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Leopard coral grouper (Plectropomus leopardus) is one of the most important

cultured fish in the Pacific and Indian oceans. Vibrio harveyi is a serious pathogen

causing serious skin ulceration and high mortality in P. leopardus. To gain more

insight into the tissue-specific and dynamic immune regulation process of P.

leopardus in response to V. harveyi infection, RNA sequencing (RNA-seq) was

used to examine the transcriptome profiles in the spleen and liver at 0, 6, 12, 24,

48, and 72 h post-infection. The upregulated differentially expressed genes

(DEGs) were predominantly involved in the immune response in the spleen and

liver at the early infection stage (6–12 h), and downregulated DEGs were mainly

involved in metabolic processes in the liver at the early andmiddle infection stage

(6–48 h). Moreover, an overview of the immune response of P. leopardus against

V. harveyiwas exhibited including innate and adaptive immune-related pathways.

Afterwards, the results of WGCNA analysis in the spleen indicated that TAP2, IRF1,

SOCS1, and CFLAR were the hub genes closely involved in immune regulation in

the gene co-expression network. This study provides a global picture of V.

harveyi-induced gene expression profiles of P. leopardus at the transcriptome

level and uncovers a set of key immune pathways and genes closely linked to V.

harveyi infection, which will lay a foundation for further study the immune

regulation of bacterial diseases in P. leopardus.
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Introduction

Due to high nutritional value, appealing body color, and

considerable culturing profit, the leopard coral grouper

(Plectropomus leopardus) has become a popular marine fish for

aquaculture in many Asian countries (1–3). However, the shortage

of aquaculture waters makes intensive, and high-density

aquaculture mode commonly used in P. leopardus aquaculture,

and what follows is the concentrated outbreak of diseases (4). At

present, the skin ulceration caused by Vibrio harveyi is one of the

most serious diseases faced by P. leopardus, which could destroy the

skin mucus immunity, the first barrier of innate immunity system,

thereby cause surface ulceration of P. leopardus (5). Following

succeeding in the breach of mucosal epithelial barriers, invading

pathogens can deepen infection processes in inflammatory foci of

internal tissues in fish, even lead to death (6). Therefore, elucidating

the immune defense mechanisms of P. leopardus against V. harveyi

is important for developing effective strategies for treatment and

prevention of skin ulceration disease.

To prevent and control the vibriosis caused by V. harveyi, many

studies have focused on the analysis of interaction between V.

harveyi and fish to explore the infection mechanisms and the

immune defense of fish. For example, Zhang et al. (2022)

reported the dynamic changes of gene expression patterns in the

Chinese tongue sole kidney after V. harveyi infection and revealed

that the Jak-STAT signaling pathway played a crucial role in the

regulation during V. harveyi infection (6). In Centropristis striata

challenged by V. harveyi, numerous mRNA–miRNA interactions

were identified, which provide insight into the immune reactions

that occur during the antimicrobial process (7). Wang et al. (2024)

found that some metabolic pathways of P. leopardus showed

adjustments in response to vibrio infection, further strengthened

the intestinal chemical barrier (8). To date, there were few studies

on immune response of P. leopardus against V. harveyi infection,

which increase the difficulties of using immunological methods to

prevent and control vibriosis caused by V. harveyi during

the cultivation.

The spleen is a major secondary lymphoid organ in fish to filter

pathogens carried by blood and is the main place to resist many

micro-organisms (9). It contains diverse resident immune cell

populations (e.g., lymphocytes, macrophages, and granulocytes)

that secrete cytokines to propagate the inflammatory response

and pathogen clearance during inflammation (10). Additionally,

the spleen plays an important role in antigen presentation and

adaptive immune response, which is mainly involved in the

development of B cells, antigen processing, and MHC class II

molecule expression (11). Fish liver is classically perceived as a

non-immunological organ that functions primarily in metabolic

processes, detoxification, and nutrient storage. In fact, the liver is

generally responsible for generating acute-phase proteins (e.g., C-

reactive protein, complement proteins, serum amyloid A),

cytokines, and pattern-recognition receptors (PRRs), which were

identified as an essential immune organ in fish (12). The liver’s dual

roles in both immune and metabolism function make it an

interesting candidate to study the dialogue between fish immunity

and metabolism upon pathogen challenges. The intimate
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interactions between these two seemingly unrelated systems

remain enigmatic for long time. Sharing or competition of energy

was thought to be one of possible ways to govern immune-

metabolic interactions (13). Rauw (2012) reported that sufficient

energy reserves are required to maintain the immune function and

activate defense responses (14). Hence, it is necessary to study the

interactions between the immune and metabolic system through the

fish spleen and liver.

