
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ming Yi,
Zhejiang University, China

REVIEWED BY

ANM Nazmul Hasan Khan,
University at Buffalo, United States
LianCheng Zhu,
China Medical University, China

*CORRESPONDENCE

Jiang An

doctorj@126.com

†These authors share first authorship

RECEIVED 02 July 2024

ACCEPTED 17 September 2024
PUBLISHED 16 October 2024

CITATION

Yunyun Z, Guihu W and An J (2024) Explore
the expression of mitochondria-related genes
to construct prognostic risk model for ovarian
cancer and validate it, so as to provide
optimized treatment for ovarian cancer.
Front. Immunol. 15:1458264.
doi: 10.3389/fimmu.2024.1458264

COPYRIGHT

© 2024 Yunyun, Guihu and An. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 16 October 2024

DOI 10.3389/fimmu.2024.1458264
Explore the expression of
mitochondria-related genes to
construct prognostic risk model
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so as to provide optimized
treatment for ovarian cancer
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1Department of Hepatobiliary Pancreas Surgery and Liver Transplantation, The Second Affiliated
Hospital, Xi’an Jiaotong University, Xi’an, China, 2Department of Obstetrics and Gynecology, The First
Affiliated Hospital of AFM (Air Force Medical University), Xi’an, Shaanxi, China, 3National and Local
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Background: The use of gene development data from public database has

become a new starting point to explore mitochondrial related gene expression

and construct a prognostic prediction model of ovarian cancer.

Methods: Data were obtained from the TCGA and ICGC databases, and the

intersection with mitochondrial genes was used to obtain the differentially

expressed genes. q-PCR, Cox proportional risk regression, minimal absolute

contraction and selection operator regression analysis were performed to

construct the prognostic risk model, and ROC curve was used to evaluate the

model for centralized verification. The association between risk scores and

clinical features, tumor mutation load, immune cell infiltration, macrophage

activation analysis, immunotherapy, and chemosensitivity was further evaluated.

Results: A prognostic risk scoremodel for ovarian cancer patientswas constructed

based on 12 differentially expressed genes. The score was highly correlated with

ovarian cancer macrophage infiltration and was a good predictor of the response

to immunotherapy. M1 and M2macrophages in the ovarian tissue in the OV group

were significantly activated, providing a reference for the study of the polarity

change of tumor-relatedmacrophages for the prognosis and treatment of ovarian

cancer. In terms of drug sensitivity, the high-risk group was more sensitive to

vinblastine, Acetalax, VX-11e, and PD-0325901, while the low-risk group wasmore

sensitive to Sabutoclax, SB-505124, cisplatin, and erlotinib.

Conclusion: The prognostic risk model of ovarian cancer associated to

mitochondrial genes built on the basis of public database better evaluated the

prognosis of ovarian cancer patients and guided individual treatment.
KEYWORDS

mitochondria, differentially expressed genes, prediction model, ovarian
cancer, immunotherapy
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1458264/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1458264/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1458264/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1458264/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1458264/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1458264/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1458264&domain=pdf&date_stamp=2024-10-16
mailto:doctorj@126.com
https://doi.org/10.3389/fimmu.2024.1458264
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1458264
https://www.frontiersin.org/journals/immunology


Yunyun et al. 10.3389/fimmu.2024.1458264
Introduction

Ovarian cancer is one of the three most common gynecological

malignancies. The Global Cancer Statistics Report 2020

(GLOBOCAN 2020) (1) released by the International Agency for

Research on Cancer shows that the incidence and mortality of

ovarian cancer rank third and second, respectively, among

gynecological malignancies. The GLOBOCAN 2020 database

divides countries and regions around the world into four

categories according to the human development index (HDI):

very high, high, medium and low HDI. Most ovarian cancer

patients live in very high and high HDI regions. The incidence of

ovarian cancer is increasing with the increase in HDI (2).

At present, effective means of screening for ovarian cancer at an

early stage are still lacking; this disease at the beginning stage is not

visible and the first symptoms are not evident. Approximately 75%

of patients are already in the advanced stage at the moment of the

diagnosis (3), and the 5-year survival rate is only 39%, while the 5-

year survival rate of patients at an early stage of this tumor reaches

71% to 93% (4). Some scholars proposed that the sensitivity and

specificity of ovarian cancer diagnosis can be improved by the

combined monitoring of other indicators. At present, a variety of

assessment models have been developed based on serum CA125

and (or) HE4 levels combined with indicators including patient’s

menopausal status to predict the risk of ovarian cancer in patients

with suspected benign ovarian tumors, showing good diagnostic

value (5). The survival benefit of ovarian cancer patients has been

significantly improved, but the prognosis is still unsatisfactory.

Generally, the International Federation of Gynecology and

Obstetrics (FIGO) staging (6), tumor cell reduction surgery (7),

the relationship among preoperative CA125 levels, FIGO staging,

survival (8), platelet count (9), and sensitivity to chemotherapeutic

drugs are the basic factors in the prediction of the prognosis of

ovarian cancer patients. However, the survival rate and treatment

response of patients with similar clinical characteristics vary greatly

due to the highly heterogeneous characteristics of this tumor with

complex molecular features and genetic material changes; thus, it is

particularly important to perform a prognostic assessment through

the investigation of the molecular features.

