational

biology is an effective and innovative approach to explore potential

mechanisms and therapeutic targets of ICB resistance, which can

accelerate clinical translation and improve patient outcomes (18).

In this study, we integrated single-cell RNA sequencing with bulk

RNA analysis to explore differences in gene expression at both

single-cell and tissue levels post-ICB therapy, as well as variations in

cell proportions. We focused primarily on malignant cells in ccRCC

to identify potential functionally relevant genes closely associated

with the expression of PD-L1, a protein that aid tumor cells evade

cytotoxic T cell-mediated destruction (7). We investigated functions

of TUBA1C, its impact on tumor progression, and prognostic

outcomes, and its association with immune cell infiltration across

several cohorts. Additionally, we conducted a bioinformatics

analysis using various kidney cancer cell lines to demonstrate the

effects of TUBA1C gene function on the cellular phenotypes. Based
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1457691
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1457691
on the obtained results, we proposed a reasonable hypothesis,

namely, that TUBA1C recruits myeloid-derived suppressor cells

(MDSCs) and regulatory T cells (Tregs) via the PI3K/AKT pathway,

thereby inducing an immunosuppressive phenotype in

macrophages and dysfunction in CD8+ T cells. This process

reshapes the immunosuppressive tumor microenvironment and

mediates ICB resistance in ccRCC. To further confirm the

relationship between ICB resistance and TUBA1C expression,

mutation data relating to several cancer cell lines were analyzed

to explore the sensitivity of the cells to anti-PD-L1 therapy.

Additionally, a deep learning model was used to validate the

response state of malignant cells at the single-cell level following

the in silico knockout of TUBA1C. Furthermore, we assessed the

protein expression levels of TUBA1C and PD-L1 within ccRCC

tissue microarrays (TMAs) to explore their prognostic and clinical

significance. Finally, the RNA expression levels and oncogenic

functions of TUBA1C were further validated in kidney cancer cell

lines. Our aim was to identify a biomarker that can enhance

precision-targeted therapy and improve the response to

ccRCC immunotherapy.
2 Materials and methods

2.1 Data collection and filtering

In this study, a single-cell RNA sequencing (scRNA-seq) dataset

mined from the Single Cell Portal (https://singlecell .

broadinstitute.org/single_cell), encompassing seven ccRCC

samples and one renal papillary cell carcinoma (RPCC) sample,

was used to explore the cellular landscape under both untreated and

ICB-treatment conditions (9). The inclusion criteria were employed

to ensure the integrity and applicability of the dataset for

downstream analysis included: (1) scRNA-seq data derived from

patients diagnosed with ccRCC; (2) samples were biopsy specimens

obtained directly from renal tumors; (3) samples from patients who

had been treated with tyrosine kinase inhibitors (TKI) before

sample collection were excluded. For the analysis of ICB

treatment effects on ccRCC, RNA-seq datasets from patients

enrolled in the CheckMate 009, 010, and 025 trials were included,

as detailed in the study by Braun et al. (19). The RNA-seq data were

subjected to strict selection criteria, namely, patients who had

received mTOR inhibitor therapy, those who received

combination treatment with TKI and ICB, those who had not

received ICB treatment, or those whose data on overall response

rates were incomplete were excluded. These criteria were applied to

avoid the impact of confounding factors and to precisely assess gene

function in treatment responses. Additionally, gene expression

profiles and associated clinical information from both TCGA

Pan-Cancer Atlas and the TCGA-KIRC dataset, supplemented by

the GTEx pan-tissue dataset, were also included, all of which were

accessed through the UCSC Xena platform (https://xena.ucsc.edu/).

The E-MTAB-1980 cohort, serving as an additional resource, was

obtained from the ArrayExpress database (https://www.ebi.ac.uk/

arrayexpress).To elucidate candidate gene dependencies and effects
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within the studied populations, data was obtained from The Cancer

Dependency Map Project (DepMap, https://depmap.org/portal/),

an initiative by the Broad Institute aimed at systematically

identifying functionally relevant genes across a broad spectrum of

cancer cell lines.
2.2 Comprehensive scRNA-seq
data processing

For the processing of scRNA-seq data, the ‘Seurat’ R package

was employed. Initially, cells were subjected to a stringent filtering

process, requiring gene expression levels to exceed 400 but not

surpass 6,000, raw read counts to exceed 1000, and mitochondrial

gene expression to remain below 20%. Following this, the raw read

counts were normalized to balance variations in sequencing depth,

and the top 2,000 genes exhibiting the highest variability were

identified for subsequent analysis. Following scaling, principal

component analysis (PCA) was employed to identify genes with

the most significant contribution to data variability, these genes

were specifically selected due to their significant contribution to

data variability. The ‘Harmony’ integration algorithm was applied

to address batch effects across samples and thus ensure that

subsequent analyses were not confounded by non-biological

sources of variation. Cell Clustering was achieved using the k-

shared nearest neighbors (SNN) algorithm, to identify discrete cell

populations within the complex ccRCC microenvironment.

Visualization of the distinct cell clusters was accomplished

through Uniform Manifold Approximation and Projection

(UMAP) plots, providing a comprehensive overview of cellular

heterogeneity. The final step involved the annotation of each cell

cluster, which was achieved by leveraging gene markers identified in

previous studies (9, 20), and allowed for the precise characterization

of cell types within the ccRCC microenvironment.
2.3 Single-cell copy number
variation analysis

The ‘infercnv’ R package (https://github.com/broadinstitute/

infercnv) was utilized to conduct a single-cell copy number

variation (CNV) analysis on epithelial cells derived from ccRCC

samples. This analysis aimed to identify malignant cells within the

ccRCC microenvironment by comparing their CNV profiles to

those of macrophages and endothelial cells, which served as

references (21). Specifically, chromosomal CNVs, including

amplifications and deletions, were analyzed within each epithelial

subcluster. The ‘infercnv::run’ function was configured with a cutoff

value of 0.1 and ‘denoise=TRUE’ to enhance the accuracy of CNV

detection. The outcome of this analysis was visualized through a

heatmap, depicting the CNV levels across 23 chromosomes in

epithelial subclusters relative to the reference cell populations.

From this CNV landscape, the malignancy of tumor cells was

inferred, providing insights into the genomic instability

characteristics of ccRCC.
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2.4 Analysis of cell
differentiation trajectories

To elucidate the cell differentiation pathways within the single-

cell dataset, pseudotime analysis was employed using the ‘monocle’

R package (22). This algorithm is designed to estimate size factors

and dispersions for the input data, enabling the selective filtration of

genes with low expression levels. Subsequent dimensionality

reduction is achieved through the ‘DDRTree’ algorithm,

facilitating a more refined analysis. Crucially, ‘monocle’ leverages

these processed data to construct a comprehensive model of cell

differentiation trajectories, mapping distinct cellular states along the

pseudotime dimension based on their gene expression profiles. This

approach not only delineates the progression of cell states but also

provides invaluable insights into the dynamic regulatory

mechanisms underpinning cell differentiation.
2.5 Intercellular interactions analysis

To investigate the nuances of intercellular communication across

various treatment groups as well as pinpoint the pivotal cell clusters

responsive to ICB therapy, ‘CellChat’ R package was employed.

Specific intercellular interactions among distinct cell clusters were

identified based on information in the ‘CellChatDB.human’

ligand-receptor database (23). This analysis enabled the detection

of overexpressed genes and their interactions, further allowing for the

elucidation of common pathways previously confirmed in the

literature. The differential number and strength of these

interactions were visualized through the utilization of circle plots

and heatmaps, offering insightful perspectives on dynamic

interactions at the cellular level.
2.6 Prognostic biomarker identification in
ccRCC via the ICB therapy cohort

For prognostic biomarker identification, the investigation

focused on malignant cells in ccRCC, characterized by significant

expression of the PD-L1 on the cell membranes, marking it as a

pivotal target for ICB therapy. The ‘FindMarkers’ function was used

to identify differentially expressed genes (DEGs) within tumor cells

and Tumor-Associated Epithelial Cells (TECs) from scRNA-seq

datasets, comparing untreated (NO-ICB) and partial response

(ICB-PR) groups. These DEGs were then pooled to capture a

comprehensive set of genes showing altered expression in

response to ICB therapy. DEGs were characterized based on an

average log2 fold change (log2FC) >0.5 and a p-value <0.01. All

identified DEGs were subsequently analyzed within the Braun ICB

cohort through bulk RNA sequencing. To prioritize our list of

genes, both univariate and multivariate cox regression analyses were

conducted, aiming to identify prognostic biomarkers within the

Braun ICB cohort. All DEGs were identified from malignant ccRCC

cells, with PD-L1 serving as a key functional protein mediating

tumor progression and immune evasion in these cancer cells.