Characterizing similar or differential gene expression patterns

among immune organs during the pathogenic infection may offer a

more integrated approach in immunological studies. For example,

Floreste et al. (2023) found that the proinflammatory cytokine

expression was more pronounced in the liver that in the spleen at

earliest time points in the lipopolysaccharide (LPS)–challenged

Rhinella diptycha (10). Fonseca et al. (2021) showed that tumor

necrosis factor (TNF) production was driven by a spleen–liver axis in

a rat model of systemic inflammation induced by bacterial LPS and

implicated LTB4 as a spleen-derived endocrine signal that promoted

the hepatic production of TNF during systemic inflammation,

providing a framework to understand how systemic inflammation

can be regulated at the level of interorgan communication (15). It can

be inferred that critical pathogens for fish may also alter immune

gene expression in a time- and organ-related manner. Therefore, a

time course of organ-integrative characterization of the immune

response in fish is urgently required.

Transcriptome profiling is a powerful tool to show gene

expression patterns in immune organ during the bacterial

infection and has provided new insights into immune responses

against bacterial infections in some target tissues of various

aquaculture animals (16–19). However, there has been limited

information to use transcriptome analysis to study the dynamic

immune process of fish in time and space so far. To fully investigate

the dynamic and organ integrative of the immune response in P.

leopardus against V. harveyi, it is necessary to conduct the

transcriptome analysis based on spleen and liver at different time

points post-infection. In this study, the transcriptomic profiles were

obtained by RNA sequencing (RNA-seq) technology from the

spleen and liver tissues of P. leopardus at 0, 6, 12, 24, 48, and

72 h post-infection with V. harveyi. The results can provide new

insights into the immune regulation of P. leopardus against V.

harveyi and provide basic data for vibrio disease prevention in the P.

leopardus intensive culture processes.
Materials and methods

Bacteria challenge and sample collection

Two hundred healthy juvenile P. leopardus with body weights of

15.0 ± 3.3 g were obtained fromMingbo Aquatic Company (Laizhou,

China). The fish were maintained in tanks containing aerated sand-

filtered seawater at 23 ± 0.5°C for 1 week prior to processing.

V. harveyi for immune challenge experiment was isolated from

diseased fish and kept in our laboratory (5). In brief, the bacteria

were incubated to mid-logarithmic stage at 28°C in tryptic soy broth

medium, then collected by centrifugation and re-suspended in
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phosphate-buffered saline (PBS, pH 7.2) to a final concentration of 1

× 105 CFU/ml (20). Fifty fish intraperitoneally injected with live V.

harveyi suspension at 0.1 ml/100 g fish weight were set as the infected

group. The remaining 50 fishes injected with PBS at 0.1 ml/100 g fish

weight were set as the control group. After anesthesia in 5 mg/L MS-

222 (tricaine methane sulfonate), three individual fish from the

infected group were sampled at 6 time points (0, 6, 12, 24, 48, and

72 h after V. harveyi injection), of which the 0, 6, and 12 h were

regarded as the early infection stage, 24 and 48 h were regarded as the

middle infection stage, and 72 h was regarded as the late infection

stage based on the regularity of mortality in the P. leopardus after V.

harveyi infection in our previous study (Figure 1) (21). The spleen

samples were named as S0h, S6h, S12h, S24h, S48h, and S72h,

respectively. The liver samples were named as L0h, L6h, L12h,

L24h, L48h, and L72h, respectively. All samples were transferred

into liquid nitrogen and stored at −80°C.
RNA extraction and sequencing

Total RNA was extracted from liver and spleen tissues using

Trizol Reagent (Invitrogen, Carlsbad, California, USA) according to

the manufacturer’s protocol. The quality, purity, concentration, and

integrity of RNAs were detected using the agarose gel electrophoresis,

NanodropND-1000, Qubit 2.0, and Agilent 2100 RNA 6000 Nano kit

(Agilent, USA). Then, the cDNA libraries were constructed using 3

mg qualified total RNA (RIN > 7.0) via the conventional protocol, and

subsequent sequencing was conducted with an Illumina NovaSeq by

Gene Denovo Biotechnology Co., China.
Transcriptomic analysis

The raw reads were filtered by fastp (version 0.18.0), and then the

clean data were mapped to P. leopardus reference genome via HISAT

(v2.2.4) (22). Then, transcript assemblies were conducted with

StringTie (v1.3.1) and Cufflinks (v2.2.1) in a reference-based

approach. To investigate the differential responses of P. leopardus

to V. harveyi infection, the number and biological functions of

differentially expressed genes (DEGs) in different groups were

analyzed. FPKM (fragment per kilobase of transcript per

million mapped reads) value was calculated to quantify the gene
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using DESeq2 package with the default parameter. The |log2(fold

change)| ≥ 1 and Q-value (adjusted P-value) ≤ 0.05 were used as

the filtering thresholds. Further, the biological function of DEGs were

annotated using Gene Ontology (GO) (Blast2GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) (KOBAS) database.