Genomic instability, mutation, and metabolic reprogramming

are hallmarks that influence tumor growth (10). Mitochondria are

semi-autonomous organelles composed of proteins encoded by

both the mitochondrial genome (mtDNA) and the nuclear

genome. 99% of the proteins are encoded by the nuclear genome,

while the remaining 1% is encoded by mtDNA. In principle,

mutations in mtDNA or nuclear-encoded mitochondrial genes

cause mitochondrial dysfunction, leading to the occurrence and

development of tumors. Otto Warburg (11) was the first reporting a

metabolic phenomenon different from that of normal cells: tumor

cells still rely on glycolysis to produce large amounts of lactic acid

under aerobic conditions. This phenomenon is called the “Warburg

effect” due to mitochondrial dysfunction caused by mtDNA

mutations, mitochondrial enzyme defects, or nuclear gene

mutations (12).

The spread of transcriptome sequencing technology has

generated a large amount of transcriptome data, which are
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available in public databases, providing a basis for scholars to

perform prognostic research on cancers including ovarian cancer.

Previous studies on the prognosis of ovarian cancer mainly focused

on the nuclear genome or a single gene, while studies on the

expression of mitochondrial genes and ovarian prognosis are few

and incomplete. Since mitochondrial dysfunction is closely related

to the occurrence and development of many tumors including

ovarian cancer, it is necessary to discover mitochondrial markers

for ovarian cancer prognosis and explore their clinical

application value.
Materials and methods

Data acquisition

The TCGA-OV dataset was downloaded from the UCSC Xena

database (https://gdc.xenahubs.net/), which includes 379

transcriptome original expression count data, 758 clinical

information, and 731 survival information. A total of 378 ovarian

cancer samples were finally included in the training set after

merging and matching the above data.

The Ovarian Cancer Australia (OV-AU) dataset includes

clinical information and transcriptome raw count data of 93

ovarian cancer patients; it was downloaded from the ICGC

database (https://dcc.icgc.org/) and included in the validation set.

The “count2tpm” function in the “IOBR” package (13) was used

to convert the raw count data of the two datasets into transcripts per

kilobase million (TPM) data, and the log2-transformed [log2(TPM

+1)] data were used for subsequent analysis.

A total of 1650 mitochondrial genes were obtained from the

Mito Miner v4.0 database (http://mitominer.mrc-mbu.cam.ac.uk/).
Screening of differentially expressed
mitochondrial genes

Data of healthy ovarian tissue downloaded from the GTEx

database were included since no data on healthy ovarian tissues

adjacent to ovarian cancer are available in the TCGA database. The

Gene Expression Profiling Interactive Analysis (GEPIA) database

(14) was used to perform the analysis of DEGs on 426 TCGA ovarian

cancer tissues and 88 GTEx healthy tissues to improve the accuracy of

DEG analysis. The screening criteria to obtain the DEGs were fold

change (FC) > 2.828 or < 0.353, i.e., |log2FC| > 1.5 and corrected P <

0.01. The “ggplot” function in the R “ggplot2” package was used to

draw a volcano plot to visualize the related DEGs, while the “Venn”

package was used to visualize the intersection of DEGs and 1,650

mitochondrial genes, and the mitochondrial DEGs were obtained.
Screening of prognostic signature genes

The R “rms” and “survival” packages were used to perform the

univariate Cox regression analysis on the DEGs related to

mitochondria in the training set, and the genes related to the
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https://gdc.xenahubs.net/
https://dcc.icgc.org/
http://mitominer.mrc-mbu.cam.ac.uk/
https://doi.org/10.3389/fimmu.2024.1458264
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yunyun et al. 10.3389/fimmu.2024.1458264
prognosis of ovarian cancer patients were found. The “glmnet”

package was used to perform the least absolute shrinkage and

selection operator (LASSO) regression analysis on the prognostic

genes, and the calculated minimum l value was used as the optimal

reference value to reduce their number. Subsequently, multivariate

Cox proportional hazard regression analysis was performed, and

the optimal model was determined according to the minimum

Akaike information criterion (AIC) value. Finally, the expression of

prognostic genes in ovarian cancer tissues and healthy tissues was

analyzed online using the GEPIA database.
Clinical sample collection

Ovarian cancer and normal tissue samples were collected

during 2022-2024 from 16 patients awaiting cancer surgery at the

First Affiliated Hospital of the Air Force Medical University. The

patient demographic and clinical information is shown in the

Supplementary Table 1. Specimen information after tissue

collection was kept strictly confidential. No patients with OV was

subjected to anticancer treatment such as chemotherapy or

radiotherapy prior to surgery. All tissue specimens were collected

within 30 minutes of surgery, placed in liquid nitrogen, and stored

at -80 ˚C. The procedures were approved by the Ethics Committee

of the First Affiliated Hospital of the Air Force Medical University

and signed informed consent was obtained from each patient prior

to the collection of tissue samples.
Quantitative real-time PCR

Total RNA was extracted from 8 ovarian cancer tissues, including

2 grade II, 3 grade III, and 3 grade IV, and 8 paired normal tissues

using TRIzol Takara, Kyoto, Japan)according to the manufacturer’s

instructions. Complementary DNA (cDNA) was synthesized using

PrimeScript TM RT reagent kit with gDNA Eraser kit (RR047A,

Takara). Then, the product was quantified using SYBR Premium Ex

Taq II and ABI Life technologies. GAPDH was used as the

housekeeping gene for the calculation of relative gene expression.

The primers are listed in the Supplementary Table 2.
Hematoxylin-eosin and Sirius red staining

The collected healthy and cancer ovarian tissues were fixed in a

4% paraformaldehyde solution for 4 hours and dehydrated

overnight with 30% sucrose. OTC embedding, liquid nitrogen

freezing and storage at -80°C was performed prior to frozen

sectioning into 5 μm-thick sections on a cryostat. Hematoxylin-

eosin staining was performed on the Nor group and OV group.
Immunofluorescence

The changes in the proportion of M1 type (CD11b+ CD86+) and

M2 type macrophages (CD11b+CD206+) were evaluated in normal
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ovarian tissue and ovarian cancer tissue by dual immunofluorescence.