Subsequently, the relationship between prognostic genes and
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CD274 expression was further explored. Spearman correlation

analysis was performed to assess the association between

candidate genes and CD274 expression, with a p-value < 0.05

considered statistically significant. Furthermore, the expression

levels of correlated genes were examined across different response

groups, namely, progressive disease (PD), stable disease (SD), and

comprehensive response/partial response (CR/PR).
2.7 Comprehensive pan cancer and pan
tissue analysis

To investigate the correlation between the expression of

TUBA1C and CD274 across various cancers and tissues, a

Pearson correlation analysis was performed on the TCGA Pan

Cancer cohort (excluding normal and duplicated samples) and the

GTEx dataset, which enabled an analysis at both the pan-cancer and

pan-tissue levels. These datasets were subsequently integrated to

assess the variation in TUBA1C expression between normal and

tumor tissues. Additionally, the differences in TUBA1Cmethylation

levels and CNV in different cancers were investigated, and their

correlation with TUBA1C expression was examined. Moreover,

univariate Cox regression analysis was employed to determine the

impact of TUBA1C on clinical outcomes, including overall survival

(OS), progression-free interval (PFI), disease-specific survival

(DSS), and disease-free interval (DFI). Finally, survival differences

were assessed based on median expression levels of TUBA1C within

TCGA-KIRC and E-MTAB-1980 cohorts, to validate the prognostic

significance of TUBA1C. A detailed analysis of TUBA1C expression

levels and their association with clinical features within the two

cohorts was conducted to enhance understanding of its

prognostic relevance.
2.8 Deciphering the role of TUBA1C: KEGG
and GO enrichment analysis in TCGA-
KIRC cohort

To elucidate the functional implications of TUBA1C, a

Spearman correlation analysis was conducted between TUBA1C

and all genes within TCGA-KIRC cohort. The resulting correlation

coefficients were then ranked and used for Gene Set Enrichment

Analysis (GSEA), employing both Kyoto Encyclopedia of Genes

and Genomes (KEGG) and Gene Ontology (GO) gene sets sourced

from the Molecular Signatures Database (MSigDB, https://

www.gsea-msigdb.org/gsea/msigdb/index.jsp). The top 5

enrichment results were subsequently visualized to highlight the

most significant functional associations of TUBA1C.
2.9 The impact of TUBA1C expression on
the tumor mutation burden

Somatic mutation data for TCGA-KIRC cohort were retrieved

from TCGA database (https://portal.gdc.cancer.gov/). The

‘maftools’ R package was used for calculating the tumor mutation
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burden (TMB) and visualizing the relevant data. The investigation

focused on assessing the TMB in various TUBA1C expression

groups to determine the association between TUBA1C expression

levels and the TMB. Finally, each sample was stratified into distinct

groups based on the median values of TUBA1C expression and the

TMB, aiming to predict the OS of ccRCC patients.
2.10 Analyzing hallmark pathway activity in
relation to TUBA1C expression variability

To evaluate the influence of TUBA1C expression levels on

pathway activities, the gene set activity scores among distinct

TUBA1C expression groups, categorized by the median values of

TUBA1C expression, were calculated with the ‘GSVA’ R package.

This analysis specifically targeted the hallmark pathway gene set.

Subsequent analysis of pathway activity variation was conducted

using the ‘limma’ R package. Pathways exhibiting an absolute t-

value >2 and a p-value <0.05 were identified as exhibiting significant

differences in activity.
2.11 Dissecting the association between
TUBA1C expression and immune cell
infiltration in the TME

The interaction between TUBA1C expression and the

infiltration of immune cells in the TME within TCGA-KIRC

cohort was investigated with the ‘IOBR’ R package (https://

github.com/IOBR/IOBR), a tool for analyzing immune cell

infiltration patterns. Furthermore, the ‘ssGSEA’ function was used

to assess the infiltration levels of 28 immune cell types across

different TUBA1C expression categories based on immune cell

marker genes identified in a recent study (24). In addition,

various tumor and TME signature scores were calculated, as

aggregated by the package. Finally, a correlation analysis was

performed to uncover the association between TUBA1C

expression and immune cell infiltration, thereby shedding light on

how TUBA1C may influence the immune landscape within

the TME.
2.12 Elucidating the role of TUBA1C in
ccRCC immune modulation and drug
sensitivity via the BEST database

The Biomarker Exploration of Solid Tumors online database

was used for visualizing the correlation between TUBA1C

expression levels and various immune regulatory modules within

distinct ccRCC datasets (25). These modules encompass antigen

presentation, immune inhibitors, immune stimulators, chemokines,

and receptors. Furthermore, leveraging the BEST database, drug

sensitivity was predicted for different TUBA1C expression groups

using insights from the Genomics of Drug Sensitivity in Cancer

(GDSC) and the Cancer Therapeutics Response Portal

(CTRP) databases.
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2.13 Exploring TUBA1C as a potential
therapeutic target in ccRCC

Utilizing the DepMap database, which encompasses over 1,000

cancer cell lines with gene knockouts generated using CRISPR-Cas9

technology, an in-depth investigation of the effects of gene function

on cancer cell growth and proliferation was undertaken. This is a

comprehensive resource that facilitates the identification of viable

therapeutic targets by closely monitoring the behavior of cancer

cells post-gene knockout. In the current investigation, the DepMap

23Q2 public dataset was used to scrutinize the effect of TUBA1C

gene function on the survival and proliferation of cancer cells,

focusing on 26 kidney cancer cell lines. Additionally, somatic

mutation data was employed to assess the sensitivity of these cells

to anti-PD-L1 therapy in the presence (wild-type category) or

absence (mutant category) of TUBA1C mutations. The average

dependency of CD274 within the same tissue type was then

subjected to further analysis, that is, mutant cell lines in the same

tissue category with fewer than two representatives were excluded.

To delve deeper into the influence of TUBA1C on the response

to ICB therapy, the “Geneformer” deep learning model was

employed for in silico treatment analysis (26), simulating gene

function and drug resistance. This approach involves the use of

the Transformer model as the computational backbone specifically

tailored for natural language processing tasks (27). This

methodology, which closely followed the protocols outlined in

(26), facilitates the in silico knockout of genes by parsing and

processing gene names, segregating malignant cells into training

and testing datasets at an 8:2 ratio according to ICB response. The

dataset was processed by tokenizing gene names and ranking the

genes by their expression levels in each cell. The cells classified as

malignant were then allocated into training and testing sets

according to their cellular states. The model was fine-tuned over

five epochs using the ICB response as a predictive label, aiming to

optimize a balance between predictive accuracy and validation loss.

The most effective model was subsequently employed for validation

purposes and its efficacy was assessed on the test dataset. Following

this, an extensive analysis of the malignant cells was conducted

using the fine-tuned model to visualize the cellular embeddings.

This process culminated in the selection of average cell embeddings

for both the NO-ICB and ICB-PR conditions, serving as the initial

and target states for malignant cell analysis. To minimize graphics

card memory usage and enhance computational efficiency, 2,000

malignant cells were randomly selected, each of which was

subjected to in silico knockout targeting 2,048 genes with high

expression levels. The genes whose knockout resulted in a shift

towards the ICB-PR cell state, based on a false discovery rate (FDR)

<0.05, were categorized as potential candidates for enhancing the

efficacy of ICB therapy.
2.14 Clinical cohort and
immunohistochemical staining

The TMA for ccRCC, comprising 150 ccRCC tissue samples and 30

patient-matched adjacent non-tumor tissue samples, was acquired from
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Shanghai Outdo Biotech (Shanghai, China). The clinical characteristics

and survival data for 150 ccRCC patients were used to corroborate the

findings of the bioinformatics analyses. Ethical approval for this research

was granted by the Institutional Review Board of Shanghai Outdo

Biotech (approval number: YB M-05-02). The TMA was heated in an

oven at 63°C for 1 h to melt the wax, and then dewaxed through a

sequence of washes in an automated stainer—twice in xylene, 15 min

each wash, followed by two cycles in 100% alcohol, 7 min each wash,

and sequential washes (5 min each) in decreasing alcohol

concentrations (90%, 80%, and 70%). Following antigen retrieval in a

Target Retrieval Instrument, the slides were cooled to room temperature

in distilled water. For primary antibody staining, the slides were first

rinsed with phosphate-buffered saline (PBS) and then covered with a

solution containing the primary antibody (1:200 dilution). Following

three PBS washes, each lasting 1 min, secondary antibody binding and

DAB chromogenic staining were performed as per the Autostainer Link

48 manual. Hematoxylin staining was applied for 1 min, followed by a

quick dip in 0.25% hydrochloric acid in alcohol (composed of 400mL of

70% alcohol plus 1mL of concentrated hydrochloric acid) for 10 s, and a

5-min rinse in tap water. Staining results indicated that the TUBA1C

protein was localized to the cytoplasm, while PD-L1 expression was

observed on the cell membrane as well as the cytoplasm. The

immunohistochemistry results for each sample were independently

interpreted by three senior pathologists from the First Affiliated

Hospital of Jinzhou Medical University. The most objective

interpretation was then selected by a fourth pathologist and the

results following further analysis.
2.15 Cell culture

The mRNA expression of TUBA1C in normal and tumor cells

was investigated using the human ccRCC cell lines 786-O and 769-P

and the human renal cell line HK-2. The two ccRCC cell lines were

cultured in RPMI-1640 while the HK-2 cells were cultured in

DMEM/F-12; both media were supplemented with 10% fetal

bovine serum and 1% penicillin–streptomycin. Cultures were

maintained at 37°C in a humidified incubator with 5% CO2.
2.16 RT-qPCR

RNA was isolated using the RNAeasy Animal RNA Isolation

Kit with Spin Column (Beyotime, Shanghai) and reverse-

transcribed into cDNA using NovoScript Plus All-in-one 1st

Strand cDNA Synthesis SuperMix (gDNA Purge). Subsequently,

qPCR was performed with NovoStart SYBR qPCR SuperMix Plus

(Novoprotein, Suzhou) on the QuantStudio Three Real-Time PCR

System (Thermo Fisher). The sequences of the primers used for

TUBA1C amplification are provided in Supplementary Table 1.
2.17 Plasmid transfection

