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Background: Uveal melanoma (UVM) is a form of eye cancer with a poor

prognosis, particularly in metastatic patients. This study aimed to elucidate the

cellular heterogeneity within UVM and identify prognostic biomarkers.

Methods: We performed single-cell RNA sequencing (scRNA-seq) on primary

and metastatic UVM samples. A UVM-specific gene signature was constructed

using LASSO regression and validated via ROC curve analysis in the TCGA-UVM

and GSE84976 cohorts. AlphaFold 3 was used to predict the 3D structures of key

proteins. T-cell populations were analyzed using pseudotime trajectory mapping

and interaction network visualization. CRISPR-Cas9 screening analysis was

conducted to identify hub genes and cytokine pathways that may serve as

therapeutic targets. Additionally, we constructed the Dictionary of Immune

Responses to Cytokines at single-cell resolution to evaluate cytokine signatures.

Results: ScRNA-seq revealed five major cell types within UVMs and subdivided

them into seven distinct subtypes. Cytokine signaling analysis revealed differential

expression of cytokine signaling in immune-related genes (CSIRGs) across these

subtypes in primary and metastatic tumors. The UVM-specific gene signature

demonstrated high predictive accuracy in ROC curve analysis and was associated

with overall survival in Kaplan–Meier survival analyses. Additionally, AlphaFold 3

predicted the 3D structures of key proteins with high confidence. T-cell population

analysis revealed complex developmental pathways and interaction networks in

UVM. Myeloid-derived suppressor cells (MDSCs) were found to be increased in

metastatic UVM, correlating with the enrichment of GM-CSF. CRISPR-Cas9

screening analysis identified hub genes and cytokine pathways with low gene

effect scores across cell lines, indicating their potential importance in UVM.
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Conclusion: This study identified critical cellular subtypes and prognostic

biomarkers in UVM, shedding light on targeted therapies. The insights into

cytokine signaling and T-cell dynamics within the UVM microenvironment

provide a foundation for developing personalized therapeutic strategies to

improve patient outcomes.
KEYWORDS

uveal melanoma, single-cell RNA sequencing, cytokine signaling, T cell, AlphaFold 3,
Dictionary of Immune Responses to Cytokines
1 Introduction

Uveal melanoma (UVM) has an incidence rate of approximately

5.1 per million in the US, with a mortality rate that remains high

despite advances in treatment modalities (1). The primary treatment

options for UVM include enucleation, radiotherapy, and laser

therapy; however, these strategies often fail to prevent metastasis,

which occurs in approximately 50% of patients (2). The aggressive

nature and poor prognosis of metastatic UVM highlight the urgent

need for novel diagnostic and therapeutic approaches (3).

Single-cell RNA sequencing (scRNA-seq) has revolutionized

our understanding of the cellular heterogeneity within tumors,

providing unprecedented insights into tumor microenvironments

and their impact on disease progression (4, 5). ScRNA-seq has been

particularly instrumental in identifying distinct cellular subpopulations

and their functional states in various diseases, including diabetic

retinopathy, melanoma, glioblastoma, and liver cancer (6–8). These

studies have demonstrated that tumor heterogeneity significantly

influences treatment response and patient outcomes, underscoring

the importance of detailed cellular characterization in developing

personalized therapeutic strategies (4, 9).

In UVM, the application of scRNA-seq reveal the complexity of

the tumor microenvironment, shedding light on a variety of

immune cell populations and their roles in tumor progression

and immune evasion (10). For instance, recent studies have

identified specific macrophage subsets with distinct functional

properties that correlate with patient prognosis in patients with

melanoma (11). Similarly, cytokine signaling pathways are

important in shaping the tumor microenvironment and

influencing tumor growth and metastasis (12, 13). These findings

suggest that a comprehensive analysis of the cellular and molecular

features of UVM could help therapeutic target identification.

We employed scRNA-seq to study the cellular composition and

gene expression profiles of UVM samples. We identified major cell

types and their subtypes. We also constructed the Dictionary of

Immune Responses to Cytokines to evaluate cytokine signatures in

immune cells within metastatic UVM compared to primary UVM.

Moreover, we characterized cytokine signaling pathways, and

constructed gene signatures based on cytokine signaling in

immune-related genes (CSIRGs). We further validated these gene
02
signatures in independent cohorts and performed survival analysis

to assess their prognostic significance. Additionally, we utilized

AlphaFold 3 to predict the three-dimensional structures of key

proteins and conducted a detailed analysis of T-cell populations,

including trajectory and interaction network analyses.
2 Methods

2.1 Single-cell RNA sequencing (scRNA-
seq) analysis

To elucidate the cellular composition and functional characteristics

of uveal melanoma (UVM), we analyzed scRNA-seq data on 8 primary

and 3 livermetastatic UVM samples (GSE139829) (10). Quality control

filters were applied to eliminate low-quality cells and potential doublets.

Specifically, cells with high mitochondrial gene content (>10%) or an

inappropriate gene count (fewer than 400 or more than 8000 genes)

were excluded from further analysis. Analyses downstream were

conducted using the Seurat (version 4.4.1) (14), including

normalization, scaling, and dimensionality reduction. Data

dimensionality was reduced using PCA. Batch effects were corrected

using the ‘RunHarmony’ algorithm (15), and the t-SNE algorithm was

employed to visualize the cellular distribution within each patient.

Marker genes were used to identify major cell types in clusters (10).

Further classification refined these major cell types into seven distinct

subtypes by examining the expression profiles of specific markers. This

detailed analysis provided a comprehensive understanding of the

cellular heterogeneity within UVMs. Differentially expressed genes

(DEGs) were identified by comparing primary UVM samples with

metastatic samples using the Wilcoxon signed-rank test (adjusted P

value <0.05).
2.2 Detailed ScRNA-seq analysis of T-cell
populations in the UVM

2.2.1 Cell type identification and marker analysis
T-cell subtypes were defined based on known marker genes,

leading to the identification of eight main T-cell types.
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2.2.2 Pseudotime trajectory analysis
The Monocle package (version 2.32.0) was utilized to perform

pseudotime trajectory analysis to explore the developmental

hierarchy of T-cell subtypes.

2.2.3 Interaction network mapping
Interaction networks among T-cell types were mapped to

represent the number of ligand-receptor interactions by CellChat

(version 1.5.0).

2.2.4 Interaction strength analysis
The strength of interactions among various T-cell types was

quantified, showing the weights or strengths of these interactions.

2.2.5 Ligand–receptor interaction analysis
Detailed analysis of ligand-receptor interactions was performed

to identify strong interactions between specific pairs of T-cell types.
2.3 Identification of myeloid-derived
suppressor cells in scRNA-seq analysis

In our scRNA-seq analysis, we specifically included markers to

identify MDSCs, which are known to play a significant role in

tumor immune evasion and progression. We utilized ITGAM

(CD11b), CD14, and CD33 as surface markers characteristic of

MDSCs to distinguish this population from the scRNA-seq data.