The enrichment analyses of GO and KEGG were performed using

Goatools and Python softwares, respectively. The hyper-geometric

distribution corrected Q-value < 0.05 was taken as the criterion of

significant enrichment of the GO term and KEGG pathway.
Weighted gene co-expression
network analysis

A weighted gene co-expression network analysis (WGCNA) was

performed using the R package BioNERO (v1.6.1), following the

published method (23). After filtering genes (FPKM < 1.5 in half or

more of the samples), gene expression values were imported into

BioNERO to (i) remove missing data, (ii) remove genes with low

expression across samples, (iii) remove outliers, and (iv) remove

confounders that could introduce false-positive correlations. To make

the Gene Co-Expression Networks (GCNs) satisfy the scale-free

topology, of which the scale-free topology fit index (R2) reaches 0.8

and the mean connectivity tends to 0, we identified the best b power

with the function of SFT_fit. Then, the GCN was inferred using the

exp2gcn function with b power. Eventually, co-expression modules

and hub genes were identified, and GO and KEGG analyses were

performed on these responsive modules to elucidate their biological

functions. Related networks were visualized using Cytoscape v3.10.2.
Quantitative real-time polymerase chain
reaction analysis

The candidate genes screened by transcriptomic analysis were

subjected to quantitative real-time polymerase chain reaction (qRT-

PCR) for validation. qRT-PCR was performed using a 7500 fast RT-

PCR system (Applied Biosystems, Foster City, CA, USA) with SYBR

green kit (Takara, Kyoto, Japan). In brief, b-actin served as the

internal reference gene, and the relative gene expression values were

calculated by the 2–DDCt method. SPSS 18.0 software (IBM) was used
FIGURE 1

Schematic illustration of the sampling for V. harveyi infection experiment in P. leopardus. After the intraperitoneal injection of V. harveyi, the spleen
and liver were sampled at 0, 6, 12, 24, 48, and 72 h. The control group were sampled at the beginning after the intraperitoneal injection of PBS. The
six sampling points with V. harveyi infection were further divided into early infection stage (0, 6, and 12 h), middle infection stage (24 and 48 h), and
late infection stage (72 h).
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for sample comparisons via Duncan’s test, and a significant

difference was observed at P ≤ 0.05. The primer sequences for

these genes are listed in Supplementary Table S1.
Results

Transcriptome sequencing data

To understand the dynamic immune mechanisms of P. leopardus

from the spleen and liver in response to V. harveyi infection, we

performed transcriptome sequencing of a total of 42 samples. The

RNA-seq data were deposited in the National Center for

Biotechnology Information under access ion number :

PRJNA1126611. By comparing the unigenes from the different time

points after V. harveyi infection with that from the control PBS based

on the criteria for DEGs, large number of DEGs were concentrated at

6–24 h in both spleen and liver, especially at the early infection stage

6–12 h. At 0 and 72 h, the number of downregulated DEGs was more

than that of upregulated DEGs in both spleen and liver (Table 1).

Venn diagrams showed that the proportions of liver–spleen common

DEGs at 6, 12, and 24 h were more than 20%, and the proportions of

spleen-specific DEGs at 48 and 72 h were up to 48.3% and 50.2%,

respectively (Supplementary Figure S1).
Function analysis of all DEGs

To investigate the dynamic change of the immune functions at

different time points after infection, GO and KEGG enrichments

were performed based on the DEGs from the spleen and liver,

respectively. Ten most enriched GO terms were selected in the

spleen and liver at 0–72 h after infection, respectively

(Supplementary Figure S2, Supplementary Table S2). Major GO

terms were distributed in the biological processes in both spleen and

liver. In the spleen, immune response-associated GO terms were

significantly detected at 6 h, and cell cycle process associated GO

terms were found at 48 to 72 h (Supplementary Figure S2A). In the

liver, metabolic process associated GO terms were detected from 0 h

to 24 h, and response to organic cyclic compound was found at 48 h

(Supplementary Figure S2B).
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infection, the DEGs enrichment analysis using KEGG database

were conducted (Supplementary Table S3). Figures 2 and 3 display

the significantly enriched KEGG pathways in the spleen and liver at

different infection time, respectively. In the spleen, most

upregulated DEGs were enriched in the pathways related to the

immune response at the early infection stage and the cellular

process at the middle infection stage and the late infection stage

(Figure 2A). These immune response pathways mainly related to

the innate immune system, such as PRR-related pathways (RIG-I-

like receptor signaling pathway, Toll-like receptor (TLR) signaling

pathway, NOD-like receptor signaling pathway, and C-type lectin

receptor signaling pathway) and inflammatory response-related

pathways [interleukin-17 (IL-17) signaling pathway, TNF

signaling pathway, cytokine–cytokine receptor interaction] at 6 h

and complement and coagulation cascades pathway at 12 h. In

addition, the adaptive immune pathway (antigen processing and

presentation) was significantly enriched at 12 h. Afterward, the

upregulated DEGs in the spleen were significantly enriched in

the pathways related to cellular processes and DNA repair.

Among the pathways enriched by downregulated DEGs in the

spleen, two adaptive immune pathways (intestinal immune

network for IgA production and Th1 and Th2 cell differentiation)

were significantly affected at 12–24 h (Figure 2B).