The TUBA1C-siRNA plasmid was constructed by GeneChem

(Shanghai) and subsequently transfected into 786-O and 769-P
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cells. Plasmid transfection was performed using Lipofectamine

3000, while jetPRIME Versatile DNA/siRNA transfection reagent

(Polyplus Transfection, France) was used for siRNA transfection

into the respective cancer cell lines. The TUBA1C-siRNA sequences

are detailed in Supplementary Table 1.
2.18 Wound healing assays

Cells were seeded in 6-well plates and, at confluence, a uniform

scratch was made across the cell monolayer with a sterile 200-mL
pipette tip, and the cells were cultured in serum-free medium.

Images of wound closure were captured at 0, 12, and 24 h using an

inverted phase-contrast microscope. The wound area was

quantified using ImageJ software.
2.19 CCK-8 assay

A total of 1,000 cells per well were seeded in a 96-well plate and

allowed to completely adhere. The assay was performed using

Super-Enhanced Cell Counting Kit-8 (Beyotime, Shanghai)

according to the manufacturer ’s instructions. Following

treatment, 100 mL of fresh medium containing 10 mL of CCK-8

reagent was added to each well, and the cells were further incubated

at 37°C for 1.5 h. The optical density at 450 nm (OD450) was

measured using a microplate reader.
2.20 Statistical analysis

All data processing and statistical analyses were executed using

R software (Version 4.3.2). DEGs across different ICB response

groups was determined using the Wilcoxon test. We utilized both

univariate and multivariate Cox regression analyses to pinpoint

prognostic genes, while relationships among various variables were

explored through Spearman’s rank and Pearson’s correlation

coefficients. Furthermore, we assessed prognostic disparities via

Log-rank tests and Kaplan–Meier survival analyses across

different TUBA1C expression groups. In this study, a p-value

<0.05 was considered statistically significant.
3 Results

3.1 The landscape of the ccRCC
microenvironment following ICB therapy

To investigate the ccRCCmicroenvironment at the single-cell level

post-ICB therapy, we meticulously filtered the tumor samples for our

ICB scRNA-seq analysis. We included two untreated samples and one

treated sample showing a partial response, with all biopsy specimens

being sourced from primary tumors, while none were from patients

who had received TKI therapy, as previously detailed (9). Following the

removal of batch effects and rigorous cell quality control, we isolated

18,111 high-quality cells expressing 29,890 genes, which we organized
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into 16 distinct clusters (Figure 1A). These clusters were classified into

10 major cell types characteristic of the ccRCC TME based on the

expression of classic cell markers as reported in prior studies

(Figure 1B). The five most significant marker genes for each cell type

are depicted in a heatmap in Figure 1C. Further analysis to ascertain the

changes in cell proportions post-ICB therapy revealed a significant

decrease in the proportions of epithelial cells, natural killer (NK) cells,

and monocytes. In contrast, the proportions of CD4+ T cells, CD8+ T

cells, and cycling CD8+ T cells were significantly elevated (Figure 1D).
3.2 The identification of malignant cells

All epithelial cells were categorized into subclusters, annotated

as epithelial cells (ECs) or unidentified cells, based on classical

markers for epithelial and immune cells (Figure 2A). The EC

subclusters were subjected to an assessment of CNV levels across

chromosomes to predict malignant transformation. The loss of

chromosome 3p has been associated with tumor progression and

the emergence of more aggressive ccRCC phenotypes (8, 9, 28). The

results revealed that all EC subclusters exhibited significant CNV

across the 23 chromosomes when compared with reference cells,

indicative of a high likelihood of malignancy (Figures 2B, C).

Additionally, pseudotime analysis was employed to infer cell

differentiation trajectories based on gene expression patterns. This

analysis pinpointed the EC0 and EC1 subclusters as origins of

differentiation, with EC2 representing a terminal differentiation

stage of cell fate 1. Throughout these trajectories, the EC
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subclusters progressed through five distinct states (Figure 2D).

The expression levels of cancer-associated and epithelial marker

genes along these trajectories served to identify the differentiated

states of malignant cells. Notably, the cancer-related genes CA9 and

NDUFA4L2 and the epithelial marker genes KRT8 and EPCAM

were expressed across cell states 1, 2, 3, and 5, and before the second

differentiation node, marking the presence of TECs. Meanwhile,

VCAM1 and VEGFA were specifically expressed in cells of cluster

EC2 and those of cell state 2, indicating that they were tumor cells

(Figures 2E, F). In conclusion, there was a significant decrease in the

proportions of tumor cells and TECs within the sample exhibiting a

partial response to ICB therapy (Figures 2G, H). Additionally,

significant heterogeneity was observed in the ccRCC TME.
3.3 Analysis of intercellular interactions
within the ccRCC TME following
ICB therapy

Our analysis of cell communication within the ccRCC TME

post-ICB therapy unveiled significant alterations in the flow of

information as well as in the number and intensity of intercellular

interactions. As shown in the circular plot and heatmap in

Figures 2I, J, there was a marked increase in the quantity and

strength of interactions between tumor cells and TECs across all cell

types within the ICB-PR group. Furthermore, we observed a

substantial enhancement in communication among TECs, tumor

cells, and both CD8+ and cycling CD8+ T cells in the ICB-PR
FIGURE 1

Single-cell atlas of ccRCC with varying responses to ICB. (A) UMAP plots illustrating the clustering of cells into 16 distinct groups (left) and
differentiated by color to represent the different ICB treatment statuses (right). (B) UMAP plots showing the distribution of the 10 major cell types in
ccRCC samples from patients with partial response to ICB therapy (ICB-PR) and those not receiving ICB therapy (NO-ICB). (C) A heatmap displaying
the top five marker genes expressed in each cell cluster. (D) A bar plot highlighting significant differences in the prevalence of the 10 major cell types
between the ICB-PR and NO-ICB groups in ccRCC. ccRCC, clear cell renal cell carcinoma; UMAP, Uniform Manifold Approximation and Projection;
ICB, immune checkpoint blockade; PR, partial response.
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FIGURE 2

Malignant cell identification and analysis of cellular communication within the TME in ccRCC. (A) UMAP visualization identifying ten epithelial
subclusters, comprising nine EC subclusters and one unknown subcluster. (B) A heatmap depicting CNV levels across 22 chromosomes for the nine
EC subclusters, with macrophages and endothelial cells serving as references. Amplifications are marked in red and losses are indicated in blue. (C) A
box plot illustrating total CNV levels; CNV was significantly higher in all EC clusters than in reference cells. (D) Analysis of differentiation trajectories
within EC clusters; pseudotime and varying cellular states are displayed. (E) Dynamic expression patterns of cancer-related and epithelial marker
genes along differentiation trajectories. (F) Annotation of malignant cells identified within the EC subclusters. (G) Updated UMAP showing revised cell
annotations and the exclusion of unknown cells. (H) A bar plot representing the proportion of each cell cluster within different ICB treatment groups.
(I) A circle plot illustrating variations in cell communication among different cell types within different ICB groups in ccRCC. (J) A heatmap detailing
significant changes in interaction number and strength following ICB therapy. (K) Overview of information flow differences across various ICB
treatment groups. ****p< 0.0001. TME, tumor microenvironment; ccRcc, clear cell renal cell carcinoma; UMAP, Uniform Manifold Approximation
and Projection; EC, epithelial cell; CNV, copy number variation; ICB, immune checkpoint blockade.
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group. Significant changes in information flow were primarily, but

not exclusively, observed in the MHC-I, IL16, CD70, and CCL

signaling pathways (Figure 2K). Following ICB therapy, malignant

cells and CD8+ T cells emerged as the principal effector cells,

exhibiting significantly strengthened intercellular interactions.
3.4 Transcriptional variability and
prognostic significance of TUBA1C in
ICB therapy

To investigate the transcriptional variability in malignant cells,

we performed a differential gene expression analysis on tumor cells

and TECs in both the ICB-PR and NO-ICB groups at the single-cell

level. We identified 829 DEGs in tumor cells and TECs for further

analysis. These DEGs were subjected to univariate Cox regression

analysis, leading to the identification of 115 prognostic DEGs for

further evaluation through multivariate Cox regression analyses

within the Braun ICB cohort. Ultimately, 40 independently

prognostic DEGs were delineated (Supplementary Table 2).