Additionally, we evaluated the expression levels of PTGS2,

S100A8, IL10, TGFB1, and VEGFA, which are associated with

the immunosuppressive function of MDSCs, to further

understand their role within the tumor microenvironment. The

identification and analysis of MDSCs were conducted using

established bioinformatics pipelines, allowing us to accurately

profile this cell population in both primary and metastatic

UVM samples.
2.4 Cytokine signaling analysis

Immune-related gene set enrichment analysis with the irGSEA

(version 3.3.2) package was performed to investigate the role of

cytokine signaling in immune modulation. A density heatmap was

generated to visualize the expression and distribution levels of

cytokine signaling in immune-related genes (CSIRGs), accessed

from the Reactome database (https://reactome.org), across different

cell subtypes in primary and metastatic tumors. Higher enrichment

scores are indicated by more intense red coloring.
2.5 Expression and distribution analysis

CSIRG module scores were calculated using AddModuleScore

in Seurat (version 4.4.1) and generate a bubble plot displaying the

expression and distribution levels of these genes across different cell

subtypes within primary and metastatic tumors.
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2.6 Construction of the dictionary of
immune responses to cytokines for UVM

We utilized the Dictionary of Immune Responses to Cytokines

at single-cell resolution to evaluate the cytokine signatures of

various immune cells, specifically CD4+ T cells, CD8+ T cells, gd
T cells, Tregs, macrophages, and B cells, in metastatic UVM

compared to primary UVM. This evaluation was based on the

data collected by Cui et al., which measured transcriptional

responses to individual cytokine stimulation. The cytokine

signatures for each cell type in metastatic UVM were compared

to those in primary UVM. Immune Response Enrichment Analysis

(IREA) were performed (16). IREA Enrichment scores were

calculated for each cytokine, identifying the top 10 cytokines with

the strongest enrichment for each cell type.
2.7 Construction of gene signatures
composed of CSIRGs for UVM

To construct robust gene signatures for UVM based on CSIRGs,

we performed a comprehensive screening process across various cell

types. Gene expression data from UVM samples were collected

from TCGA-UVM (Training cohort, excluding 28 samples due to

incomplete data. Used 52 complete samples for model) and

GSE84976 (Testing cohort, including 28 samples) (17). The data

preprocessing steps included normalization and log transformation

to ensure comparability across samples. The intersection of CSIRGs

and DEGs (identified by scRNA-seq analysis) was identified for

each cell type to generate a refined list of candidate genes.

Univariate Cox was performed to identify prognosis-related

CSIRGs within each cell type. Genes significantly associated with

patient prognosis (P < 0.05) were selected for further analysis.

LASSO regression analysis was applied to further narrow the list of

prognosis-related CSIRGs. LASSO regression imposes a penalty on

the regression coefficients, effectively selecting the most relevant

genes by decreasing less important genes to zero. Multivariate Cox

was conducted on the genes selected from the LASSO analysis. This

step ensured that the selected CSIRGs were independently

associated with prognosis when considering other variables. The

final gene signatures composed of CSIRGs were constructed for

each cell type based on the results of the multivariate Cox.
2.8 Predictive accuracy and survival
analysis of the CSIRG signature in
UVM cohorts

To evaluate the predictive accuracy and prognostic

significance of the CSIRG signature, we performed ROC curve

analysis and Kaplan–Meier survival analysis in the TCGA-UVM

and the GSE84976 cohorts. Using the CSIRG signature, risk scores

were calculated for each sample in both cohorts. Risk scores were

derived from a weighted sum of the expression levels of the CSIRG

genes, where the weights corresponded to the regression
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coefficients from the multivariate Cox regression analysis. ROC

was used to evaluate the predictive accuracy of the CSIRG

signature in TCGA-UVM and GSE84976 cohorts. AUC was

calculated to quantify the predictive performance of the CSIRG

signature across different cell types.

Patients were stratified into CSIRG-high-risk and CSIRG-

low-risk groups based on the median risk score. Kaplan–Meier

survival curves were generated to compare overall survival

between the CSIRG-high-risk and CSIRG-low-risk groups in

both cohorts. Log-rank tests were used to determine the

statistical significance of the differences in survival between the

two groups.

The predictive power of the CSIRG signature was validated by

comparing AUC values and survival outcomes in both the TCGA-

UVM and GSE84976 cohorts. The consistency of the AUC values

and survival trends between the cohorts was assessed to underscore

the generalizability and robustness of the CSIRG signature.

2.8.1 Survival status plot
The survival status of patients was plotted, with red dots

representing deaths and green dots representing survival. This

plot provides a visual representation of the mortality rate among

CSIRG-high-risk and CSIRG-low-risk patients, highlighting the

higher mortality rate in the CSIRG-high-risk group.

2.8.2 Survival distribution plot
A survival distribution plot was generated to confirm the

association between risk score and overall survival. The plot

showed that higher risk scores were significantly associated with

shorter overall survival. The above analyses were performed

separately for T cells, B cells, fibroblasts, and tumor cells.
2.9 Protein structure prediction using
AlphaFold 3

To gain insight into the structural characteristics of key proteins

involved in UVM, we employed AlphaFold 3, a state-of-the-art

protein structure prediction tool (18). The following steps outline

the methodology used for predicting the three-dimensional

structures of several critical proteins.

2.9.1 Protein selection
We selected a set of proteins identified through LASSO-COX

regression analysis, include MIF, PTGS2, ISG20, HMOX1, ABL2,

LTBR, TNIP2, CD44, and FOXO3.

2.9.2 AlphaFold 3 configuration
AlphaFold 3 was configured according to the standard protocol

outlined in its user guide (18). The key parameters included the use

of the latest model.

2.9.3 Prediction procedure
Input Data Preparation: The primary amino acid sequences of

the selected proteins were prepared and submitted to AlphaFold 3.
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Prediction Execution: The model was run using default settings

to predict the structures. Each protein prediction was performed

multiple times to ensure accuracy and reliability.

Confidence Metrics: Confidence scores, including pLDDT (per-

residue confidence) and pTM (predicted template modeling) scores,

were calculated to evaluate the reliability of the predicted structures.

A pTM score above 0.5 indicates a fold change similar to that of

the true structure, while scores above 0.8 indicate high-

quality predictions.

2.9.4 Protein structure validation using
experimental data

We have undertaken the validation of AlphaFold 3 predicted

protein structures by cross-referencing with experimentally

determined structures available in the Protein Data Bank (PDB).