The 5 μm-thick frozen sections were fixed in methanol and blocked

by goat serum. Next, the sections were treated with the following

primary recombinant monoclonal antibodies: rabbit anti-CD11b

antibody (Abcam, ab133357, 1:300 dilution), mouse anti-CD86

(PTM BIO, PTM-5334, 1:100 dilution), and mouse anti-CD206

(SANTA CRUZ, sc-58986, 1:100 dilution). Then, they were treated

with the secondary antibodies CoraLite488-conjugated Goat Anti

Rabbit IgG (Protentech, SA00013-2) and CoraLite594-conjugated

Goat Anti Mouse IgG (Protentech, SA00013-3). At least 5 different

regions were selected for image acquisition for each sample and

positive cells were quantified using Image Pro Plus 6.0 software.
Construction and validation of the
prognostic risk model

The regression coefficient of the prognostic feature gene was

determined using the “Coxph” function in the R “survival” package,

and the linear combination method of the gene expression multiplied

by the regression coefficient was used to construct the prognostic risk

model. The specific risk score formula was as follows:

Risk Score =on
i=1(bi � Expi) (1)

in which b is the regression coefficient, Exp is the expression of

the characteristic genes and i is the number of characteristic genes.

The introduction of the screened gene expression values into

Equation 1 led to the risk score of each ovarian cancer patient. The

median of the risk score was used as the cutoff value to classify the

ovarian cancer patients into the high-risk group and the low-risk group

in the training and validation set. The “surv_cutpoint” function of the

“survminer” package was used to determine the optimal cutoff value of

the expression of the above-mentioned prognostic genes, and the

patients were divided into high-expression group and low-expression

group according to their respective cutoff values.

The KM curve was plotted using the “ggsurvplot” function in

the R “survival” package to assess the survival status of the two

groups. Subsequently, the R “timeROC” package was used to plot

the ROC curve to evaluate the accuracy of the model prediction.

Finally, the “ggplot2” package in R was used to plot the risk score

association diagram to visualize the risk score, survival time, and

survival status of each patient.
Construction and evaluation of
composite nomograms

The univariate Cox regression analysis was used to analyze the

predictors significantly related to prognosis, such as age, FIGO

stage, residual tumor status, vascular invasion, lymph node

invasion, tumor grade and other clinical factors and risk scores

(P < 0.05). Then, multivariate Cox proportional hazards regression

analysis was performed to identify predictors significantly

associated with prognosis (P < 0.05), and a composite nomogram

was constructed based on the R “rms” package. A total score was

obtained for each patient by adding the scores of the predictors in
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the nomogram, and the patient’s survival outcome at 1, 3, and 5

years was predicted. In addition, ROC curve, calibration curve and

decision curve analysis were used to evaluate the predictability,

accuracy and clinical utility of the nomogram.
Differential gene function
enrichment analysis

The function and effect of mitochondrial DEGs were analyzed

using Gene Ontology, GO and Kyoto Encyclopedia of Genes and

Genomes (KEGG) databases and the R “clusterProfiler”,

“org.Hs.eg.db”, “enrichplot” and “ggplot2” packages.
Mutation analysis

A total of 436 somatic mutation data (MuTect2 Variant

Aggregation and Masking) were downloaded from the UCSC

Xena database TCGA-OV data set, and patients with incomplete

clinical and survival information were removed. Finally, mutation

analysis was performed using the included mutation data of 271

ovarian cancer patients. Mutation waterfall plots of the high-risk

and low-risk groups were plotted using the R “maftools” package,

and the tumor mutation burden (TMB) score of each patient was

calculated. The 271 patients were divided into a high TMB group

and low TMB group according to the median TMB score.
Analysis of immune infiltration and
immune efficacy response

A total of 591 immunophenotype score (IPS) data of ovarian

cancer patients were downloaded from the TCIA database using the

Cancer Immunome Atlas. They were then merged with the data of

the 378 patients in this study. Finally, 153 patients were included for

immune analysis, including cases in the high-risk group and 70 in

the low-risk group.

The Tumor Immune Dysfunction and Exclusion (TIDE)

database predicts patients’ responses to immune checkpoint

inhibitors such as anti-PD-1 and anti-CTLA-4 by assessing the

possibility of tumor immune escape (15). The lower the TIDE score,

the lower the possibility of tumor immune escape and the better the

efficacy of immune checkpoint inhibitors.

IMvigor210 is a single-arm phase II clinical trial for the

evaluation of the efficacy and safety of PD-L1 inhibitors in

patients with urothelial carcinoma (16). The complete

immunotherapy clinical data of 298 cases are stored in the

IMvigor210 CoreBiologies package (http://research-pub.gene.com/

IMvigor 210CoreBiologies/). Immunotherapy response included

complete response (CR), partial response (PR), stable disease (SD)

and progressive disease (PD). Patients who achieved CR or PR were

classified as responders, while those who achieved SD or PD were

classified as non-responders. The expressions of the genes

determined by the model in the IMvigor210 cohort were placed

into the Equation 1 to obtain the patient’s risk score. Next, the
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patients were divided into a high-risk group and low-risk group

based on the median risk score.