Following a correlation analysis of the relationship between these

40 DEGs and CD274, only 5 of the DEGs presented a significant

correlation with CD274, with TUBA1C demonstrating the most

significant positive correlation (Figure 3A). We next explored the

expression levels of the five candidate genes across the various

response groups (PD, SD, CR/PR), and found that the expression of

TUBA1C was significantly upregulated in the PD group when

compared with that in both the SD and CR/PR groups. This

pattern of heightened expression was also observed in tumor cells

and TECs at the single-cell level following an ICB response,

underscoring the pivotal role of TUBA1C in the TME post-

therapy. No notable differences in the expression levels of the

other four genes were observed among the response groups

(Figure 3B). Subsequent analysis further indicated that patients

with high TUBA1C expression had poorer OS and PFS (Figure 3C).

To further investigate the potential pathways involved in ICB

resistance and identify the underlying mechanisms, a gene set

variation analysis (GSVA) was performed between the PD group

and the response groups in the Braun ICB cohort. The results

revealed that PI3K pathway activation was associated with elevated

expression of PD-L1 in breast and prostate cancer cells, leading to

immune evasion (29). Additionally, the Wnt and PI3K-related

pathways have been shown to promote immune exclusion and

dysfunction through the recruitment and differentiation of

immunosuppressive cells in various cancer types (30). Here, we

observed that the PI3K/AKT pathway was activated in the PD

group, accompanied by high TUBA1C expression; however, no

significant Wnt/b-catenin activity was detected. Meanwhile, the

PI3K/AKT and Wnt/b-catenin pathways were not activated in the

ICB response group (Figure 3D). Furthermore, patients in the high-

TUBA1C-expression group exhibited enriched activity in oncogenic

pathways, such as E2F targets, G2M checkpoint, p53 pathway,

hypoxia, epithelial-mesenchymal transition (EMT), and DNA

repair pathways in the two groups (Figure 3D). These findings

highlight the potential mechanisms underlying the role of TUBA1C

in carcinogenesis and immune dysfunction. Analysis of immune
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cell infiltration across the groups of the Braun ICB cohort revealed

differential distributions of various immune cells. Notably, the

group with elevated TUBA1C levels exhibited a significant

increase in the abundance of activated CD4+ T cells, CD8+ T

cells, macrophages, MDSCs, Tregs, and type 2 T helper (Th2) cells

(Figure 3E). This trend was consistently observed across multiple

analytical algorithms. Furthermore, a correlation analysis indicated

that there was a positive association between TUBA1C expression

and the abovementioned cell types. In contrast, resting NK cells,

mast cells, and endothelial cells displayed a negative correlation

with TUBA1C expression (Figure 3F). Our findings showed that

patients with elevated TUBA1C expression displayed significantly

higher tumor signature scores in several key areas, including

hypoxia, exosomal secretion and assembly, extracellular vesicle

biogenesis, and ferroptosis, among others (Figure 3G). Moreover,

the scores for DNA damage response (DDR), antigen processing

and presentation (APM), cell cycle regulation, and DNA

replication, along with other TME signatures, were elevated in

conjunction with increased TUBA1C expression (Figure 3H).

These observations suggested that TUBA1C has significant

malignancy potential in ccRCC.
3.5 Insights into TUBA1C in pan-cancer
and pan-tissue: correlation, expression,
and prognostic impact

To expand the understanding of the role of TUBA1C across a

wide range of cancers and tissues, we conducted a comprehensive

analysis focusing on its association with CD274, variations in gene

expression, CNV, and methylation discrepancies, in addition to their

implications for prognosis. Our analysis revealed that there was a

significant positive association between TUBA1C and CD274 in

several cancer types, including KIRC, kidney renal papillary cell

carcinoma (KIRP), stomach adenocarcinoma (STAD), and breast

invasive carcinoma (BRCA), among others (Figure 4A). This

relationship was also evident in a variety of normal tissues, such as

the kidney, liver, skin, and brain (Figure 4B), indicating that TUBA1C

may play a pervasive role in contexts other than cancer. Further

investigation showed that TUBA1C is not only highly expressed in

KIRC but also in a broad spectrum of cancers (Figure 4C), suggesting

that it has a wide-ranging oncogenic role. Furthermore, our analysis

of CNV uncovered significant deletions or amplifications of TUBA1C

in many cancer types. Notably, elevated TUBA1C expression

displayed a significant positive correlation with CNV in ccRCC and

lung adenocarcinoma (LUAD), among other cancer types

(Supplementary Figures 1A–C). Additionally, we observed

variations in methylation patterns across different regions of

TUBA1C, including the transcription start site (TSS) and gene

body, when compared with those seen in normal samples on a

pan-cancer scale (Supplementary Figure 1D). While methylation

discrepancies in several regions of TUBA1C were primarily

associated with ccRCC, these variations influenced the expression

level of TUBA1C in various cancer types (Supplementary Figure 1E).

Importantly, the expression of TUBA1C significantly affected

prognosis in various cancers, including ccRCC, LUAD, and
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FIGURE 3

Analysis of TUBA1C expression and its impact on patient outcomes in the Braun ICB cohort. (A) A lollipop plot illustrating the relationship between five
independent prognostic genes and CD274 expression. (B) Analysis of the mRNA expression levels of CD274-correlated genes across different response
groups in the Braun ICB cohort, with a specific focus on TUBA1C expression in malignant cells from various ICB treatment groups. (C) Survival analysis
demonstrating that high TUBA1C expression was associated with reduced OS and PFS. (D) Variations in hallmark molecular pathways across different
response groups categorized by TUBA1C expression levels. (E) A comparison of immune cell infiltration levels, calculated using multiple algorithms, between
two groups differentiated by TUBA1C expression. (F) Spearman correlation analysis evaluating the relationship between immune cell levels and TUBA1C
expression. (G, H) ssGSEA-derived scores representing tumor and TME signatures across different TUBA1C expression groups. ****p< 0.0001, ***p<0.001,
**p<0.01, *p<0.05. ICB, immune checkpoint blockade; OS, overall survival; PFS, progression-free survival; CD274, programmed death-ligand 1 (PD-L1);
ssGSEA, single-sample gene set enrichment analysis; TME, tumor microenvironment; ns, not significant.
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pancreatic adenocarcinoma (PAAD) (Figure 4D). Specifically, in

TCGA-KIRC cohort, we observed that TUBA1C expression

markedly influenced the outcomes of ccRCC patients, including

OS, PFS, and DPI (Figure 4E). The results of the pan-cancer and
Frontiers in Immunology 11
pan-tissue analysis underscored the critical role of TUBA1C in cancer

biology and its potential as a prognostic marker in ccRCC. Our

findings further highlighted the need for additional research into its

mechanisms of action and their implications for cancer therapy.
FIGURE 4

Pan-cancer and pan-tissue analysis of TUBA1C expression and its clinical implications. (A) A scatter plot showing the correlation between TUBA1C and
CD274 across various cancers, highlighting a significant positive association in TCGA-KIRC cohort. (B) Pan-tissue analysis indicating a positive correlation
between TUBA1C and CD274 in several normal tissues, particularly kidney tissue. (C) Integration of TCGA and GTEx datasets showing TUBA1C
upregulation at the mRNA level across various cancer types. (D) Analysis depicting TUBA1C as a risk factor affecting prognosis (OS, DSS, DFI, and PFI) in
various cancer types. (E) Survival analysis demonstrating that high TUBA1C expression is associated with poorer outcomes in terms of OS, DSS, and PFI in
TCGA-KIRC cohort. TCGA, The Cancer Genome Atlas; KIRC, kidney renal clear cell carcinoma; GTEx, Genotype-Tissue Expression; OS, overall survival;
DSS, disease-specific survival; DFI, disease-free interval; PFI, progression-free interval. ns, not significant. **p < 0.01, ***p < 0.001. ns, not significant.
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3.6 Unraveling the role of TUBA1C: KEGG
and GO enrichment analysis in TCGA-
KIRC cohort

In this study, to delineate the functional implications of TUBA1C,

we determined the correlation coefficients between TUBA1C and each

gene within TCGA-KIRC cohort employing GSEA. Our findings

indicated that genes that were positively correlated with TUBA1C

were significantly involved in crucial biological pathways, including cell

cycle regulation, DNA replication, and processes associated with

lysosomes, ribosomes, and spliceosomes. Furthermore, TUBA1C was

found to play a pivotal role in the biological processes of DNA

replication, RNA splicing, and protein translation. On a cellular level,

TUBA1C was found to contribute to the integrity of ribosomes,

spliceosomes, and chromosome complexes. Regarding molecular

function, TUBA1C demonstrated a strong association with mRNA

transcription and protein translation (Supplementary Figures 2A–D).
3.7 The association between TUBA1C
expression and clinical features

We investigated the expression levels of TUBA1C in various

groups of differing clinical characteristics to elucidate the potential

relationship between TUBA1C expression and clinical phenotypes.