Specifically, for the protein ISG20, we accessed the PDB entry

1WLJ, which provides the crystal structure of human ISG20

complexed with two Mn2+ ions and uridine 5’-monophosphate

(UMP) at a resolution of 1.9 Å. The PDB entry, deposited by Horio,

T., offers a comprehensive structural framework for our validation

process (PDB DOI: https://doi.org/10.2210/pdb1WLJ/pdb) (19).

The structure of ISG20, classified as a HYDROLASE, was

determined using X-ray crystallography and is derived from the

organism Homo sapiens, with the protein expressed in Escherichia

coli. There are no noted mutations in the deposited structure. We

compared the specific structural features, including alpha-helices, beta-

strands, and other secondary structures predicted by AlphaFold 3, with

the features observed in the PDB structure 1WLJ. This comparison

allowed us to assess the accuracy of the predicted secondary and

tertiary structures and provided a solid foundation for validating the

reliability of our in silico predictions. Using the experimental data from

PDB entry 1WLJ, we were able to confirm the structural accuracy of

our AlphaFold 3 predictions for ISG20, thereby strengthening the

validity of our findings and their relevance to the study of UVM.
2.10 Analysis of gene effect scores

We analyzed gene effect scores derived from CRISPR-Cas9

screening data for eight uveal melanoma cell lines—MEL202,

MEL270, MEL285, MEL290, OMM25, UPMD1, UPMM3 and

WM3772F—using the DepMap R package (version 3.20) (20).

Our investigation focused on a total of 9 hub genes (MIF, PTGS2,

ISG20, HMOX1, ABL2, LTBR, TNIP2, CD44, and FOXO3),

complemented by 7 additional genes known to be involved in

cytokine pathways (CD40, CD40LG, CSF2, IL12A, IL12B,

IL12RB1, and IL12RB2). This comprehensive analysis aims to

identify potential therapeutic targets within the context of UVM.
2.11 Statistical analysis

All analyses were conducted using R (version 4.3.1). A P value

of less than 0.05 was considered to indicate statistical significance

unless otherwise specified.
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3 Results

3.1 Single-cell analysis of uveal
melanoma (UVM)

The workflow is shown in Figure 1. To elucidate the cellular

composition and functional characteristics of UVM, we performed

single-cell RNA sequencing (scRNA-seq) analysis of primary and

metastatic UVM samples. We utilized t-SNE plots to visualize the

cellular distribution and identify five major cell types, further refining

these into seven distinct subtypes. Marker expression profiles were
Frontiers in Immunology 05
examined to characterize each subtype. To investigate cytokine

signaling, irGSEA and Seurat’s AddModuleScore were used,

revealing differential expression patterns of cytokine signaling

genes. We then constructed robust gene signatures based on

cytokine signaling in immune-related genes (CSIRGs) across

various cell types by intersecting CSIRGs with DEGs, followed by

univariate Cox, LASSO, and multivariate Cox regression analyses.

The predictive accuracy and survival relevance of these gene

signatures were validated using ROC curve analysis and Kaplan–

Meier survival curves in two independent cohorts (the TCGA-UVM

and GSE84976 cohorts), confirming the robustness of the signatures.
FIGURE 1

Workflow of this study.
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Additionally, AlphaFold 3 was used to predict the three-dimensional

structures of key proteins involved in UVM. Finally, detailed scRNA-

seq analysis of T-cell populations, including pseudotime trajectory

analysis and interaction network mapping, was performed to

understand T-cell dynamics and interactions within the

UVM microenvironment.

To elucidate the cellular composition and functional

characteristics of UVM, we performed scRNA-seq analysis on

primary and metastatic UVM samples. The t-SNE plot (Figure 2A)

illustrates the distribution of single cells from primary and metastatic

UVM samples within each patient. Our dataset includes samples

from 11 patients, comprising 8 with primary UVM (Figure 2B) and 3

with metastatic UVM (Figure 2C). Metastatic UVM patients (UVM1,

UVM2, UVM10) have cell counts ranging from 2085 to 9949, with

proportions varying from 3.5% to 16.8% (Table 1). Primary UVM

patients (UVM3 to UVM9) have cell counts ranging from 1171 to

9438, with proportions varying from 2.0% to 15.9% (Table 1).

We identified five major cell types through marker analysis,

with tumor cells and leukocytes being the most prevalent

(Supplementary Figures S1A-C). In metastatic UVM, leukocytes

have the highest proportion (14.8%), while photoreceptor cells have

a proportion of 0. In primary UVM, tumor cells have the highest

proportion (60.2%), followed by leukocytes (13.1%).

Further classification refined these major cell types into seven

distinct subtypes, providing a more granular understanding of the

cellular heterogeneity in UVM (Figures 2D–F). In metastatic UVM,

T cells have the highest proportion among leukocytes (8.8%),

followed by B cells (3.2%). In primary UVM, T cells have the

highest proportion among leukocytes (7.5%), followed by

monocytes and Macrophages (5.9%).

We examined the marker expression profiles for each of the

seven cell subtypes, which revealed distinct expression patterns that

characterized each subtype (Supplementary Figure S1D). These

profiles are essential for identifying specific cellular functions and

interactions within the tumor microenvironment.

To explore the impact of cytokine signaling on immune

modulation in UVM, we conducted irGSEA analysis. A density

heatmap depicts the expression and distribution of CSIRGs across

various cell subtypes in primary and metastatic tumors (Figure 2G).

Notably, the heatmap reveals higher enrichment scores in subtypes

with active cytokine signaling, visualized by intensified red shading.

A bubble plot further elucidates the differential expression patterns

of CSIRGs, underscoring the distinct cytokine signaling profiles

between primary and metastatic tumor environments (Figure 2H).

Collectively, our single-cell analysis delineates the intricate cellular

landscape and dynamic cytokine signaling in UVM, identifying

potential therapeutic targets and enhancing our comprehension of

the tumor microenvironment.
3.2 Construction of the dictionary of
immune responses to cytokines for UVM

In constructing the Dictionary of Immune Responses (16) to

Cytokines for UVM, we analyzed single-cell data to compare the

cytokine signatures of various immune cell populations in metastatic
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versus primary UVM (Figures 3A, B). Utilizing data from Cui et al.,

we identified the top 10 enriched cytokines for each cell type in

metastatic UVM. Notably, GM-CSF was dominantly enriched across

all T cell types and B cells in metastatic UVM. Similarly, CD40L and

IL12 were consistently enriched in metastatic UVM for all T cell

subtypes. These findings underscore the significant alterations in

cytokine signaling associated with metastatic progression (Figure 3B).
3.3 Construction of gene signatures
composed of CSIRGs for UVM