The TCIA database, TIDE database and IMvigor210 dataset

were used to explore the relationship between the mitochondrial

risk score and the immunotherapy response.
Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) database

was used to perform drug sensitivity analysis. The GDSC v2 dataset

was obtained using the R “OncoPredict” package, and a ridge

regression model was constructed using the “calcPhenotype”

function. This model predicted the drug sensitivity of 378 patients

in the training set and the half maximal inhibitory concentration

(IC50) data of 198 drugs were obtained (17). The ability of the risk

score to predict the response to 198 chemotherapeutic drugs was

explored by comparing their IC50 between the two risk groups.
Statistical analysis

GraphPad Prism 8.0.2 and R 4.3.1 software were used for data

entry and processing. Data with normal distribution in two groups

were compared using Student t-test and the results were expressed

as mean ± standard deviation. Data not normally distributed were

compared using the Mann-Whitney U test between two groups of

continuous variables and the results were expressed as the median

(quartile). Categorical variables were expressed as frequencies

(percentages), and differences between groups were assessed using

2’s test or Fisher’s exact test. Spearman rank correlation coefficient

was used to evaluate the potential presence of a significant

correlation between the two groups of variables. Survival curves

were plotted according to the KM method, and survival rates were

compared using the log-rank test. Cox proportional hazards

regression model was used for univariate and multivariate

analysis, and the results were expressed as hazard ratios (HR) and

95% confidence intervals (95% CI). A value of P < 0.05 was

considered statistically significant.*P<0.05, **P<0.01, ***p<0.001.
Results

Identification and functional enrichment
analysis of mitochondrial DEGs in ovarian
cancer tissues

A total of 4,234 DEGs between ovarian cancer tissues and

healthy tissues were found using the GEPIA database; 1,501 were

upregulated and 2,733 were downregulated (Figure 1A).

Subsequently, the 4,234 DEGs were intersected with the 1,650

mitochondrial genes, and finally, 252 mitochondrial DEGs were

obtained (Figure 1B). The biological significance of mitochondrial

DEGs was established by performing the GO function and KEGG

pathway enrichment analysis. The former showed that 252

mitochondrial DEGs were related to several biological processes
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including the regulation of mitochondrial organization, cellular

respiration, and electron transport chain. In addition, they were

mainly related to cellular components including mitochondrial

matrix, mitochondrial outer membrane, and mitochondrial inner

membrane. Finally, they were related to several molecular functions

including transmembrane transporter activity, oxidoreductase

activity and lipase activity (Figure 1C). The KEGG channel

analysis showed that the 252 mitochondrial DEGs were mainly

involved in important pathways such as neurodegeneration, p53

signaling pathway, NOD-like receptor signaling pathway, lipid and

atherosclerosis, reactive oxygen species, oxidative phosphorylation

metabolism, and apoptosis (Figure 1D).
Construction and validation of the
prognostic risk model for ovarian cancer

Single-factor Cox regression analysis performed on the 252

mitochondrial differential genes in the training set revealed that a

total of 42 genes were significantly related to prognosis (Table 1).
Frontiers in Immunology 05
Subsequently, prognostic genes were further screened by LASSO

regression analysis, a=1 was selected, and the ten-fold cross-

validation method was used to achieve the internal validation of

the model. Fourteen prognostic genes were screened when l min

was 0.026 (Figure 2A). Finally, 12 characteristic genes related to the

prognosis of ovarian cancer were identified based on the minimum

AIC value (2262.89), such as RPL23, PKM2, MRPS12, NDUFC2,

HPDL, MRPL14, COA6, FGFR1OP2, RNF144B, CAPN10,

ALDH1L1, and ACSM1. PKM2, MRPS12, NDUFC2, HPDL,

MRPL14, COA6 and RNF144B were significantly upregulated in

ovarian cancer tissues than in normal tissues (P < 0.05, Figure 2B),

while RPL23, FGFR1OP2, CAPN10, ALDH1L1 and ACSM1 were

significantly down-regulated (P < 0.05). In addition, the KM

analysis showed that the OS of patients with high expression of

RPL23 (p=0.005), PKM2 (p=0.002), MRPS12 (p= 0.001),

FGFR1OP2 (p=0.002), CAPN10 (p=0.008) and ALDH1L1

(p=0.01) The OS of NDUFC2 (p=0.005), HPDL (p=0.001),

MRPL14 (p=0.002), COA6(P< 0.0001), RNF144B (p=0.016) and

ACSM1 (p=0.003) was significantly longer than that of patients

with low expression (Figure 3). Finally, multifactor Cox regression
FIGURE 1

Screening and identification of mitochondrial-related differentially expressed genes in ovarian cancer tissues and enrichment analysis. (A) Volcano
plot of differentially expressed genes (red and yellow points in the figure indicate significantly up-regulated and significantly down-regulated
differentially expressed genes); (B) Venn diagram of differentially expressed genes and mitochondrial-related genes. (C) GO functional enrichment
analysis of mitochondrial-related differentially expressed genes in ovarian cancer; (D) KEGG pathway enrichment analysis of mitochondrial-related
differentially expressed genes in ovarian cancer. BP, biological process; CC, cellular component; MF, molecular function.
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analysis was performed on the 12 prognostic genes (Table 2), and

the obtained regression coefficients were placed into the Equation 1

to construct the risk score model.

Risk Score = (0:348)� Exp(RPL23) + (0:247)� Exp(PKM2) + (0:203)� Exp(MRPS12)

+( − 0:184)� Exp(NDUFC2) + ( − 0:129)� Exp(HPDL) + ( − 0:219)� Exp(MRPL14)

+( − 0:272)� Exp(COA6) + (0:253)� Exp(FGFR1OP2) + ( − 0:217)� Exp(RNF144B)

+(0:370)� Exp(CAPN10) + (0:342)� Exp(ALDH1L1) + ( − 3:780)� Exp(ACSM1)
Q-OPCR validation of 12 prognostic
signature genes

Compared with normal tissues, MRPS12, NDUFC2, HPDL,

MRPL14, COA6 and RNF144B were significantly up-regulated in

ovarian cancer tissues (P<0.05), RPL23, FGFR1OP2, CAPN10,

ALDH1L1 and ACSM1 were significantly down-regulated

(P<0.05) and the up-regulation of PKM2 and NDUFC2 was no

significant (Figure 4).The treatment status of the sample of 8

patients is shown in Supplementary Table 3.