As shown in the box plots in Figure 5A, patients aged >65, those

with left-side laterality, White patients, and patients at advanced T,

N, M stages or higher grades exhibited significantly elevated

TUBA1C expression levels compared with patients of other

clinical phenotypes (Figures 5A, C–I). However, no significant

association was found between TUBA1C expression and gender

(Figure 5B). To validate these findings, the E-MTAB-1980 cohort

was further examined. Consistent with our initial observations, the

results showed that TUBA1C expression levels were significantly

correlated with TNM stage, tumor grades, and tumor stage

(Figures 5J–O). Moreover, elevated TUBA1C expression was

demonstrated to be associated with poorer outcomes in the E-

MTAB-1980 cohort (Figure 5P). Combined, the above results

indicated that TUBA1C contributes to tumor progression,

metastasis, and worse prognosis in patients with advanced ccRCC.
3.8 The effect of TUBA1C on the
oncogenic and immune landscape
in ccRCC

To further investigate the impact of differential TUBA1C

expression levels on ccRCC patients who have not received ICB

therapy, we conducted a comprehensive hallmark pathway analysis.

We found that genes that were upregulated in the high-TUBA1C-

expression group were significantly enriched in several oncogenic

pathways, including MTORC1 signaling, MYC targets, PI3K/AKT

signaling, E2F targets, G2M checkpoint, reactive oxygen species

pathway, hypoxia, DNA repair, and the p53 pathway. Conversely,

the upregulated genes in the low-TUBA1C-expression group were
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predominantly enriched in pathways such as “KRAS signaling down”

and “Wnt/b-catenin signaling” (Figure 6A). We further downloaded

somatic cell mutation data from TCGA database to calculate the

TMB for each sample, with the results confirming that the group with

high TUBA1C expression exhibited a higher TMB as well as greater

genetic variation (Figure 6B). Moreover, correlation analysis

demonstrated that a positive relationship existed between TUBA1C

expression and the TMB within TCGA-KIRC cohort (Figure 6C).

Notably, patients with high TUBA1C expression and TMB levels

experienced poorer outcomes, whereas those with both low

TUBA1C expression levels and a low TMB had the most favorable

prognosis (Figure 6D). Lastly, utilizing multiple immune-related

algorithms, we assessed all immune cell markers to map the

immune microenvironment landscape induced by TUBA1C. The

group with high TUBA1C expression in TCGA-KIRC cohort

displayed a greater abundance of activated CD4+ T cells, activated

dendritic cells, M0 macrophages, MDSCs, and Tregs, in line with the

findings for the Braun ICB cohort (Figures 3E, 6E). Similarly, a

significant positive correlation was observed between TUBA1C

expression and these immune cell populations (Figure 6F). Analysis

of the tumor and TME signature scores in TCGA-KIRC cohort

showed that, in line with that observed in the Braun ICB cohort, the

group with elevated TUBA1C expression exhibited higher scores

relating to carcinogenic pathways and TME activity (Figures 3,

6G, H).
3.9 Dissecting the role of TUBA1C in
immune regulation and drug sensitivity
in ccRCC

We next explored the association between TUBA1C expression

and immune regulation and drug sensitivity in ccRCC given its

putative importance in personalized cancer therapy research. Our

analysis, utilizing the BEST online tool, revealed the existence of a

significant correlation between TUBA1C expression and various

immune regulators in multiple ccRCC datasets. These regulators

include key elements such as antigen presentation machinery,

immune inhibitors, stimulators, chemokines, and receptors.

Importantly, TUBA1C was found to be positively correlated with

PDCD1, CD274, and CTLA4, which are therapeutic targets of ICB, in

various datasets. The generated heatmaps, shown in Figure 7A,

underscore these correlations, showcasing broadly consistent trends

across the examined datasets and highlighting the potential role of

TUBA1C in modulating the ccRCC immune landscape. Separately,

we assessed the impact of TUBA1C expression on drug sensitivity

employing data from the CTRP and GDSC databases. This analysis

highlighted a distinct pattern, namely, that patients with higher levels

of TUBA1C expression demonstrated resistance to several drugs,

including afatinib, nilotinib, and PI3Ka_4409_1446. Conversely,

these same patients showed increased sensitivity to other

treatments such as ruxolitinib, refametinib, and JAK3_7406_1434

(Figure 7B). This variation in drug responses, based on TUBA1C

expression levels, emphasizes the potential utility of TUBA1C as a

predictive marker for therapeutic efficacy in ccRCC.
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3.10 TUBA1C: a potential therapeutic target
and its role in enhancing the response to
ICB therapy in ccRCC

In our study, utilizing the DepMap database, we investigated the

effects of TUBA1C knockout on the phenotypes of kidney cancer cell

lines and examined the relationship between TUBA1C mutations and
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the efficacy of anti-PD-L1 therapy. As shown in the dot plot in

Figure 8A, data analysis yielded a gene effect score of <0 for

TUBA1C across 26 kidney cancer cell lines. This score signifies cell

death or restricted growth following the CRISPR-Cas9-mediated

knockout of TUBA1C, with all analyzed cell lines exhibiting varying

degrees of dependence on TUBA1C for survival or growth (Figure 8A).

Moreover, based on the mutation status of TUBA1C, we assessed the
FIGURE 5

Correlation of TUBA1C expression with clinical characteristics in TCGA-KIRC and E-MTAB-1980 cohorts. (A–I) Analysis of the relationship between
TUBA1C expression and various clinical parameters, including age, gender, race, laterality, TNM classification, tumor stage, and tumor grade in
TCGA-KIRC cohort. (J–O) Examination of the correlation between TUBA1C expression and clinical features such as age, gender, TNM classification,
tumor grade, and tumor stage in the E-MTAB-1980 cohort. (P) Survival analysis showing that high TUBA1C expression is associated with poorer
outcomes in the E-MTAB-1980 cohort. TCGA, The Cancer Genome Atlas; KIRC, kidney renal clear cell carcinoma.
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FIGURE 6

A comprehensive analysis of TUBA1C expression and its association with molecular pathways and clinical outcomes in ccRCC. (A) GSVA score
distribution highlighting differences in pathway activation between high- and low-TUBA1C-expression groups across various hallmark pathways.
(B) Mutation spectrum analysis comparing the top 10 genes in high- versus low-TUBA1C-expression groups within TCGA-KIRC cohort; the TMB was
higher in the group with high TUBA1C expression. (C) A scatter plot showing the correlation between TUBA1C expression and the TMB, with a
significant positive association being observed in TCGA-KIRC cohort. (D) Survival curves comparing overall survival among groups stratified by
TUBA1C expression and TMB levels, underscoring the prognostic significance of both TUBA1C expression and the TMB. (E, F) An analysis of immune
cell infiltration across different TUBA1C expression groups and the correlation between TUBA1C expression with immune cell profiles in TCGA-KIRC
cohort. (G, H) Bar plots displaying the differential activity of tumor-related pathways and TME signatures between high- and low-TUBA1C-expression
groups. ****p< 0.0001, ***p<0.001, **p<0.01, *p<0.05. ccRCC, clear cell renal cell carcinoma; GSVA, gene set variation analysis; TCGA, The Cancer
Genome Atlas; KIRC, kidney renal clear cell carcinoma; TMB, tumor mutational burden; ns, not significant.
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average dependency score for CD274, comparing wild-type (468 cell

lines) and mutant categories (22 cell lines). Intriguingly, kidney cancer

cell lines with wild-type TUBA1C displayed a higher CD274

dependency score than their mutant counterparts. This finding

suggested that kidney cancer cell lines with wild-type TUBA1C are

more susceptible to anti-PD-L1 therapy, and, conversely, that TUBA1C

mutations may confer enhanced resistance to anti-PD-L1 therapy. The

investigation was extended to include cell lines derived from lung

cancer, gastric cancer, endometrial/uterine cancer, and colon/colorectal
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cancer (Figure 8B). These cancer types demonstrated a similar

relationship between TUBA1C mutation and sensitivity to anti-PD-

L1 therapy as that seen with the kidney cancer lines. These consistent

outcomes across various cancer types highlighted the correlation

between TUBA1C and CD274, positioning TUBA1C as a potential

biomarker for targeted therapy.