To construct robust gene signatures for UVM based on CSIRGs,

we performed a comprehensive screening process across major cell

types, including T cells, B cells, fibroblasts, monocytes and

macrophages, and tumor cells (Figure 4A). By intersecting CSIRGs

with differentially expressed genes (DEGs), we identified a refined list

of candidate genes for each cell type (Figures 4B–F). Following this,

we performed univariate Cox regression analyses to determine the

prognostic significance of these genes. Using LASSO regression

analysis to further refine the prognosis-related CSIRGs and reduce

the risk of overfitting. Finally, we performed multivariate Cox

regression analysis to construct the prognostic model. The final

gene signatures, confirmed through rigorous screening, provide

valuable prognostic biomarkers and potential therapeutic targets for

UVM. Specifically, we identified the following CSIRGs: for T cells,

CD44, ISG20, andMIF; for B cells, ISG20 and PTGS2; for fibroblasts,

PTGS2, HMOX1, ABL2, and FOXO3; and for tumor cells, CD44,

ISG20, ABL2, MIF, and TNIP2. These hub genes, including MIF,

PTGS2, ISG20, HMOX1, ABL2, LTBR, TNIP2, CD44, and FOXO3,

will be the focus of our subsequent analyses.
3.4 Predictive accuracy and survival
analysis of the CSIRG signature in
UVM cohorts

We evaluated the predictive accuracy of the CSIRG signature in

UVM using ROC curve analysis across two independent cohorts:

TCGA-UVM and GSE84976. The TCGA-UVM cohort’s ROC

curves validated the signature’s predictive accuracy for various

cell types, with AUC values attesting to its robustness in

predicting overall survival (Figure 5A). The GSE84976 cohort

corroborated these findings, showing similar AUC values and

reinforcing the signature’s broad applicability (Figure 5B).

Kaplan-Meier survival analysis revealed that, in both cohorts, the

CSIRG-high-risk group had significantly lower overall survival

compared to the CSIRG-low-risk group, highlighting the

signature’s prognostic value (Figures 5A, B).
3.5 Survival analysis for evaluating the
accuracy of CSIRG signature in UVM

To validate the prognostic accuracy of the CSIRG signature, we

performed survival analysis across different cell types in UVM
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FIGURE 2

Single-cell analysis of uveal melanoma (UVM). (A) T-SNE plots depict the distribution of single cells from primary and metastatic UVM samples across
patients. Separate T-SNE plots for (B) 8 primary and (C) 3 metastatic UVM patients highlight cellular heterogeneity. (D) Cell types are further
classified into seven distinct subtypes based on unique gene expression profiles. Distribution of these subtypes is compared between (E) primary and
(F) metastatic UVM patients, revealing subtype-specific differences. (G) A density heatmap illustrates cytokine signaling in immune-related gene
(CSIRG) expression and distribution, with higher enrichment scores indicated by intensified red in both primary and metastatic tumors. (H) A bubble
plot, generated with AddModuleScore in Seurat, visualizes the expression and distribution of CSIRGs across cell subtypes, providing insights into
immune cell dynamics within tumors. Tum, Tumor; End, Endothelial; Fib, Fibroblast; Mon, monocyte and macrophage; Pho, Photoreceptor.
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samples. Risk score distribution revealed clear distinctions between

low- and high-CSIRG-risk groups, with higher risk scores

associated with greater mortality and shorter overall survival. This

pattern was consistent across T cells, B cells, fibroblasts, and tumor

cells (Supplementary Figures S2A–D). These results validate the

robust prognostic utility of the CSIRG signature for predicting

overall survival in UVM patients and highlight its potential for

clinical risk stratification and management.
3.6 Protein structure prediction using
AlphaFold 3

To elucidate the structural characteristics of key proteins

involved in UVM, we used AlphaFold 3 to predict the three-

dimensional structures of several important proteins. These

proteins, identified through LASSO-COX regression analysis,

include MIF, PTGS2, ISG20, HMOX1, ABL2, LTBR, TNIP2,

CD44, and FOXO3 (Figures 6A–I). By predicting their

structures, we aim to gain insights into their functional roles

within the disease context and explore their potential as

therapeutic targets. The pTM scores indicate model accuracy.

MIF (pTM 0.93), PTGS2 (pTM 0.92), and ISG20 (pTM 0.91)

exhibit distinct folds and active sites. HMOX1 (pTM 0.77), ABL2

(pTM 0.5), LTBR (pTM 0.44), TNIP2 (pTM 0.31), CD44 (pTM

0.31), and FOXO3 (pTM 0.17) highlight domains crucial for

their functions.

We have undertaken the validation of AlphaFold 3 predictions

by cross-referencing with existing structural data in the Protein

Data Bank (PDB). Focusing on ISG20 as a case study, we

meticulously examined the predicted structural features, including

alpha-helices, beta-strands, and other secondary structures, and

compared them with the corresponding features observed in PDB

structures. This comparative analysis was instrumental in validating

the accuracy of the predicted secondary and tertiary structures. Our

findings revealed a high degree of accuracy in the AlphaFold 3

prediction, as evidenced by the alignment with experimental data
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(Figures 6J, K). These predictions enhance our understanding of

their roles in UVM and can guide targeted therapy development.
3.7 T cell phenotype and interactions in
primary and metastatic lesions

Our detailed scRNA-seq analysis provided comprehensive

insights into T-cell populations within primary and metastatic

UVM. We identified eight main T-cell types, distinguished by

unique gene expression profiles, and characterized their functional

roles within the tumor microenvironment (Figures 7A–C). Notably,

metastatic UVM showed a higher proportion of cytotoxic and naive T

cells compared to primary UVM, which was predominantly

characterized by effector memory T cells. Follicular helper T cells,

crucial for B cell activation, were exclusively identified in metastatic

UVM (Figures 7D, E). Pseudotime trajectory analysis revealed a

developmental pathway from naive T cells to effector memory and

cytotoxic T cells, highlighting dynamic differentiation processes in

UVM (Supplementary Figures S3A, B).

Mapping the interaction network among T-cell types underscored

the complexity of communication pathways regulating T-cell function

within the tumor microenvironment (Figures 7F, G). Analysis of the T

cell interaction network disclosed substantial changes in cellular

communication between primary and metastatic tumors. Notably,

there was an increase in interactions between naive T cells and other

subtypes (Figures 7H, I), along with augmented interactions between

regulatory T cells (Tregs) and other subtypes within metastatic lesions

(Figures 7J, K). Exclusively in metastatic UVM, interactions between

follicular helper T cells and other subtypes were identified (Figure 7L),

suggesting a role in immune evasion mechanisms.
3.8 Cell communication patterns and
signaling pathways

Our scRNA-seq and computational analyses uncovered distinct

T-cell communication patterns and signaling pathways in the UVM

microenvironment (Supplementary Figures S4A–H). Naive and

Tregs mainly use pattern 1 (ICAM, IL16), while mitotic and

follicular helper T cells use patterns 2 (CD70, BAG, PECAM1)

and 3 (CXCL, BTLA), respectively. Resident memory T cells and gd
T cells communicate via patterns 4 and an unidentified pattern 5.