According to the risk score obtained from the Equation 1, the

training set was divided into a high-risk group (189 cases) and a low-

risk group (189 cases) using the median risk score 3.67 as the cutoff

value. The KM survival analysis showed that the OS of patients in the

high-risk group was significantly shorter than that of patients in

the low-risk group (P < 0.0001, Figure 5A). The accuracy of the

prognostic risk model in predicting 1, 3, and 5-year OS was further

evaluated by plotting the ROC curve. The AUC values at 1, 3, and 5

years were 0.68, 0.68, and 0.73, respectively (Figure 5B). The number

of ovarian cancer patients who died in the high-risk group was higher

than that in the low-risk group, while the number of ovarian cancer

patients who survived for more than 5 years in the low-risk group was

higher than that in the high-risk group (Figure 5C). The robustness of

the prognostic risk model was assessed by evaluating the predictive

value of 12 mitochondrial genes in the validation set. The risk score of

each ovarian cancer patient in the validation set was obtained by

inserting the expression of 12 genes into the Equation 1, and using the

median risk score 2.59 as the cutoff value; in this way, the validation set

was divided into high-risk group (46 cases) and low-risk group (47

cases). The researches show that consistent with the results of the

training set, the OS of patients in the high-risk group was significantly

shorter than that of patients in the low-risk group (P = 0.021,

Figure 5D). ROC curve analysis showed that the AUC values in 1,

3, and 5 years were 0.64, 0.69, and 0.67, respectively (Figure 5E). The
TABLE 1 Results of univariate Cox regression analysis.

Gene HR
95% CI

P-value
Lower Upper

RPL3 1.2 1.0 1.45 0.056

IFI6 0.93 0.87 1.0 0.065

RPL23 1.27 1.06 1.52 0.009

ENO1 1.17 0.98 1.39 0.080

PKM2 1.21 1.0 1.47 0.047

IFI27 0.94 0.88 1.0 0.049

DDIT4 1.14 1.03 1.26 0.014

MRPS12 1.18 1.0 1.37 0.043

UQCRFS1 1.19 1.01 1.41 0.037

PPP1R15A 1.25 1.08 1.44 0.003

NDUFC2 0.82 0.69 0.98 0.026

HPDL 0.89 0.79 1.0 0.042

MRPL14 0.78 0.63 0.96 0.018

RSAD1 1.23 1.02 1.49 0.027

DMPK 1.18 1.0 1.38 0.045

HARS2 1.19 0.97 1.46 0.091

OCIAD2 0.85 0.71 1.02 0.074

COA6 0.79 0.63 0.98 0.035

TIMM23 0.77 0.58 1.01 0.061

PDK4 1.19 1.03 1.36 0.016

WDR81 1.2 1.04 1.38 0.013

MTX3 1.28 1.05 1.57 0.015

OGDHL 1.15 1.01 1.3 0.036

LSS 1.17 0.99 1.39 0.071

FGFR1OP2 1.27 1.03 1.55 0.022

D2HGDH 1.28 1.08 1.53 0.006

RNF144B 0.85 0.74 0.98 0.029

FBXO17 1.14 1.01 1.28 0.031

SLC25A37 1.21 0.99 1.49 0.06

ACSS1 1.13 0.98 1.31 0.099

CAPN10 1.31 1.03 1.66 0.028

SLC25A25 1.17 0.98 1.38 0.075

SLC25A42 1.24 0.97 1.58 0.085

PAPSS2 1.26 0.96 1.66 0.097

SH3BP5 1.37 1.03 1.84 0.034

SERHL2 1.45 1.05 2.02 0.024

ACACB 1.51 1.08 2.09 0.015

METAP1D 1.45 0.95 2.2 0.083

(Continued)
TABLE 1 Continued

Gene HR
95% CI

P-value
Lower Upper

MSRB3 1.41 0.98 2.01 0.062

ACSS3 1.61 1.03 2.53 0.038

ALDH1L1 1.62 1.1 2.38 0.014

PDE2A 1.53 0.94 2.49 0.086

ACSM1 0.18 0.03 1.06 0.058
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patient’s prognosis becomes worse as the patient’s risk score increased

(Figure 5F). These results indicated a good performance of the

prognostic risk model constructed based on 12 mitochondrial genes.

The comparison of the clinicopathological characteristics

between high-risk and low-risk groups showed that the death rate

of patients in the high-risk group (70.37% vs. 52.38%) was

significantly higher than that in the low-risk group (P < 0.05).

However, there was no statistically significant difference in age,

FIGO stage, tumor residual status, vascular invasion, lymph node

invasion, and tissue grade between the two groups (Table 3).
Construction and evaluation of
composite nomograms

Univariate and multivariate Cox analysis was performed on 378

ovarian cancer patients to evaluate whether the prognostic risk

model could be used as an independent prognostic factor for

ovarian cancer patients. Age, tumor residual status and risk score

were associated with OS in ovarian cancer patients as revealed by

the univariate Cox regression analysis (Table 4), while age (P =

0.0412) and risk score (P < 0.001) were independent prognostic

factors affecting OS in ovarian cancer patients as revealed by the
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multivariate Cox regression analysis (Table 4). A composite

nomogram was constructed based on risk score and age, as

shown in Figure 6A. The ROC curve showed that the AUC values

of 1, 3 and 5 years were 0.71, 0.70 and 0.72, respectively (Figure 6B).