We initially acquired the baseline Geneformer model and fine-

tuned it over five epochs using our single-cell dataset. The optimized

model demonstrated a noteworthy accuracy of 99.08% by the third
FIGURE 7

The impact of TUBA1C on immune modulation and drug sensitivity in ccRCC using the BEST database. (A) Correlation between TUBA1C expression
and immune modulation modules across multiple datasets. The modules included antigen presentation machinery, immune inhibitors, stimulators,
chemokines, and their receptors, highlighting the potential regulatory role of TUBA1C in the immune landscape of ccRCC. (B) Analysis of drug
sensitivity variations associated with different expression levels of TUBA1C utilizing data from the CTRP and GDSC databases. Variation in TUBA1C
expression was correlated with differential drug responsiveness; greater intensity of red indicates a stronger positive correlation and deeper blue
signifies a stronger negative correlation. ccRCC, clear cell renal cell carcinoma; BEST, Biomarker Exploration of Solid Tumors; CTRP, Cancer
Therapeutics Response Portal; GDSC: Genomics of Drug Sensitivity in Cancer.
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epoch, and could effectively distinguish between different types of

malignant cells and states. This was achieved using gene expression

data as input and cell embeddings as output (Figure 8C). Building

upon this refined model, we randomly selected 2,000 cells to perform

in silico knockouts, aiming to observe changes in cell state post-gene

knockout. Of the 13,881 genes knocked out in silico, 2,401 (FDR

<0.05) were identified as having the potential to influence cell state
Frontiers in Immunology 16
subsequent to the knockout (Supplementary Table 3). Notably,

knocking out TUBA1C was observed to induce a partial response

state in malignant cells following ICB treatment. Interleukin 10

(IL10), a key gene implicated in ICB resistance across multiple

studies (31, 32), served as a reference, exhibiting similar effects to

TUBA1C following in silico knockout (Figure 8D). Interestingly, the

genes that enhanced ICB treatment responses were predominantly
FIGURE 8

Analysis of TUBA1C gene function, mutation state, and impact on ICB resistance. (A) A dot plot displaying 26 kidney cancer cell lines characterized
by TUBA1C expression, indicating a negative gene effect and a positive gene dependency on TUBA1C. (B) Analyzing the sensitivity of cancer cell lines
with wild-type or mutated TUBA1C to anti-PD-L1 therapy, highlighting variations in drug responsiveness based on TUBA1C mutation status. (C) A
fine-tuned Geneformer model was used to infer cell type between tumor cells and TECs among malignant cells (left). Geneformer distinguishes
malignant cell states between the ICB-PR and NO-ICB groups from tumor cells and TECs by defining the embedding positions of each cell state.
The NO-ICB group underwent in silico deletion analysis to identify genes whose removal resulted in a significant shift of the embedding towards the
ICB-PR malignant cell state (right). (D) Visualization of gene effects determined through in silico knockout studies. Orange indicates significant
candidate genes (FDR <0.05) that greatly influenced cell states post-knockout. (E) GO enrichment analysis in BP, CC, and MF for genes meeting a
FDR threshold of <0.05. These genes were associated with positive shifts toward an ICB-responsive state. ICB, immune checkpoint blockade; PR,
partial response; TEC, tumor-associated endothelial cells; GO, Gene Ontology; BP, Biological Process; CC, Cellular Component; MF,
Molecular Function.
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associated with biological functions such as ribosome assembly, RNA

binding, protein folding, and translation factor activity, which are

significantly linked to TUBA1C gene function (Figure 8E). This

provided strong evidence supporting a crucial role for TUBA1C as

an oncogene across several types of cancer. In ccRCC, TUBA1C

markedly influenced the proliferation of kidney cell lines.

Furthermore, cell lines harboring mutated TUBA1C exhibited

reduced sensitivity to anti-PD-L1 therapy relative to their wild-type

counterparts. Notably, malignant cells demonstrated increased

responsiveness to ICB therapy following TUBA1C knockout.
3.11 Expression patterns and clinical
implications of TUBA1C and PD-L1 in
ccRCC patients

After excluding invalid or deciduous slices from the TMA,

robust TUBA1C and PD-L1 protein expression was observed in

tissues from a clinical cohort of 145 out of 150 ccRCC patients and
Frontiers in Immunology 17
30 patient-matched normal tissues using immunohistochemistry

(Figure 9A). The patients were stratified into high- and low-

expression groups based on the median expression levels of

TUBA1C. Despite a lack of statistical significance in cancer grade,

stage, and TNM classification between these groups, the group with

high TUBA1C expression comprised a notably higher proportion of

patients with advanced disease stages and grades (Table 1). A

comparative analysis revealed that TUBA1C and PD-L1 protein

expression was significantly higher in tumor tissues than in their

normal counterparts, both paired and unpaired (Figure 9B).

Additionally, the bioinformatics results were validated by RT-

qPCR. We found that TUBA1C expression was significantly

upregulated in 769-P and 786-O cells compared with that in HK-

2 cells (Figure 9C). Moreover, survival analysis indicated that

patients in the high-TUBA1C-expression group (Figure 9D) had

poorer OS. Finally, our immunohistochemistry results

demonstrated that there was a positive correlation between

TUBA1C and PD-L1 expression at the protein level in patients

with ccRCC (Figure 9E).
FIGURE 9

Immunohistochemical validation and clinical cohort analysis. (A) IHC staining showing the protein expression levels of TUBA1C and PD-L1 in normal
versus tumor tissues from ccRCC patients. (B) Conducting differential expression analysis between samples from ccRCC patients and their matched
adjacent non-tumor tissues. (C) Validation of the mRNA expression of TUBA1C in a human renal cell line and different ccRCC cell lines by RT-qPCR.
***p<0.001, *p<0.05. (D) Kaplan-Meier survival analysis illustrating the correlation between TUBA1C expression and OS in the clinical cohort. (E)
Analysis of the correlation between the protein levels of TUBA1C and PD-L1 in ccRCC samples. IHC, immunohistochemistry; ccRCC, clear cell renal
cell carcinoma; OS, overall survival.
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3.12 Functional validation of TUBA1C as
an oncogene

Following the robust validation of expression, we next

conduction an analysis of TUBA1C function. A wound healing

assay revealed that the migratory potential of the ccRCC cell lines

769-P and 786-O were significantly inhibited at both 12 and 24 h

post-TUBA1C knockdown (Figures 10A, B). Additionally, a CCK-8

assay demonstrated that both the viability and proliferative ability

of these two cancer cell lines were markedly reduced following

TUBA1C downregulation (Figures 10C, D). These results supported

the bioinformatics analysis and suggested that TUBA1C promotes

tumor progression and metastasis, thereby highlighting its potential

as a prominent and effective biomarker in ccRCC.
4 Discussion

TUBA1C, an a-tubulin subtype, is crucial for the structure and

function of microtubules, key components of the cytoskeleton. This

multifunctional protein is involved in a broad range of cellular

processes, including the regulation of cell division, the facilitation of

intracellular transport, and the maintenance of cell morphology, in

nearly all cell types (33, 34). Microtubule disturbances have been

implicated in various types of cancers as well as numerous benign

diseases. Consequently, microtubules have become prominent targets
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in cancer chemotherapy, and successful outcomes have been achieved

with agents such as taxol derivatives and vinca alkaloids. However,

these treatments often disrupt normal cellular functions and adversely

affect healthy tissues (34). This highlights the need for therapeutic

strategies that target microtubule-related anomalies more selectively,

both in specific cancers and individual cancer cells, to minimize side

effects. Recent studies have demonstrated that TUBA1C is upregulated

in different types of cancers, including bladder cancer, breast cancer,

and pancreatic ductal adenocarcinoma, and this upregulation is

correlated with increased tumor progression and metastasis (16,

35–37). Despite these observations, the specific functions of

TUBA1C in ccRCC remain poorly understood, as do the underlying

mechanisms. Our study sought to address this knowledge gap, and

found that TUBA1C plays a role in reshaping the tumor immune

microenvironment and mediating resistance to ICB.

TUBA1C was found to be upregulated in malignant cells at the

single-cell level following ICB therapy. The mRNA levels of

TUBA1C were not only elevated in ccRCC samples in TCGA-

KIRC cohort but were also markedly upregulated in patients within

the PD group of the Braun ICB cohort. It has been shown in

multiple ccRCC cohorts that increased expression of TUBA1C is

associated with advanced tumor grade and stage, poorer prognosis,

and shorter times to recurrence. Furthermore, TUBA1C is

positively correlated with the TMB in ccRCC, indicating that

TUBA1C participates in the occurrence and accumulation of

mutations related to DNA repair and genome stability, thereby
TABLE 1 Association between clinical characteristics and TUBA1C expression groups.