In the liver, among the top 15 pathways enriched by upregulated

DEGs at 6 h, 5 pathways were associated with innate immune

response, including TLR signaling pathway, TNF signaling

pathway, IL-17 signaling pathway, RIG-I-like receptor signaling

pathway and cytosolic DNA-sensing pathway (Figure 3A). During

the early and middle infection stage (6–24 h), lots of upregulated

DEGs in the liver were enriched in the pathways related to the genetic

information process. When considering the significant pathways of

downregulated DEGs enrichment, metabolisms were the pathways

with the majority of DEGs mapped at 6–48 h. Among the

metabolism-related pathways, lipid metabolism (fatty acid

degradation, linoleic acid metabolism, primary bile acid

biosynthesis, glycerolipid metabolism, steroid biosynthesis) was

mostly affected, followed by amino acid metabolism (glycine, serine

and threonine metabolism, tryptophan metabolism, tyrosine

metabolism, purine metabolism) and carbohydrate metabolism

(starch and sucrose metabolism, glycolysis/gluconeogenesis,

glyoxylate and dicarboxylate metabolism) (Figure 3B).
Immune-related pathways of P. leopardus
against V. harveyi infection

To analyze the dynamic immune response of P. leopardus against

bacterial infection, immune-related pathways were screened in the

spleen and liver at different time points after infection of V. harveyi.

The results showed that there were lots of DEGs in classical four innate

immune PRR pathways (RIG-I-like receptor signaling pathway, TLR

signaling pathway, IL-17 signaling pathway, and NOD-like receptor

signaling pathway) found in both spleen and liver after infection

(Figure 4). In the spleen and liver, most DEGs in the four innate
TABLE 1 The number of DEGs in the spleen and liver of P. leopardus at
different time points after V. harveyi infection.

Time
Spleen Liver

Up Down Total Up Down Total

0 h 53 137 190 85 206 291

6 h 1881 2696 4577 2364 2089 4453

12 h 1838 2436 4274 2216 2406 4622

24 h 1359 1329 2688 1532 1430 2962

48 h 426 514 940 219 603 822

72 h 299 445 744 180 452 632
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immune receptor pathways were significantly upregulated at 6–12 h,

especially at 6 h (Figure 4A). Many DEGs co-existed in different innate

immune receptor pathways, for example, Ikbkg, Casp8, Cxcl2, IKBKE,

chuk, NFKBIA, and Traf3 were all existed and upregulated expressed in

the four innate immune receptor pathways (Figure 4B). The structure

predictions of PRRs showed that the Tlr5 contained a signal peptide, a

leucine-rich repeat (LRR) N-terminal domain, 12 LRR domains, and an

LRR C-terminal domain. The NOD2 and NLRP3 all contained an

NAIP, CIIA, HET-E, and TP1 (NACHT) nucleotide-binding domain

and several LRR domains, while the NOD2 also had two C-terminal

caspase recruitment domains, and the NLRP3 also had a fish-specific

NACHT associated domain (Figure 4C). The structure predictions of

adaptor molecules showed that TRAF2 and TRAF3 had a ring finger

(RING) domain and one or two TRAF-type zinc finger (zf-TRAF)

domain, and the IRAK4 contained a Serine/Threonine protein kinases,

catalytic (S_TKc) domain and a DEATH domain. The structure

predictions of inflammatory cytokines showed that the TNFRSF11B
Frontiers in Immunology 05
and TNFRSF14 contained three or four TNFR family domains. The

IL1R1b and IL1R2 consisted of three IG-like domains and a

transmembrane region; in addition, il1r1b contained a Toll-

interleukin 1-resistance (TIR) domain. The IL-1b, IL-6 and IL-10 had

a typical IL-1, IL-6, and IL-10 family domain, respectively (Figure 4C).

In the spleen, the better part of DEGs in the cytokine–cytokine

receptor interaction pathway were significantly upregulated at 6–12

h, such as the CXC chemokine receptors (CXCR2 and CXCR3), and

the chemokines (CCL2, CCL21, and Cxcl2), whereas the CC

chemokine receptors (CCR2, CCR7, and CCR9) were notably

downregulated at 6–48 h (Figure 5A). The structure predictions

showed that all chemokine receptors had a seven-transmembrane

(7tm_1) domain and all chemokines contained an intercrine alpha

family (small cytokine) (SCY) domain (Figure 5B).