The calibration curve showed that the actual survival probability of

1, 3 and 5 years was almost consistent with the survival probability

predicted by the nomogram model (Figure 6C). The decision curve

analysis showed that the nomogram model was superior to age and

risk score in predicting the prognosis of ovarian cancer patients

(Figure 6D). These results indicated that the nomogram model

constructed based on risk score and age might have a strong clinical

applicability and accurate predictive power.
Mutational landscape of ovarian cancer
patients in the high-risk and low-risk group

The difference in genomic mutations between the high-risk

group and the low-risk group was assessed by plotting the mutation

maps of ovarian cancer patients in the high-risk group (133 cases)

and low-risk group (138 cases). The waterfall chart showed the top

15 mutated genes and their mutation types (Figures 7A, B). Among

them, 7 genes including TP53, TTN, CSMD3, RYR2, MUC16,
FIGURE 2

LASSO regression analysis and expression of 12 prognostic signature genes in ovarian cancer tissues and normal tissues. (A) LASSO regression
analysis; (B) and expression of 12 prognostic signature genes in ovarian cancer tissues and normal tissues. * p<0.05.
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FAT3 and FLG were the most frequently mutated shared by the two

groups. No significant difference was observed in the mutation rate

of the top 5 mutated genes in the high-risk group compared with

the low-risk group (Figure 7C).
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The relationship between risk score and TMB was further

analyzed, revealing that the risk score was significantly negatively

correlated with the TMB of ovarian cancer patients (Figure 8A). In

addition, the TMB of patients in the high-risk group was

significantly lower than that in the low-risk group (P < 0.05,

Figure 8B). Subsequently, ovarian cancer patients were divided

into high TMB group and low TMB group using the median

TMB (3.64/Mb) as the cutoff value (Figure 8C), and the results

showed a significant difference in TMB composition between the

high-risk group and low-risk group (P < 0.05, Figure 8D). Tumor

mutation load is a potential biomarker for immune checkpoint

inhibitors in many cancer types. Therefore, this study further

evaluated the correlation between TMB and prognosis of ovarian

cancer patients. The comparison of the survival curves of ovarian

cancer patients in the total population, high TMB subgroup and low

TMB subgroup (Figures 9A–C) revealed that patients in the low

TMB group had shorter OS than those in the high TMB subgroup,

but without any statistically significant difference (P = 0.19). The

high risk patients had significantly lower OS than the low risk

patients in both the high TMB subgroup and the low TMB

subgroup. These findings suggested that the combination of risk

score and TMB might be a potentially valuable new marker, and

that patients with a high tumor mutation load might more likely

benefit from treatment.
FIGURE 3

KM analysis of 12 prognostic signature genes.
TABLE 2 Results of multivariate Cox regression analysis.

Gene b HR 95% CI P-value

RPL23 0.348 1.42 1.18∼1.71 0.0003

PKM2 0.247 1.28 1.03∼1.6 0.0281

MRPS12 0.203 1.23 1.03∼1.45 0.0183

NDUFC2 −0.184 0.83 0.69∼1 0.0468

HPDL −0.129 0.88 0.77∼1 0.0517

MRPL14 −0.219 0.8 0.61∼1.06 0.1232

COA6 −0.272 0.76 0.58∼1 0.0541

FGFR1OP2 0.253 1.29 1.05∼1.59 0.0173

RNF144B −0.217 0.81 0.69∼0.94 0.0058

CAPN10 0.370 1.45 1.08∼1.95 0.0145

ALDH1L1 0.342 1.41 0.92∼2.15 0.1148

ACSM1 −3.780 0.02 0∼0.18 0.0003
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Correlation analysis between
mitochondrial risk score and immune
cell infiltration

The TIMER database was used to evaluate the relationship

between risk scores and immune cell infiltration since the tumor

microenvironment is involved in tumor initiation, development,

and metastasis (18). The prognosis of tumor patients with a high

proportion of M2 macrophages infiltrating is poor, which may be

due to the fact that M2 macrophages are conducive to the survival

and proliferation of tumor cells by secreting some growth factors

and inhibiting immune responses (19). The results revealed

that the proportion of macrophage infiltration in the high-risk

group was significantly higher than that in the low-risk group

(Figure 10A), suggesting that macrophages might involved in the

occurrence and development of ovarian cancer. Subsequently, the

CIBERSORT algorithm used to evaluate the infiltration of 22 types

of immune cells, including M1 and M2 macrophages showed that

the content of M2 macrophages was significantly increased in the

high-risk group of ovarian cancer. In contrast, In intra-group

comparisons of M2 macrophage content, it was found that the

content in the high-risk group was significantly higher than that in
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the low-risk group; in intra-group comparisons of M1

macrophage content, it was found that the content in the high-

risk group was lower than that in the low-risk group (Figure 10B).

Macrophage marker expression and risk score showed that the

latter was positively correlated with the expression of M2

macrophage markers, and negatively correlated with the

expression of M1 macrophage markers (Figure 10C). This result

suggested that the high infiltration of M2 macrophages in patients

with high ovarian cancer risk might be associated with

poor prognosis.