Characteristics Variable TUBA1C All
(n=145)

P value

High expression (n=64) Low expression (n=81)

Gender Female 15 (23.44%) 25 (30.86%) 40 (27.59%) 0.610

Male 49 (76.56%) 56 (69.14%) 105 (72.41%)

Age <=65 46 (71.88%) 69 (85.19%) 115 (79.31%) 0.145

>65 18 (28.12%) 12 (14.81%) 30 (20.69%)

T T1 52 (81.25%) 67 (82.72%) 119 (82.07%) 1

T2 7 (10.94%) 8 (9.88%) 15 (10.34%)

T3 5 (7.81%) 6 (7.41%) 11 (7.59%)

N N0 63 (98.44%) 79 (97.53%) 142 (97.93%) 0.583

N1 0 2 (2.47%) 2 (1.38%)

N2 1 (1.56%) 0 1 (0.69%)

M M0 64 (100.00%) 81 (100.00%) 145 (100.00%) 0

Grade high 22 (34.38%) 20 (24.69%) 42 (28.97%) 0.443

low 42 (65.62%) 61 (75.31%) 103 (71.03%)

Stage Stage 1 52 (81.25%) 67 (82.72%) 119 (82.07%) 0.972

Stage 2 6 (9.38%) 8 (9.88%) 14 (9.66%)

Stage 3 5 (7.81%) 6 (7.41%) 11 (7.59%)

Stage 4 1 (1.56%) 0 1 (0.69%)

PD-L1 0.67 ± 0.59 0.48 ± 0.50 0.56 ± 0.55 0.035
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impacting outcomes and immune therapy responses in ccRCC

patients (38). We identified a significant positive correlation

between TUBA1C and CD274 at both the pan-cancer and pan-

tissue levels, suggesting that TUBA1C has a strong and universal

connection with CD274 under both physiological and pathological

conditions. This relationship may influence the response to

immune therapy.

Functional studies involving 26 kidney cancer cell lines

demonstrated that TUBA1C is essential for their proliferation and

survival. We also observed that kidney cancer cell lines harboring

mutated TUBA1C exhibited greater resistance to anti-PD-L1 therapy

compared with those with wild-type genetic configurations.

Additionally, we employed a deep learning model to predict the

impact of TUBA1C on the responses of malignant cells to ICB
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therapy. The results indicated that the in silico knockout of TUBA1C

shifted the malignant cells towards a state of partial ICB response,

mirroring the effects seen with IL10 knockout. Recent work has

shown that IL-10 expression is upregulated in peritoneal metastatic

lesions of both patients and mice resistant to ICB therapy in

colorectal cancer (32). Additionally, several studies have confirmed

that IL-10 release mediates ICB resistance in ovarian cancer (39, 40).

Collectively, these findings underscore the important role of

TUBA1C in inducing ICB resistance and its contribution to disease

progression, highlighting its potential as a target to improve ICB

responses and prognosis in ccRCC. The oncogenic function of

TUBA1C was further validated by wound healing assays in two

ccRCC cell lines, with the results revealing that the migratory ability

of these cells was significantly reduced following the knockdown of
FIGURE 10

Functional validation of TUBA1C as an oncogene. (A) Wound healing assays performed on 769-P cancer cells exhibiting normal TUBA1C expression
(NC) or with TUBA1C knockdown (si-TUBA1C) at 12 and 24 h are shown on the left. The bar plot on the right displays the quantified cell migration
area at different time points. (B) Wound healing assays conducted on 786-O cells displaying normal TUBA1C expression (NC) or with TUBA1C
knockdown (si-TUBA1C) at 12 and 24 h. ***p<0.001, **p<0.01. (C, D) Results of the CCK-8 assay in 769-P and 786-O cells after TUBA1C
knockdown; significant reductions in cell viability and proliferation were observed.
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TUBA1C. Similarly, the proliferative potential and the viability of the

cells were significantly weakened, as estimated by the CCK-8 assay.

Finally, using RT-qPCR, immunohistochemistry, and clinical cohort

analysis, we confirmed that TUBA1C expression is upregulated at

both the mRNA and protein levels in tumor tissue. Furthermore, PD-

L1 was found to be positively correlated with TUBA1C expression in

tumor tissues and co-localized on the cytomembrane of tumor cells.

Although there were some discrepancies in the expression of

TUBA1C between tumor stages and grades at the protein and

mRNA levels, these differences can be attributed to the small

sample sizes of advanced-stage and high-grade ccRCC patients in

our clinical cohort. Importantly, patients with advanced disease often

lack the opportunity for surgery, which limits the availability of

tumor tissue samples for immunohistochemical experiments.

The TUBA1C protein, which is involved in the formation of

mitotic spindles and is an integral constituent of the cytoskeleton, has

been demonstrated to play a pivotal role in the regulation of key

biological processes such as the cell cycle, DNA replication, RNA

splicing, and protein translation (34). These roles were substantiated

through a GSEA of gene sets from the KEGG and GO databases,

thereby highlighting the significant influence of TUBA1C on cell

cycle regulation, RNA transcription, and protein synthesis in ccRCC.

Importantly, dysregulation of the cell cycle serves as a primary

catalyst for the uncontrolled proliferation typical of cancer cells,

independently of growth-stimulating signals. This is further

exacerbated by continuous damage to DNA that occurs during cell

division and in response to various external stimuli, which disrupts

cell cycle regulation and promotes tumorigenesis (41, 42). Central to

numerous DNA-dependent processes, the maintenance of

chromosomal protein complex structure governs chromosome

segregation during mitosis, transcriptional control, and the DNA

damage response, including replication, repair, and recombination

(43). Disruptions in cell cycle regulation may lead to oxidative stress,

DNA mutations, and metabolic remodeling, culminating in

unchecked cell proliferation and tumorigenesis (44). Overall, our

findings underscore the oncogenic nature of the TUBA1C protein. A

GSVA indicated that elevated TUBA1C expression was correlated

with enhanced activity of oncogenic pathways such as DNA repair,

E2F targets, G2/M checkpoint, p53 signaling, hypoxia, MYC targets,

PI3K/AKT pathway, and oxidative phosphorylation; this further

implies that patients with elevated TUBA1C expression exhibit

notable DNA damage and cell cycle dysregulation, which alters

metabolism within the TME in ccRCC. Additionally, hypoxic

conditions prevalent in substantial tumor masses promote the

progression of ccRCC, as supported by data from the Braun ICB

and TCGA-KIRC cohorts, thus confirming the multifaceted role of

TUBA1C in this malignancy (45, 46).

Regarding the state of immune cell infiltration under different ICB

exposure conditions, consistency in the changes observed can reflect

the TUBA1C-mediated recruitment of immune cells and reduce the

impact of redundancy factors. Multiple algorithms assessing immune

cell abundance demonstrated consistent trends across different

TUBA1C expression groups. In both the Braun ICB and TCGA-

KIRC cohorts, patients exhibited high proportions of activated CD4+ T

cells, Tregs, MDSCs, and macrophages. In contrast, the abundance of

NK cells and mast cells showed a negative correlation with TUBA1C
Frontiers in Immunology 20
expression, and there was no significant relationship between TUBA1C

and CD8+ T cells. A recent study indicated that CD4+ T cells facilitate

the activation of a gene expression program in CD8+ T cells, enhancing

the cytotoxic activity of CD8+ T lymphocytes through variedmolecular

mechanisms (47). High levels of myeloid cell infiltration are associated

with poorer prognosis and ICB resistance following anti-PD-L1

treatment in RCC (48). Additionally, MDSCs, characterized as highly

heterogeneous and immature myeloid cel ls , exert an

immunosuppressive effect that promotes tumor invasion and

supports immune escape (49). MDSCs can reduce NK cell activity,

regulate Treg differentiation, and induce an immunosuppressive

phenotype in macrophages (6). Furthermore, M2 macrophages can

suppress the activation of CD8+ T cells and promote the recruitment of

Tregs, which contributes to immune evasion (50). These findings

highlight the potential role of TUBA1C in contributing to resistance

to ICB treatment. Meanwhile, increased Treg infiltration levels are

associated with a poorer prognosis, inhibiting an effective anti-tumor

immune response and promoting distant metastasis (51, 52).

Incomplete Treg depletion induces compensatory proliferation after

ICB exposure and the upregulation of TIM-3 and LAG-3 can induce

Treg-driven ICB resistance (6). In various solid tumors, the abundance

of Tregs engenders a worse prognosis and impairs the response to ICB

treatment (18, 53). This strongly supports that TUBA1C recruits

MDSCs and Tregs via the PI3K/AKT pathway, inducing an

immunosuppressive phenotype in macrophages and dysfunction in

CD8+ T cells, thereby reshaping the immunosuppressive tumor

microenvironment and mediating ICB resistance in ccRCC.