In the spleen, almost all DEGs in antigen processing and

presentation pathway were significantly upregulated at 12 h,

especially the major histocompatibility complexes (MHC)
FIGURE 2

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of upregulated (A) and downregulated (B) differentially expressed genes
(DEGs) in the spleen. Red font and green font represent immune- and cellular and genetic information process-related pathways, respectively. The
vertical coordinate represents the enriched KEGG pathways, and the horizontal coordinate represents the Rich factor. The size of the dots
represents the number of DEGs in KEGG pathways, and different colors of dots represent the different log2 (Q-values).
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including MHC_I–related gene protein (Mr1), MHC_I receptor

(H2-k1), and MHC_II beta 1 chain (RT1-B) and transporters

associated with antigen processing (TAP1 and TAP2)

(Figure 6A). The structure predictions of DEGs showed that Mr1

and H2-k1 both contained an MHC_I domain, and RT1-B

contained an MHC_II beta domain, besides, Mr1 and RT1-B

both had an immunoglobulin C-Type (IGc1) domain and a

transmembrane region. The TAP1 and TAP2 both contained a

typical ABC_membrane domain and a AAA domain, while TAP1

had three transmembrane domains, and TAP2 had two

transmembrane domains (Figure 6B).
Reactive modules and hub genes in
response to V. harveyi infection

The response modules and hub genes of P. leopardus induced by

V. harveyi infection were identified through the construction of a

network using transcriptome datasets of spleen and liver. In the

spleen, a total of seven modules were identified based on the gene

expression patterns, and the dark green module with the strongest

positive correlation (r = 0.6) was considered as a response module

and included in subsequent analysis (Figure 7A). KEGG and GO

enrichment analysis was performed after combining the genes from
Frontiers in Immunology 06
dark green module. Among the top 10 significantly enriched

pathways, six pathways were related to immune function, namely,

TNF signaling pathway, IL-17 signaling pathway, TLR signaling

pathway, RIG-I receptor signaling pathway, Th17 cell

differentiation, and NF-kappa B signaling pathway (Figure 7B). The

GO analysis detected the significant enrichment associated with

immune response (Figure 7C). Hub genes were identified according

to the node connection degree that was significantly correlated with

proximity to the center of the network. A total of 200 top genes with

high connection degree were selected from dark green module, and

the gene network diagram was constructed. The key hub genes were

involved in immune regulation, including TAP2, interferon-related

regulator 1 (IRF1), suppressor of cytokine signaling 1 (SOCS1), and

CASP8 and FADD-like apoptosis regulator (CFLAR) (Figure 7D).

In the liver, 11 modules were detected in the analysis, and the

correlation heat map showed significant the magenta module with

the strongest positive correlation (r = 0.65) was considered as a

response module associated with L6h (Figure 8A). KEGG results

revealed that genes in the magenta module were mainly enriched in

the pathways related to protein process and biosynthesis, only the

antigen processing and presentation pathway was involved in

immune function (Figure 8B). GO enrichment results showed

that genes in the magenta module were mainly related to the

composition and process of endoplasmic reticulum (Figure 8C).
FIGURE 3

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of upregulated (A) and downregulated (B) differentially expressed genes
(DEGs) in the liver. Red font, blue font, and green font represent immune-, metabolic-, and cellular and genetic information process-related
pathways, respectively. The vertical coordinate represents the enriched KEGG pathways, and the horizontal coordinate represents the Rich factor.
The size of the dots represents the number of DEGs in KEGG pathways, and different colors of dots represent the different log2 (Q-values).
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Moreover, the key hub genes were stromal cell-derived factor 2-like

protein 1 (SDF2L1), dolichyl-phosphate beta-glucosyltransferase

(Alg5), protein disulfide-isomerase A3 (PDIA3), and so forth.
qRT-PCR validation of immune genes

To explore the immune strategy of P. leopardus against V.

harveyi infection, six immune-related genes were selected for qRT-

PCR validation. Due to 6–12 h was very critical time points for P.

leopardus against V. harveyi infection, 6 and 12 h were selected to

detect the expression of immune-related genes. The results showed

that the genes IL-6, IL1R2, CXCL2, CCL2, and CXCR2 associated

with the cytokine–cytokine receptor interaction pathway in the

spleen and liver, were significantly upregulated at 6 and 12 h,

respectively. The IL-10 was significantly upregulated in the spleen at

6 and 12 h and in the liver at 12 h, while slightly downregulated in

the liver at 6 h (Figure 9). These data showed that the results of

qRT-PCR were broadly in line with the results of RNA-seq,

indicating the accuracy of RNA-seq expression analysis.
Frontiers in Immunology 07
Discussion

P. leopardus is an economically important tropical fish owing to

its bright body color, good taste, and high economic value.