We compared the macrophage activation analysis in normal

ovarian tissue and ovarian cancer tissue, and performed HE

staining on normal ovarian tissue (Nor group) and ovarian cancer

tissue (OV group) to verify the histopathological changes in the

samples of the two groups in this study. The results showed that the

ovarian morphology, oocytes and follicle structure were normal in

the ovarian tissue of the healthy group, while complete oocytes were

not present in the ovarian cancer tissue, and tumor cell infiltration

and disordered cell distribution were present (Figure 11A).The

samples of Nor group and OV group were further labeled by

immunofluorescence. In ovarian cancer, many studies have

reported CD86 and CD206 as markers of M1 and M2 macrophage
FIGURE 4

Q-PCR validation analysis of 12 prognostic signature genes. * p<0.05, ** p<0.01, *** p<0.001, ns p>0.05.
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expression (20, 21). M1 type (CD11b+CD86+) and M2 type

macrophages (CD11b+CD206+) showed a significantly growing

trend in the OV group compared with the Nor group. A significant

difference in the number of phagocytes was observed; the increase of

phagocyte in OV group was significantly higher than that in Nor

group (P < 0.05) (Figures 11B–D). The mRNA expression of the M1-

related inflammatory factors CD86, IL6, and IL1-b was significantly

increased in the OV group than in the Nor group. The mRNA

expression of the M2-related inflammatory factors CD206, CD163,

and IL10 were also significantly increased, and the variation trend of

CD163 has significant difference. In this study, the expression of IL4

in ovarian cancer tissues was significantly reduced compared with the

Nor group, suggesting that the prognosis of ovarian cancer was poor.

The expression of the inflammatory factor IFN-g was up-regulated,
while that of TNF-a was down-regulated in the OV group

(Figure 11E). These results demonstrated that the M1 and M2

macrophages in the ovarian tissue of the OV group were

significantly activated than in the Nor group, and the polarity

change of tumor-associated macrophages might provide a research

reference for the prognosis and treatment of ovarian cancer.
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Correlation analysis between
mitochondrial risk score and response
to immunotherapy

IPS expression in the low-risk group receiving CTLA-4, PD-1,

and CTLA-4 combined with PD-1 treatment was significantly

higher than that of the high-risk group (Figures 12A–C),

suggesting ovarian cancer. Patients in the low-risk group might

benefit from immune checkpoint therapy. The TIDE algorithm was

further used to evaluate the ability of mitochondria-related risk

scores to predict the response to immunotherapy in ovarian cancer,

showing that the risk score was significantly positively correlated

with the TIDE score (Figure 12D). The TIDE score of the high-risk

group was significantly higher than that of the low-risk group

(Figure 12E). The response rate to immunotherapy (46.5%) in the

high-risk group was significantly higher. Lower than that in the low-

risk group (58.2%) (Figure 12F), indicating that patients in the low-

risk group of ovarian cancer respond better to immunotherapy.

The mitochondria-related risk scores in the IMvigor210 cohort

were calculated and the relationship between risk scores and the
FIGURE 5

Evaluating the performance of the prognostic risk model in the training set and evaluating the performance of the prognostic risk model in the
validation set. (A) KM survival curve distribution of the prognostic risk model in the training set; (B) ROC curve of the prognostic risk model in the
training set; (C) Risk factor linkage diagram (top, risk score scatter plot; bottom, patient life and death scatter plot). (D) KM survival curve distribution
of the prognostic risk model in the validation set; (E) ROC curve of the prognostic risk model in the validation set; (F) Risk factor linkage diagram
(top, risk score scatter plot; bottom, patient life and death scatter plot).
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efficacy of immunotherapy was assessed to verify the predictive

ability of mitochondria-related risk scores on the immunotherapy

response, based on the risk score Equation 1. The results showed

that the risk score of the SD/PD group was significantly higher than

that of the CR/PR group (Figure 13A). Subsequently, the

IMvigor210 cohort was divided into a high-risk group (148 cases)

and a low-risk group (150 cases) using the median risk score 5.35 as

the cut-off value. The risk score of patients in the high-risk group

was significantly higher than that in the lower-risk group. The

response rate to immunotherapy in patients in the high-risk group

(16.9%) was significantly lower than that in the low-risk group

(28.7%) (Figures 13B, C). The KM survival analysis of patients in
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the IMvigor210 cohort showed that the OS of patients in the high-

risk group was significantly shorter than that of patients in the low-

risk group (P = 0.013, Figure 13D).
TABLE 3 Correlation between risk scores and clinical pathological
characteristics of patients in the training set.

Variables

Risk Score

P-valueLow, n
(%)

n=189

High, n
(%)

n=189

Age (year) 0.410

<60 103 (54.50) 95 (50.26)

≥60 86 (45.50) 94 (49.74)

FIGO stage 0.421

I/I 13 (6.88) 11 (5.82)

III/IV 176 (93.12) 178 (94.18)

Residual tumor 0.167

R0 49 (25.93) 35 (18.52)

R1 120 (63.49) 127 (67.20)

N/A 20 (10.58) 27 (14.29)

Venous invasion 0.389

Yes 37 (19.58) 27 (14.29)

No 20 (10.58) 21 (11.11)

N/A 132 (69.84) 141 (74.60)

Lymphatic invasion 0.952

Yes 51 (26.98) 50 (26.46)

No 23 (12.17) 25 (13.23)

N/A 115 (60.85) 114 (60.32)

Grade 0.386

G2 25 (13.23) 20 (10.58)

G3 158 (83.60) 163 (86.24)

G4 0 (0.00) 2 (1.06)

GX 6 (3.17) 4 (2.12)

Outcome <0.001

Survival 90 (47.62) 56 (29.63)

Non-survival 99 (52.38) 133 (70.37)
Bold values indicate significant difference with p<0.05, and a highly significant difference
with p<0.01.
TABLE 4 Cox regression analysis of factors affecting survival in 378
patients with ovarian cancer.