Effector memory T cells, mitotic T cells, and resident memory T

cells primarily receive ligand stimulation through pattern 1 (MHC-

I, LCK, VCAM, CXCL, CD70, CD137, PECAM1). gd T cells and

Treg cells receive stimuli through patterns 2 and 3 (CLEC, BAG,

MHC-II, SELPLG, IL16). Naive T cells mainly receive stimuli

through pattern 4 (ITGB2, ADGRE5).

The autocrine and paracrine signaling of key pathways, including

MHC-I, VCAM, CXCL, ADGRE5, CLEC, and LCK, impact various

T-cell subtypes and modulate signaling within mitotic T, naive T,

Treg, and resident memory T cells. The visualizations in

Supplementary Figures S4C–H depict the complexity of UVM’s

communication networks, suggesting potential therapeutic targets

to improve patient outcomes.
TABLE 1 The cell counts and proportion of each patient.

Patient Category Cell Count Proportion

UVM1 Metastatic 9949 16.8%

UVM2 Metastatic 2085 3.5%

UVM3 primary 3597 6.1%

UVM4 primary 5581 9.4%

UVM5 primary 4673 7.9%

UVM6 primary 3072 5.2%

UVM7 primary 8131 13.7%

UVM8 primary 9438 15.9%

UVM9 primary 8193 13.8%

UVM10 Metastatic 3415 5.8%

UVM11 primary 1171 2.0%
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1458041
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2024.1458041
3.9 Distribution and frequency of Myeloid-
derived Suppressor Cells in UVM

Our analysis revealed a notable increase in the frequency of

MDSCs (Figures 8A, B), as identified by ITGAM (CD11b), CD14,

and CD33 (Figures 8C, D), in metastatic UVM samples compared to

primary tumors. This increase in MDSCs correlates with the observed
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dominant enrichment of GM-CSF in metastatic tumors (Figure 3B),

suggesting a potential link between MDSC accumulation and the pro-

tumorigenic cytokine environment. Furthermore, the expression

analysis of PTGS2, S100A8, IL10, TGFB1 and VEGFA indicated a

functional shift in the immune landscape (Figures 8C, D), possibly

contributing to the immunosuppressive phenotype observed in

metastatic lesions.
FIGURE 3

Cytokine signature enrichment in immune cells. (A) Dictionary of Immune Responses to Cytokines in UVM. A total of 86 cytokines were analyzed to
compare their responses in metastatic UVM versus primary UVM. (B) IREA Cytokine Enrichment Plot. This plot shows the enrichment score (ES) for
each of the 86 cytokine responses in CD4+ T cells, CD8+ T cells, gd T cells, Tregs, macrophages, and B cells in metastatic UVM compared to
primary UVM. The bar length represents the ES, and the shading indicates the FDR-adjusted P value (two-sided Wilcoxon rank-sum test), with darker
colors representing more significant enrichment (red indicates enrichment in metastatic UVM, blue indicates enrichment in primary UVM).
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3.10 CRISPR-Cas9 screening reveals hub
genes and cytokine pathways in UVM:
implications for therapeutic targeting

Utilizing gene effect scores derived from CRISPR-Cas9

knockout screening, we conducted an analysis of hub genes and

cytokine pathways that may significantly contribute to UVM and
Frontiers in Immunology 10
potentially serve as therapeutic targets. A total of 9 hub genes (MIF,

PTGS2, ISG20, HMOX1, ABL2, LTBR, TNIP2, CD44, and FOXO3)

(Figures 9A–H), along with 7 additional genes implicated in

cytokine pathways (CD40, CD40LG, CSF2, IL12A, IL12B,

IL12RB1, and IL12RB2) (Figures 10A–H).

Our analysis revealed that the gene effect scores for FOXO3,

CSF2, and IL12RB2 were consistently low across all eight cell lines,
FIGURE 4

Construction of gene signatures composed of CSIRGs for UVM. (A) The screening process of CSIRGs in different cell types. The detailed steps
included (B) screening of T cells, (C) screening of B cells, (D) screening of fibroblasts, (E) screening of monocyte and macrophages, and
(F) screening of tumor cells. The process involved the following steps: first, identifying the intersection of CSIRGs and differentially expressed genes
(DEGs) between primary and metastatic UVM tumors; second, performing univariate Cox regression analysis to identify prognosis-related CSIRGs;
third, applying LASSO regression analysis to further narrow the prognosis-related CSIRGs; and fourth, conducting multivariate Cox regression
analysis to finalize the gene signatures. Mon, monocyte and macrophage.
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suggesting a potential dependency on these genes for cellular

viability. Similarly, the gene effect score for MIF was low in the

majority of the cell lines (seven out of eight), indicating its potential

importance in UVM. Furthermore, IL12RB1 and CD40 exhibited

low scores in nearly all cell lines (six out of eight), highlighting their

possible roles in the disease process. These findings underscore the

potential of these genes as therapeutic targets in UVM and warrant

further investigation.
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4 Discussion

Uveal melanoma (UVM) with a high risk of metastasis,

particularly to the liver, significantly impacts patient survival and

quality of life (21, 22). Despite advances in local tumor control, the

prognosis for patients with metastatic UVM remains poor, with

limited effective systemic therapies available (2). Therefore, there is

an urgent need to understand the molecular and cellular
FIGURE 5

ROC curves and Kaplan–Meier survival analysis for the CSIRG signature in the UVM cohort. (A) ROC curves evaluating the predictive accuracy of the
CSIRG signature in the TCGA-UVM cohort, including T cells, B cells, fibroblasts, and tumor cells. (B) ROC curves evaluating the predictive accuracy
of the CSIRG signature for T cells, B cells, fibroblasts, and tumor cells in the GSE84976 cohort. Kaplan–Meier survival curves comparing overall
survival between the CSIRG-high-risk and CSIRG-low-risk groups in both cohorts highlighted significant differences in survival outcomes.
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mechanisms underlying UVM to develop more effective diagnostic

and therapeutic strategies.

To determine UVM tumor cellular heterogeneity, we used

single-cell RNA sequencing (scRNA-seq), focusing on cytokine

signaling, gene expression, and distribution. Our analysis

identified major cell types and their subtypes, providing a

comprehensive overview of the cellular landscape in primary and
Frontiers in Immunology 12
metastatic UVM. The significant cytokine enrichment observed in

various immune cell types underscores the complexity of the tumor

microenvironment and highlights potential therapeutic targets.