However, the rapid spread of V. harveyi has hindered the long-

term healthy development of its aquaculture (21). A comprehensive

understanding of the immune response of P. leopardus infected

with V. harveyi may provide new ideas for disease prevention and

treatment. The current study is the first to describe the

transcriptome response of P. leopardus to V. harveyi at a whole

infection stage.
Dynamic immune process of spleen and
liver in P. leopardus against V.
harveyi infection

In previous research, transcriptome analysis of the immune

response against bacterial infection were reported in a certain tissue

or at a certain time point post-infection (24–26). However, the
FIGURE 4

Analysis of differentially expressed genes (DEGs) in classical innate immune receptor pathways (RIG-I-like receptor signaling pathway, Toll-like
receptor signaling pathway, IL-17 signaling pathway, and NOD-like receptor signaling pathway). (A) Heat map of DEGs in the four innate immune
receptor pathways in spleen and liver. (B) The co-exist network of DEGs in the four innate immune receptor pathways. (C) Structural features of key
DEGs in the innate immune receptor pathways.
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FIGURE 5

Analysis of differentially expressed genes (DEGs) in cytokine–cytokine receptor interaction pathway. (A) Heat map of DEGs in cytokine–cytokine
receptor interaction pathway in the spleen. (B) Structural features of chemokine receptors and chemokines.
FIGURE 6

Analysis of differentially expressed genes (DEGs) in antigen processing and presentation pathway. (A) Heat map of DEGs in antigen processing and
presentation pathway in spleen. (B) Structural features of MHCs and antigen peptide transporters.
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researches on the time course and tissue-specific immune response

against bacterial infection were necessary to further explore the

molecular mechanism of immune defense against bacterial

infection in fish. In this study, we used RNA-seq to investigate

the dynamic immune response against V. harveyi in the spleen and

liver of P. leopardus at different time points post-infection.

Compared to other infection time points, 6–12 h exhibited most

DEGs in both spleen and liver, indicating that large-scale

transcriptional alterations of the host genes occurred at the early

infection stage. In addition, the KEGG enrichment analysis revealed

that the innate immune related pathways were of significantly

upregulated expression in both spleen and liver at the early

infection stage. These results suggested that 6–12 h might be very

critical time points for P. leopardus against V. harveyi infection.

Similarly, rapid upregulation of innate immune signaling pathways

was observed in Cynoglossus semilaevis against V. harveyi infection,
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indicating that treatment measures should be taken in the early

stage after infection (27). Afterwards, the upregulated DEGs in the

spleen were significantly enriched in the pathways related to cellular

processes and DNA repair, which indicated that the spleen began to

repair after completing its immune defense function. Based on the

KEGG enrichment results, V. harveyi infection induced a dramatic

expression decrease of genes related to lipid metabolism, amino acid

metabolism and carbohydrate metabolism pathways in the liver at

6–48 h, which indicated that the metabolic function of liver was

inhibited for the infection of V. harveyi at the early infection stage

and middle infection stage. Intriguingly, some reports disclosed that

the suppression of metabolic activities in host is possibly derived by

host immune system (13). Keeping the immune-metabolic

homeostasis is crucial for fish to adapt the ever-changing internal

and external environment (28). As sufficient energy reserves are

required to maintain the immune function and activate defense
FIGURE 7

Weighted gene co-expression network analysis (WGCNA) of spleen. (A) Heat map of correlation between infection time and modules. (B)
Enrichment pathway of dark green module. (C) GO enrichment of dark green module. (D) Gene co-expression network in the dark green module.
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responses, it is speculated that when P. leopardus are infected by

V. harveyi, the metabolic function of the liver needs to give way to

the immune function to ensure adequate energy supply.
Immune-related pathways of P. leopardus
infected with V. harveyi

KEGG enrichment analysis identified key immune pathways

required for antimicrobial infection, and the major pathways are

discussed below. The inflammatory response consists of a cascade of

highly orchestrated innate immunity events that occur upon
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recognition of pathogen associated molecules by the PRRs on fish’s

resident immune cells (29). Once inflammatory processes are

triggered, large amounts of pro-inflammatory cytokines are released,

such as TNFs, ILs and interferons (IFNs) (30). In the present study,

DEGs were mapped to many classical innate immune pathways, such

as RIG-I-like receptor signaling pathway, TLR signaling pathway, IL-

17 signaling pathway, and NOD-like receptor signaling pathway at the

early infection stage in both spleen and liver. Tlr5, as a member of

TLRs family in mammals, is responsible for recognizing bacterial

flagellin and initiating innate immunity (31). In Sinocyclocheilus

graham, two TLR5 genes (sgTLR5a and sgTLR5b) were upregulated

notably in the liver, spleen, and head kidney tissues after stimulations
FIGURE 8

Weighted gene co-expression network analysis (WGCNA) of liver. (A) Heat map of correlation between infection time and modules. (B) Enrichment
pathway of magenta module. (C) GO enrichment of magenta module. (D) Gene co-expression network in the magenta module.
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of Aeromonas hydrophila and flagellin, and could positively regulated

the NF-kB signaling pathway (32). In Nile tilapia, OnTLR5

significantly upregulated OnMyd88-induced NF-kB activation and

had an interaction with Aeromonas flagellin (33). NOD2 has been

identified as an important sensor for microorganic invasion in both

mammals and teleost fishes. In the teleost fish Schizothorax prenanti,

NOD2 and its two splicing variants positively responded to exposure

of A. hydrophila and LPS stimulation in varying degrees and could

activate the NF-kB signal (34). NLRP3 inflammasome can be activated

by a variety of stimuli and plays an important role in protecting host

from pathogen invasion and maintaining homeostasis. In common

carp, NLRP3 was significantly increased after stimulation with E.