We identified TUBA1C as a key determinant of the

immunosuppressive microenvironment of ccRCC and found that

it was significantly associated with tumor progression, poor

prognosis, and resistance to ICB therapy. This renders TUBA1C a

promising therapeutic target whose suppression can potentially

reverse the immunosuppressive tumor microenvironment, delay

cancer progression, improve the response to ICB treatment, and

prolong the survival of ccRCC patients. Despite the importance of

our findings, this study had several limitations. All the cohorts were

retrospective and the sample sizes were limited. Additionally, we

did not perform in vivo animal experiments to investigate the

function of TUBA1C in reshaping the tumor microenvironment,

carcinogenesis, and resistance to ICB therapy as well as the

underlying mechanisms. These limitations will be addressed in

future studies. To strengthen our findings, we plan to expand the

sample size and incorporate prospective data. Multi-omics analyses,

including scRNA-seq, spatial RNA sequencing, and bulk RNA

sequencing, will be integrated to validate the composition and co-

localization relationships among major cell types, and the potential

mechanisms will be further validated. This comprehensive

approach will provide deeper insights into the role of TUBA1C

and its therapeutic potential in ccRCC. Future research should also

focus on the clinical application of TUBA1C inhibitors or

modulators, potentially in combination with existing ICB

therapies. Understanding the interaction between TUBA1C and

other immune-modulatory pathways could reveal new strategies for

enhancing anti-tumor immunity. Addressing these areas will be

vital for translating our findings into clinical practice, ultimately

improving outcomes for ccRCC patients.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1457691
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1457691
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Ethics statement

The studies involving humans were approved by Institutional

Review Board of Shanghai Outdo Biotech (approval number: YBM-

05-02). The studies were conducted in accordance with the local

legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
Author contributions

JL: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Visualization, Writing –

original draft, Writing – review & editing, Validation. MC: Data

curation, Formal analysis, Investigation, Software, Visualization,

Writing – original draft. MT: Resources, Supervision, Validation,

Writing – review & editing. QC: Funding acquisition, Project

administration, Resources, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study
Frontiers in Immunology 21
was supported by the following funds: Jinzhou Science and

Technology Project (No. JZ2023B034).
Acknowledgments

We sincerely acknowledge Shanghai Outdo Biotech for

providing the tissue microarrays, related PD-L1 IHC digital

images, and clinical cohort data utilized in this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.

1457691/full#supplementary-material
References

1. Barata PC, Rini BI. Treatment of renal cell carcinoma: Current status and future

directions. CA: Cancer J Clin. (2017) 67:507–24. doi: 10.3322/caac.21411

2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA: Cancer J
Clin. (2022) 72:7–33. doi: 10.3322/caac.21708

3. Dabestani S, Marconi L, Hofmann F, Stewart F, Lam TB, Canfield SE, et al. Local
treatments for metastases of renal cell carcinoma: a systematic review. Lancet Oncol.
(2014) 15:e549–61. doi: 10.1016/S1470-2045(14)70235-9

4. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA: Cancer J Clin. (2021) 71:209–49. doi: 10.3322/
caac.21660

5. Krishna C, DiNatale RG, Kuo F, Srivastava RM, Vuong L, Chowell D, et al. Single-
cell sequencing links multiregional immune landscapes and tissue-resident T cells in
ccRCC to tumor topology and therapy efficacy. Cancer Cell. (2021) 39:662–77 e6.
doi: 10.1016/j.ccell.2021.03.007

6. Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance,
and toxicity to immune checkpoint blockade. Cell. (2021) 184:5309–37. doi: 10.1016/
j.cell.2021.09.020

7. Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1
expression in cancer. Mol Cell. (2019) 76:359–70. doi: 10.1016/j.molcel.2019.09.030

8. Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, et al. Genomic
correlates of response to immune checkpoint therapies in clear cell renal cell
carcinoma. Sci (New York NY). (2018) 359:801–6. doi: 10.1126/science.aan5951

9. Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J, et al. Tumor and
immune reprogramming during immunotherapy in advanced renal cell carcinoma.
Cancer Cell. (2021) 39:649–61 e5. doi: 10.1016/j.ccell.2021.02.015

10. Hanahan D,Weinberg RA. Hallmarks of cancer: the next generation. Cell. (2011)
144:646–74. doi: 10.1016/j.cell.2011.02.013
11. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet (London
England). (2009) 373:1119–32. doi: 10.1016/S0140-6736(09)60229-4

12. Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity.
(2020) 52:17–35. doi: 10.1016/j.immuni.2019.12.011

13. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic
properties of tumors associated with local immune cytolytic activity. Cell. (2015)
160:48–61. doi: 10.1016/j.cell.2014.12.033

14. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the
treatment of cancer: clinical impact and mechanisms of response and resistance.
Annu Rev Pathol. (2021) 16:223–49. doi: 10.1146/annurev-pathol-042020-042741

15. Bian T, Zheng M, Jiang D, Liu J, Sun H, Li X, et al. Prognostic biomarker
TUBA1C is correlated to immune cell infiltration in the tumor microenvironment of
lung adenocarcinoma. Cancer Cell Int. (2021) 21:144. doi: 10.1186/s12935-021-01849-4

16. Jiang Y, Zhu C, Huang H, Huang G, Fu B, Xi X. TUBA1C is a potential new
prognostic biomarker and promotes bladder urothelial carcinoma progression by
regulating the cell cycle. BMC cancer. (2023) 23:716. doi: 10.1186/s12885-023-11209-2

17. Wang H, Cui H, Yang X, Peng L. TUBA1C: a new potential target of LncRNA
EGFR-AS1 promotes gastric cancer progression. BMC cancer. (2023) 23:258.
doi: 10.1186/s12885-023-10707-7

18. Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A,
et al. Immune checkpoint therapy-current perspectives and future directions. Cell.
(2023) 186:1652–69. doi: 10.1016/j.cell.2023.03.006

19. Braun DA, Hou Y, Bakouny Z, Ficial M, Sant’ Angelo M, Forman J, et al.
Interplay of somatic alterations and immune infiltration modulates response to PD-1
blockade in advanced clear cell renal cell carcinoma. Nat Med. (2020) 26:909–18.
doi: 10.1038/s41591-020-0839-y

20. Zhang J, Liu F, Guo W, Bi X, Yuan S, Shayiti F, et al. Single-cell transcriptome
sequencing reveals aberrantly activated inter-tumor cell signaling pathways in the
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1457691/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1457691/full#supplementary-material
https://doi.org/10.3322/caac.21411
https://doi.org/10.3322/caac.21708
https://doi.org/10.1016/S1470-2045(14)70235-9
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.ccell.2021.03.007
https://doi.org/10.1016/j.cell.2021.09.020
https://doi.org/10.1016/j.cell.2021.09.020
https://doi.org/10.1016/j.molcel.2019.09.030
https://doi.org/10.1126/science.aan5951
https://doi.org/10.1016/j.ccell.2021.02.015
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/S0140-6736(09)60229-4
https://doi.org/10.1016/j.immuni.2019.12.011
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1146/annurev-pathol-042020-042741
https://doi.org/10.1186/s12935-021-01849-4
https://doi.org/10.1186/s12885-023-11209-2
https://doi.org/10.1186/s12885-023-10707-7
https://doi.org/10.1016/j.cell.2023.03.006
https://doi.org/10.1038/s41591-020-0839-y
https://doi.org/10.3389/fimmu.2024.1457691
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1457691
development of clear cell renal cell carcinoma. J Transl Med. (2024) 22:37. doi: 10.1186/
s12967-023-04818-9

21. Wu SZ, Al-Eryani G, Roden DL, Junankar S, Harvey K, Andersson A, et al. A
single-cell and spatially resolved atlas of human breast cancers. Nat Genet. (2021)
53:1334–47. doi: 10.1038/s41588-021-00911-1

22. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph
embedding resolves complex single-cell trajectories. Nat Methods. (2017) 14:979–82.
doi: 10.1038/nmeth.4402

23. Jin S, Plikus MV, Nie Q. CellChat for systematic analysis of cell-cell communication
from single-cell and spatially resolved transcriptomics. (2023). 2023.11.05.565674. Available
online at: https://www.biorxiv.org/content/10.1101/2023.11.05.565674v1

24. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al.
Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep. (2017)
18:248–62. doi: 10.1016/j.celrep.2016.12.019

25. Liu Z, Liu L, Weng S, Xu H, Xing Z, Ren Y, et al. BEST: a web application for
comprehensive biomarker exploration on large-scale data in solid tumors. J Big Data.
(2023) 10:165. doi: 10.1186/s40537-023-00844-y

26. Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, Hill MC, et al.
Transfer learning enables predictions in network biology. Nature. (2023) 618:616–24.
doi: 10.1038/s41586-023-06139-9

27. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention
is all you need. (2017) 30. Available online at: https://arxiv.org/abs/1706.03762.

28. Li Y, Lih TM, Dhanasekaran SM, Mannan R, Chen L, Cieslik M, et al.
Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal
cell carcinoma aggressiveness. Cancer Cell. (2023) 41:139–63 e17. doi: 10.1016/
j.ccell.2022.12.001

29. Crane CA, Panner A, Murray JC, Wilson SP, Xu H, Chen L, et al. PI(3) kinase is
associated with a mechanism of immunoresistance in breast and prostate cancer.
Oncogene. (2009) 28:306–12. doi: 10.1038/onc.2008.384

30. Luke JJ, Bao R, Sweis RF, Spranger S, Gajewski TF. WNT/b-catenin pathway
activation correlates with immune exclusion across human cancers. Clin Cancer Res.
(2019) 25:3074–83. doi: 10.1158/1078-0432.CCR-18-1942

31. Alcantara MB, Tang WS, Wang D, Kaniowski D, Kang E, Dizman N, et al.
Targeting STAT3 in tumor-associated antigen-presenting cells as a strategy for kidney
and bladder cancer immunotherapy. Front Immunol. (2023) 14:1274781. doi: 10.3389/
fimmu.2023.1274781
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