Our findings indicate that certain cytokines, such as CD40L, IL12,

and GM-CSF, are strongly enriched in metastatic UVM compared to

primary UVM across multiple immune cell types. This suggests a

prominent role for these cytokines in promoting tumor progression
FIGURE 6

Protein structure prediction using AlphaFold 3. (A) Predicted protein structure of MIF, with a pTM score of 0.93. (B) Predicted protein structure of
PTGS2, with a pTM score of 0.92. (C) Predicted protein structure of ISG20, with a pTM of 0.91. (D) Predicted protein structure of HMOX1, with a pTM
of 0.77. (E) Predicted protein structure of ABL2, with a pTM score of 0.5. (F) Predicted protein structure of the LTBR, with a pTM score of 0.44.
(G) Predicted protein structure of TNIP2, with a pTM score of 0.31. (H) Predicted protein structure of CD44, with a pTM score of 0.31. (I) Predicted
protein structure of FOXO3, with a pTM score of 0.17. pTM score: The predicted template modeling (pTM) score is derived from the template
modeling (TM) score, which measures the accuracy of the entire structure. A pTM score above 0.5 indicates that the overall predicted fold for the
complex might be similar to the true structure. Comparative analysis of (J) AlphaFold 3-predicted ISG20 structure with (K) experimental data.
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and metastasis. Specifically, CD40L and IL12 were consistently

enriched in CD4+ T cells, CD8+ T cells, gd T cells, and Treg cells in

metastatic UVM, pointing to their importance in modulating immune

responses within the tumor microenvironment. In Treg cells, cytokines

such as SCF, GM-CSF, RANKL, G-CSF, IL36a, LTA2-B1, IL12, IL17E,

and OSM were also found to be strongly enriched in metastatic UVM.

This enrichment indicates a potential shift in the regulatory landscape
Frontiers in Immunology 13
that may facilitate tumor immune evasion and persistence. Similarly,

macrophages in metastatic UVM showed strong enrichment for

cytokines like Adiponectin, Prolactin, IL7, IL10, IL15, IL9, IL31,

APRIL, Persephin, and IL22, highlighting their role in creating a

pro-tumorigenic environment through immune modulation and

support of tumor growth. B cells in metastatic UVM were enriched

for cytokines such as IL23, IL17E, IL21, GM-CSF, Flt3L, M-CSF,
FIGURE 7

Detailed ScRNA-seq analysis of T-cell populations. (A) Cellular clusters of T cells were identified in primary and metastatic UVMs, showing the eight
main cell types within the tumor samples. Separate t-SNE plots for (B) primary and (C) metastatic UVM patients highlight cellular heterogeneity. The
cell proportion of eight cell types for (D) primary and (E) metastatic UVM. Interaction network among T cells for (F) primary and (G) metastatic UVM,
representing the number of ligand–receptor interactions among various T-cell types, highlighting network complexity. Interactions between naive T
cells and other subtypes for (H) primary and (I) metastatic UVM. Interactions between Treg cells and other subtypes for (J) primary and (K)
metastatic UVM. Interactions between Follicular helper T cells and other subtypes for (L) metastatic UVM. Tcyt, Cytotoxic T; Tfol, Follicular helper T;
Tn, Naive T; Treg, Regulatory T; Tem, Effector memory T; Tgd, gd T; Tmit, Mitotic T; Trm, Resident memory T.
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IFNa1, SCF, Neuropoietin, and TSLP. This suggests an active

involvement of B cells in the metastatic process, potentially through

cytokine-mediated interactions that enhance tumor cell survival

and dissemination.

The consistent enrichment of GM-CSF across all T cell types

and B cells in metastatic UVM further emphasizes its pivotal role in

the tumor microenvironment. GM-CSF is known to modulate the

functions of various immune cells, promoting inflammation and
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potentially facilitating tumor progression. Its dominant presence in

metastatic UVM underscores its potential as a therapeutic target.

These results highlight the critical role of cytokine signaling in

shaping the immune landscape of metastatic UVM. The

identification of key cytokines enriched in metastatic UVM

provides valuable insights into the mechanisms driving tumor

progression and immune modulation. These findings shed light

on the development of targeted therapies aimed at disrupting these
FIGURE 8

ScRNA-seq analysis of myeloid populations in UVM. (A) Identification of myeloid-derived suppressor cells (MDSCs), and non-MDSCs across primary
and metastatic UVM samples, revealing distinct myeloid subpopulations. (B) Comparative distribution of MDSCs and non-MDSCs in primary versus
metastatic UVM, showcasing a shift in myeloid composition associated with metastasis. (C) T-SNE plots and (D) dot plots display the expression
levels of MDSC markers ITGAM (CD11b), CD14, and CD33, along with functional markers S100A8, IL10, TGFB1, VEGFA, and PTGS2, providing insights
into the immunomodulatory capacity of MDSCs in UVM.
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cytokine-mediated interactions, thereby improving patient

outcomes in UVM. Future studies should focus on further

elucidating the functional roles of these cytokines and their

potential as therapeutic targets in UVM.

By constructing gene signatures based on cytokine signaling in

immune-related genes (CSIRGs) and validating their prognostic

significance, we aimed to identify potential biomarkers and

therapeutic targets. Our comprehensive analysis, including protein

structure prediction and detailed T-cell population analysis, provides
Frontiers in Immunology 15
novel insights into the tumor microenvironment and immune

landscape of UVM. These findings hold promise for improving the

diagnosis, prognosis, and treatment of UVM, ultimately enhancing

patient outcomes.

Our findings revealed distinct expression patterns of CSIRGs in

primary versus metastatic UVM samples, suggesting that these

pathways may contribute to tumor evolution and metastatic

potential. The differential expression of CSIRGs, such as

macrophage migration inhibitory factor (MIF) and prostaglandin-
FIGURE 9

CRISPR-Cas9 Screening Identifies Hub Genes in UVM. The gene effect scores of nine hub genes (MIF, PTGS2, ISG20, HMOX1, ABL2, LTBR, TNIP2,
CD44, and FOXO3) derived from CRISPR-Cas9 knockout screening in eight UVM cell lines. (A) MEL202, (B) MEL270, (C) MEL285, (D) MEL290,
(E) OMM25, (F) UPMD1, (G) UPMM3 and (H) WM3772F.
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endoperoxide synthase 2 (PTGS2), which were further validated

through AlphaFold 3 structural predictions, underscores their

potential as therapeutic targets.

MIF is a proinflammatory cytokine (23), that has been

implicated in various malignancies, including melanoma, where it

contributes to tumor progression and metastasis through its effects

on cell proliferation, angiogenesis, and immune evasion (24–26). In

our study, we utilized AlphaFold 3 to predict the three-dimensional

structure of MIF, achieving a high pTM score of 0.93, indicating
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that this was a reliable structural model. The differential expression

of MIF in various cell subtypes within UVM, as revealed by our

scRNA-seq analysis, underscores its significance in the tumor

microenvironment. Targeting MIF could modulate the immune

landscape of UVM, suggest ing a novel approach for

therapeutic intervention.