tarda andA. hydrophila and could form inflammasome through ASC-

independent pathway (35). In P. leopardus, TLR5, NOD2, and NLRP3

were all notably induced in the spleen and liver from 6 to 12 h or 24 h

post-infection, and the predicted protein structures of three genes

were similarly to those of mammals or other fishes. The adaptor

molecules can trigger downstream signaling pathways to drive the

induction of proinflammatory cytokines (36). In this study, three

adaptor molecules, including TRAF2, TRAF3, and IRAK4 with a

variety of conserved structures like other species, participated into

more than two innate immune receptor pathways of P. leopardus (37–

39). The significantly upregulated expressions of these genes in P.

leopardus at 6–12 h post-injection, indicated that they played

important role in resistance to V. harveyi. Once inflammatory

processes are triggered, large amounts of pro-inflammatory
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cytokines are activated and released (40). In mammals, TNF, IL-1b,

and IL-6, as symbolic pro-inflammation cytokines, can activate

macrophages and neutrophils directly, and IL-10 is an anti-

inflammatory cytokine that mitigates exaggerated inflammatory

immune reactions (41–43). In this study, TNFRSF11B, TNFRSF14,

IL-1b, IL-6 and IL-10 in P. leopardus were upregulated significantly at

6–12 h after V. harveyi infection. Moreover, the predicted protein

structures of these inflammatory cytokines contained their

characteristic family domains. These results imply that

inflammatory immune reaction of P. leopardus can be activated

quickly to eliminate invading V. harveyi. IL-1b can bind to IL1R1 to

activate the downstream signaling pathways, and IL1R2 lacking the

TIR domain can bind fraudulently to IL-1b and prevent signal

transduction (44, 45). In various fishes, IL1R1 and IL1R2 have been

identified, and their mRNAs are notably induced after bacteria

stimulation (46–48). In P. leopardus, the expression of IL1R1b and

IL1R2 were significantly upregulated at 6–12 h post-infection.

Similarly to other fishes, P. leopardus IL1Rs possess characteristic IG

domains in the extracellular region and a cytoplasmic TIR domain

except that IL1R2 lacks the TIR domain for signaling. These results

reveal that inflammatory cytokines and their receptors in fish have

similar protein structure and expression changes after bacterial

infection, and the signal pathways of these inflammatory cytokines

are conserved.

Chemokines are a family of cytokines that coordinate the

movement or migration of immune cells from lymphoid organs
FIGURE 9

Comparison of qRT-PCR and RNA-seq for six DEGs at 6 and 12 h post-infection. Data shown are the mean of triplicates ± SD. (A) Spleen, (B) liver.
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to the site of action, playing a fundamental role for an efficient

innate and adaptive immune response (49). Depending on the

relative position of two N-terminal cysteine residues, chemokines

are divided into five major subfamilies, including CC, CXC, CX3C,

CX, and XC (only present in fish), in which CXC and CC are the

dominant subfamilies (50). Up to now, many CC/CXC chemokine

genes and their receptors have been identified in a number of fish

species (51–53). In this study, chemokines (CCLs and CXCLs) and

their receptors (CCRs and CXCRs) in P. leopardus also have a

typical SCY structure and a Pfam 7tm_1 domain as other fishes,

respectively. Moreover, CCL2, CCL21, CXCL2, CXCR2, and

CXCR3 mRNAs were significantly induced at 6–12 h after V.

harveyi infection, implying that P. leopardus immune cells can be

activated and recruited to the sites of infection at early time points

post-infection.

Antigen processing and presentation pathway is responsible for

presenting pathogenic antigen to lymphocytes, and T-cell receptor

participate in immunogenic antigen recognition peptide-MHC to

activate and regulate humoral and cellular immune response (54).

In teleost fishes, this pathway plays a necessary role in the adaptive

immune response (55). In addition, transcriptome analyses of

Carassius auratus and Oreochromis niloticus challenged by

pathogens has revealed that antigen presentation signals were

significantly enriched among post-infection altered genes (56, 57).

The expression profiles identified MHC I antigen processing and

presentation molecules, such as Mr1, H2-k1, TAP1/2, CANX,

CALR, and HSP70, as well as MHC II-related genes, such as

RT1-B and CTSL. In P. leopardus, MHC class I and MHC class II

genes were all upregulated at 6–12 h afterV. harveyi infection in this

context, which were consistent with the finding in Scophthalmus

maximus, indicating an important role of antigen processing and

presentation in anti-bacterial infection (58, 59). Mr1 and H2-k1

consist of an MHC_I domain, and RT1-B had an MHC_II beta

domain, which indicated that they were recognized as the classical

MHC-related genes as other fishes (60, 61). TAP is a key component
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in the MHC class I–dependent antigen presentation pathway, which

is primarily responsible for the transportation of peptides into the

endoplasmic reticulum for MHC-I presentation. It is a member of

the ABC [adenosine triphosphate (ATP)–binding cassette] family of

transporters with conserved architecture of transmembrane

domains, which translocate a wide range of substrates across

membranes in an ATP-dependent manner (62). In P. leopardus,

TAP1 and TAP2 were also found typical ABC_membrane domain

and transmembrane domains. Taking together, the upregulation of

MHC I and MHC II–associated genes indicates the efficient

processing and presentation of V. harveyi antigens and thereby

mounting of anti-V. harveyi response in P. leopardus.
Key hub genes related to V. harveyi
infection Identified by WGCNA