PTGS2, also known as COX-2, which are key mediators of

inflammation and pain (27, 28). PTGS2 is frequently overexpressed

in various cancers, including melanoma, and is associated with poor
FIGURE 10

CRISPR-Cas9 screening reveals cytokine pathway genes in UVM. The gene effect scores for seven additional genes implicated in cytokine pathways
(CD40, CD40LG, CSF2, IL12A, IL12B, IL12RB1, and IL12RB2) in eight UVM cell lines. (A) MEL202, (B) MEL270, (C) MEL285, (D) MEL290, (E) OMM25,
(F) UPMD1, (G) UPMM3 and (H) WM3772F.
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prognosis due to its role in promoting tumor growth, angiogenesis,

and immune suppression (29, 30). Our study utilized AlphaFold 3

(18) to predict the structure of PTGS2, yielding a high pTM score of

0.92, which provides a reliable model for further functional and

therapeutic studies. The elevated expression of PTGS2 in specific

UVM cell subtypes, as identified through our scRNA-seq analysis,

highlights its potential as a biomarker and therapeutic target.

Our study revealed significant differential expression of CSIRGs

across various cell subtypes in UVM through irGSEA and Seurat’s

AddModuleScore function. Cytokine signaling pathways play

crucial roles in modulating immune responses, inflammation, and

cell proliferation and are pivotal in cancer progression and

metastasis. For instance, the interleukin-6 (IL-6) signaling

pathway has been implicated in promoting tumor growth and

immune evasion in various cancers (31–34). Similarly, the

interferon-gamma (IFN-g) pathway is known for its role in

enhancing antitumor immunity and has been associated with a

better prognosis in melanoma patients (35–37).

The construction of a CSIRG-based gene signature and its

validation through ROC curve analysis and Kaplan–Meier

survival curves further highlight the prognostic value of these

pathways. The high AUC values in both the TCGA-UVM and

GSE84976 cohorts indicate that our gene signature is a robust

predictor of overall survival in UVM patients. This suggests that

targeting CSIRGs could improve therapeutic outcomes and provide

a basis for personalized treatment strategies.

The validation of AlphaFold 3 predictions against existing PDB

data serves a dual purpose: it not only substantiates the precision of

our predicted structures but also enhances our comprehension of

the molecular mechanisms at play in UVM. By aligning our

predicted structures with PDB data, we are poised to refine our

predictive methodologies, thereby augmenting the precision of

future structural biology investigations in this domain. Looking

ahead, future studies that incorporate experimental validation

techniques such as cryo-electron microscopy (cryo-EM) and X-

ray crystallography will be pivotal in further corroborating the

accuracy of AlphaFold 3 predictions.

The structural predictions obtained through AlphaFold 3 offer

several advantages for understanding the roles of these proteins in

UVM. Firstly, they allow for the identification of functional sites

that are essential for protein activity. Secondly, they facilitate the

mapping of interaction networks and pathways implicated in UVM.

Thirdly, these structures are invaluable for the rational design of

therapeutic agents targeting UVM-associated proteins. Lastly, they

provide mechanistic insights into protein function, which is crucial

for developing targeted therapies.

The distinct T cell phenotypes and interaction patterns

observed between primary and metastatic UVM lesions provide

valuable insights into the tumor’s immunological heterogeneity.

The higher proportion of cytotoxic T cells in metastatic lesions may

suggest an initial immune response against the tumor, which is

subsequently countered by the tumor’s immune evasion

mechanisms, as evidenced by the increased interactions involving

Tregs and the absence of follicular helper T cells in primary tumors.

These differences in T cell interactions and phenotypes between

primary and metastatic UVM lesions underscore the dynamic and
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complex nature of the immunological response in the tumor

microenvironment. The increased expression of exhaustion

markers in metastatic lesions may reflect a tumor-mediated

mechanism to dampen effective anti-tumor immunity, facilitating

metastatic spread. The altered interaction networks and differential

expression of cytokine receptors on T cells between primary and

metastatic tumors indicate a shift in T cell responsiveness to

cytokine signaling, which may be crucial for tumor progression.

These findings emphasize the necessity for targeted

immunotherapies that can address the specific immunological

challenges presented by metastatic UVM. Understanding the

phenotypic and interaction changes in T cells between primary

and metastatic lesions may lead to the development of more

effective therapeutic strategies, such as enhancing the anti-tumor

immune response or disrupting the immunosuppressive network in

metastatic tumors.

The increased presence of myeloid-derived suppressor cells

(MDSCs), in metastatic UVM, as identified by CD11b, CD14, and

CD33, underscores their potential role in facilitating tumor

progression and immune evasion. The correlation between MDSC

frequency and GM-CSF enrichment suggests a complex interplay

between these cells and the cytokine milieu, which may be pivotal in

the metastatic cascade. Our findings are consistent with the liver

being the most common metastatic site for UVM, as confirmed by

the metastatic samples in our study. The liver’s immunosuppressive

environment may provide a fertile ground for MDSCs to exert their

suppressive functions, thereby promoting tumor metastasis

and survival.

The functional assessment of MDSCs through the analysis of

PTGS2, S100A8, IL10, TGFB1, and VEGFA expression provides a

comprehensive view of their immunomodulatory activities within

the tumor microenvironment. These insights highlight the potential

of targeting MDSCs or their associated cytokines as a therapeutic

strategy to combat UVM metastasis. Future studies will focus on

elucidating the functional roles of these MDSC-associated genes

and their potential as therapeutic targets in UVM.

Our analysis revealed a significant increase in CD40L

expression in metastatic UVM compared to primary tumors. This

elevated expression of CD40L, typically found on activated T cells

and crucial for T cell activation, suggests a complex role in the

immune modulation and evasion strategies employed by metastatic

tumors. The higher levels of CD40L may indicate an

immunosuppressive environment that is detrimental to effective

anti-tumor immunity, thereby facilitating metastatic spread. This is

in line with previous studies that highlight the dual role of CD40/

CD40L in tumor biology, where membrane-bound CD40L can lead

to tumor clearance, while soluble CD40L (sCD40L) promotes

tumor survival by hindering apoptosis, suppressing the immune

system, and promoting tumor angiogenesis (38).

The increased CD40L expression in metastatic lesions may also

reflect altered T cell functions within the metastatic microenvironment,

with potential implications for tumor progression and immune cell

interactions. This could imply that T cells inmetastatic lesions aremore

activated or have a different activation profile compared to those in

primary tumors, potentially due to differences in the local cytokine

milieu or other microenvironmental factors. Furthermore, sCD40L
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inhibits the immune system through various mechanisms, including

the induction of MDSCs and regulatory T cells, while also increasing

the expression of interleukin-10 (38). These effects suppress antigen

presentation, cytokine production, macrophage activation, and

antigen-specific T cell proliferation (38). Additionally, sCD40L

inhibits the production of IL-12 by activated monocytes and

upregulates the expression of programmed cell death-1 (PD-1), a key

regulator of T cell exhaustion (38).

In the tumor microenvironment, sCD40L, especially when

present at high levels, has a stronger immunosuppressive effect.

This suggests that the elevated CD40L expression in metastatic

UVM might contribute to the enhancement of tumor cell survival,

proliferation, and invasion, possibly through interactions with other

cells in the tumor microenvironment. Further studies are warranted

to explore the functional consequences of CD40L upregulation in

metastatic UVM and its potential as a therapeutic target.

Understanding these mechanisms could provide valuable insights

into the development of targeted therapies aimed at disrupting these

cytokine-mediated interactions, thereby improving patient

outcomes in UVM.

Our study provides significant clinical implications for the

management of UVM by identifying novel biomarkers and

therapeutic targets. The identification of key cytokines such as

CD40L, IL12, and GM-CSF, which are strongly enriched in

metastatic UVM, offers potential targets for immunotherapeutic

intervention. For instance, the dominant enrichment of GM-CSF in

metastatic tumors suggests that it could be a promising target for

therapeutic antibodies or small molecule inhibitors, potentially

improving patient outcomes by disrupting the immunosuppressive

tumormicroenvironment. This approach differs from existingmethods

and could offer more precise targeting of UVM cells, as suggested by

our comprehensive analysis of cytokine signaling in UVM.

Compared to the study by Durante et al. (10), which focused on

the novel subclonal genomic complexity and transcriptional states

of tumor cells in UVM, our study provides a comprehensive

analysis of the immune landscape and cytokine signaling in

UVM. We have identified key cytokines enriched in metastatic

UVM, which were not reported in their study. This adds a new

dimension to our understanding of UVM pathogenesis and suggests

that immune modulation could be a viable therapeutic strategy,

complementing the genetic insights provided by Durante et al.

In contrast to Li et al. (11), who investigated the role of

macrophage subsets in UVM, our study expands on this by

examining the broader immune context, including T cells, and

potential for combination therapies. Our findings of distinct

cytokine signatures and their enrichment in metastatic tumors

present a novel mechanism that could be targeted, which was not

explored in their research. By identifying cytokines such as CD40L

and IL12, which are enriched in various T cell subtypes in

metastatic UVM, we provide a basis for developing targeted

immunotherapies that could disrupt these cytokine-mediated

interactions and improve patient outcomes in UVM.

Finally, our study evaluates UVM cytokine signaling pathways

comprehensively, revealing their critical roles in tumor progression

and patient prognosis. This research identified major cell types and

subtypes within UVM, highlighted the differential expression and
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distribution of immune-related genes across various cell subtypes,

and constructed prognostic gene signatures based on CSIRGs,

which were validated for their predictive accuracy in multiple

cohorts. Additionally, this study provided detailed insights into T-

cell populations and predicted the 3D structures of key proteins

using AlphaFold 3. In addition to offering insights into the

molecular landscape of UVM and presenting biomarkers for

prognosis and therapeutic targets. Future research should focus

on validating these findings through wet laboratory experiments

and clinical trials to enhance their applicability in clinical practice.
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SUPPLEMENTARY FIGURE 1

(A) T-SNE plot showing five major cell types identified five predominant cell

types in uveal melanoma (UVM) through marker analysis, with tumor cells and
leukocytes being the most abundant. Separate T-SNE plots for (B) primary

and (C) metastatic UVM patients highlight cellular heterogeneity. (D)
Expression profiles of the markers for each of the seven major cell types.

Tum, Tumor; Leu, Leukocytes; End, Endothelial; Fib, Fibroblast; Pho,
Photoreceptor ; Mon, monocyte and macrophage.

SUPPLEMENTARY FIGURE 2

Survival Analysis for Evaluating the Accuracy of the Gene Signature. (A) T cells:
Distribution of risk scores between the CSIRG-high-risk and CSIRG-low-risk

groups (left) and survival status of UVM patients in the CSIRG-high-risk and
CSIRG-low-risk groups (right). Red dots represent CSIRG-high-risk patients

who died, whereas green dots represent CSIRG-low-risk patients who

survived. The survival distribution plot indicates that higher risk scores are
associated with shorter overall survival. (B) B cells: Distribution of risk scores

between the CSIRG-high-risk and CSIRG-low-risk groups (left) and survival
status of UVM patients in the CSIRG-high-risk and CSIRG-low-risk groups

(right). (C) Fibroblasts: Distribution of risk scores between the CSIRG-high-
risk and CSIRG-low-risk groups (left) and survival status of UVM patients in the

CSIRG-high-risk and CSIRG-low-risk groups (right). (D) Tumor cells:
Frontiers in Immunology 19
Distribution of risk scores between the CSIRG-high-risk and CSIRG-low-
risk groups (left) and survival status of UVM patients in the CSIRG-high-risk

and CSIRG-low-risk groups (right). The survival distribution plot indicates that

higher risk scores are associated with shorter overall survival.

SUPPLEMENTARY FIGURE 3

(A) Pseudotime trajectory analysis of T cell subtypes utilizing the Monocle

package, illustrating the ordering of T cells along a primary developmental
trajectory with three distinct bifurcations. (B) The analysis revealed that the

developmental hierarchy of T cells, commencing with naive T cells and

advancing toward effector memory T cells and cytotoxic T cells, as
determined by the pseudotime trajectory analysis.

SUPPLEMENTARY FIGURE 4

Cell Communication Patterns and Signaling Pathways. (A) The
communication patterns of outgoing cells in UVM, with flow widths

indicating the contribution of each element to the pattern. Patterns 1-5 are

represented, with specific pathways associated with naive T, regulatory T,
mitotic T, follicular helper T, resident memory T, and gd T cells. (B) The

communication patterns of incoming cells in UVM, highlighting the pathways
through which effector memory T, mitotic T, and resident memory T cells

receive ligand stimulation, as well as gd T and Treg cells. (C-H) the autocrine
and paracrine signaling of key pathways (MHC-I, VCAM, CXCL, ADGRE5,

CLEC, LCK) in T cells, with left panels showing the impact on various T-cell

subtypes and right panels depicting signaling modulation among mitotic T,
naive T, Treg, and resident memory T cells. Circle sizes and line widths

correspond to cell numbers and communication strength, respectively.
Abbreviations: Tcyt, Cytotoxic T; Tfol, Follicular helper T; Tn, Naive T; Treg,

Regulatory T; Tem, Effector memory T; gd T, Tgd; Tmit, Mitotic T; Trm,
Resident memory T.
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