After analyzing WGCNA, it was found that immune system in

the spleen of P. leopardus played crucial roles in responding to V.

harveyi infection, providing valuable insights into the underlying

molecular mechanisms. Additionally, this study identified four hub

genes mainly involved in immune responses, including TAP2, IRF1,

SOCS1, and CFLAR. The function of hub genes reflected the spleen

function. TAP plays a key role in the MHC class I antigen

presentation pathway (63). In fish, the characteristic and

relationship with disease resistance of MHC I genes have been

studied, but other genes in MHC I region were rarely reported. It

was only reported that the TAP2 gene in grass carp were up

regulated in the spleen and kidney after infection with A.

hydrophila (64). In P. leopardus, the importance of TAP2 was

emphasized by identified as hub gene with highly expressed in the

spleen after V. harveyi infection. IRF1 is an important regulator in

controlling the transcription of type I interferon genes, and its

functions have been well characterized from lower vertebrates to

higher vertebrates (65). Fish IRF1 of miiuy croaker (Miichthys
FIGURE 10

A hypothesis of the potential regulatory pathway during bacterial infection between the spleen and liver. Red font and green font represent
upregulated and downregulated DEGs enrichment pathways, respectively. The red dotted box represents the key immune-related pathways focused
on in this study.
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miiuy) has been identified in previous study (66). Xuan et al. found

that IRF1 negatively regulated NF-kB signaling by targeting MyD88

for degradation in teleost fish (67). In this study, IRF1 was

significantly upregulated after V. harveyi infection, and its

connection value was high in the co-expression module,

suggesting its importance in the immunity regulation in the P.

leopardus. The Socs proteins are crucial soluble mediators to inhibit

signal transduction via the JAK-STAT pathway in the innate and

adaptive immune responses, among which SOCS1 is the primary

regulator of a number of cytokines (68). In salmon, the SOCS1

showed a strong negative regulatory activity on types I and II IFN

signaling and the suppression of viral replication was partially

rescued by over expression of SOCS1, which indicated that teleost

SOCS-1 might also be involved in IFN signaling regulation (69, 70).

CFLAR, also known ascFlip, plays a critical role in fundamental

intracellular processes such as inflammation and apoptosis (71). As

reported, CFLAR is a negative regulator of pathological cardiac

remodeling and the resultant heart failure that was associated with

its potential modulation of apoptosis, inflammation and fibrosis

(72). Faiz et al. found that decreased CFLAR expression would

increase the susceptibility of cell death (73). Given these intimate

associations of CFLAR with inflammation and cell death, we

supposed that CFLAR might have a potential role in regulating

damage caused by infection with V. harveyi. Therefore, the hub

genes TAP2, IRF1, SOCS1, and CFLAR identified based on

WGCNA of spleen were significantly changed when the P.

leopardus were infected by V. harveyi.
Conclusion

To sum up, we provide the transcriptional spectrum of spleen

and liver in P. leopardus at different time points after infection with

V. harveyi. The defense responses of P. leopardus were characterized

by a prevailing upregulation of innate immune pathways (e.g., PRR

and inflammatory response related) in both spleen and liver and

adaptive immune pathway (antigen processing and presentation) in

the spleen during the early infection stage, and the concomitant the

downregulation of metabolic activities in the liver until to the

middle infection stage (Figure 10). The genes related to immune

regulation including TAP2, IRF1, Socs1, and CFLAR were found to

be hub genes of spleen in the gene co-expression network by

WGCNA analysis. Our research provides important information

to reveal the immune defense related pathways and genes of the P.

leopardus, and also provides molecular data and targets for genetic

improvement of resistance to bacterial disease in P. leopardus.
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SUPPLEMENTARY FIGURE 1

Veen diagrams representing differentially expressed genes (DEGs)
in the spleen and liver at different time points. Red and blue
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circle representing the number of DEGs in the liver and spleen,
respectively. Gray circle representing the number of common DEGs in the

liver and spleen.

SUPPLEMENTARY FIGURE 2

The 10 most enriched GO terms in the spleen (A) and liver (B) of P. leopardus
at different time points following V. harveyi challenge. I: biological process, II:

molecular function, III: cellular component. The y-axis representing gene
percent. The column color representing the significant degree of enrichment

of GO term.
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