Variables Patient
(n=378)

Univariate
analysis

Multivariate
analysis

HR
(95% CI)

P-
value

HR
(95% CI)

P-
value

Age (years)

<60 180 1 1

≥60 198 1.32
(1.02~1.71)

0.036 1.31
(1.01~1.69)

0.0412

FIGO stage

I/I 24 1

III/IV 354 2.15
(0.95~4.83)

0.066

Residual tumor

R0 84 1

R1 247 8.28
(4.49~15.26)

0.001

N/A 47 12.51
(6.21~25.23)

0.001

Venous invasion

Yes 64 1

No 41 1.12
(0.61~2.06)

0.708

N/A 273 1.51 (1~2.3) 0.052

Lymphatic invasion

Yes 101 1

No 48 0.74
(0.44~1.26)

0.268

N/A 229 0.92
(0.66~1.28)

0.631

Grade

G2 45 1

G3 321 1.24
(0.84~1.83)

0.288

G4 2 1.64
(0.22~12.08)

0.627

GX 10 1.6
(0.66~3.87)

0.295

Risk Score

High 189 1

Low 189 0.42
(0.32~0.56)

0.001 0.43
(0.32~0.56)

0.001
front
Bold values indicate significant difference with p<0.05, and a highly significant difference
with p<0.01.
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FIGURE 6

Construction and evaluation of composite nomogram. (A) Construction of a composite nomogram based on age and risk score; (B) ROC curve of
the composite nomogram model; (C) Calibration curve; (D) DCA curve.
FIGURE 7

Mutation status of ovarian cancer patients in high-risk and low-risk groups. (A) Waterfall plot of the top 15 mutant genes in the high-risk group;
(B) Waterfall plot of the top 15 mutant genes in the low-risk group; (C) Comparison of mutation rates of the top 5 mutant genes in the high-risk
group and the low-risk group. ns p>0.05.
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FIGURE 8

Exploring the relationship between tumor burden and risk score. (A) Linear correlation diagram of tumor mutation burden and risk score; (B) Comparison of
total TMB between high-risk group and low-risk group; (C) Distribution diagram of tumor mutation burden; (D) Comparison of TMB composition between
high-risk group and low-risk group. * p<0.05.
FIGURE 9

Survival curves of ovarian cancer patients in the overall population, high TMB subgroup, and low TMB subgroup. (A) Comparison of overall survival
between the high TMB group and the low TMB group in the training set; (B) Comparison of overall survival between the high-risk group and the
low-risk group in the subgroup of the high TMB group; (C) Comparison of overall survival between the high-risk group and the low-risk group in the
subgroup of the low TMB group.
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Prediction of the effect of the
mitochondrial risk score on chemotherapy
in ovarian cancer

The IC50 values of 198 chemotherapeutic drugs used to combat

ovarian cancer were predicted based on the GDSC database to

explore the possibility of using the mitochondrial risk score to

predict a personalized medication for ovarian cancer patients. Drug

sensitivity analysis showed that patients in the high-risk group of

ovarian cancer were remarkably sensitive to chemotherapeutic

drugs such as vinblastine, Acetalax, VX-11e and PD-0325901,

while patients in the low-risk group of ovarian cancer were

significantly more sensitive to Sabutoclax, SB-505124, cisplatin

and erlotinib, suggesting that mitochondrial risk scores provided

a reliable reference for clinical treatment (Figure 14).
Discussion

This study used public databases to demonstrate that the

mitochondrial gene model could predict the prognosis of ovarian

cancer patients with several unique advantages. First, the

constructed risk scoring model had a strong predictive ability for

the prognosis of ovarian cancer and is an independent prognostic

factor affecting the OS of patients. Second, it provided a simple and
Frontiers in Immunology 14
feasible method to distinguish the belonging of the patient to the

high-risk group or the low-risk group. In addition, the constructed

risk scoring model could be used to predict the response to

immunotherapy and chemotherapeutic drugs, as well as for the

evaluation of immune cell infiltration, providing personalized

management and treatment for ovarian cancer patients. The risk

scoring model constructed based on 12 genes including RPL23

provided important evidence for further understanding the

mechanism of the occurrence and development of ovarian cancer.

In this study, 12 prognostic characteristic genes were identified.

RPL23 is a protein composed of 60S ribosomal subunits and

involved in a variety of physiological and pathological processes

including cell proliferation, apoptosis and cell cycle arrest. It affects

the occurrence and development of cancer by specifically binding to

mouse double minute 2 (MDM2) to affect the MDM2/p53 signaling

pathway (22), exerting different biological effects in different

tumors. For example, it is upregulated in hepatocellular

carcinoma, gastric cancer, and pancreatic cancer, while it is

downregulated in nasopharyngeal carcinoma cell lines and

colorectal cancer cell lines. PKM2 is a rate-limiting enzyme in

glycolysis and a regulator of tumor metabolism. It is overexpressed

in several tumors, promoting their proliferation and metastasis (23).

Patients with ovarian cancer and high PKM2 protein expression

have shorter OS compared to those with low protein expression

(24). MRPS12 is a potential oncogene for ovarian cancer, being a
FIGURE 10

Immune cell infiltration analysis based on TIMER and immune cell infiltration analysis between high-risk group and low-risk group. (A) Immune cell
infiltration analysis based on TIMER. (B) CIBERSORT algorithm; (C) Correlation between risk score and expression of M2 macrophage and M1
macrophage markers. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.
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FIGURE 11

Compared with the Nor group, the M1/M2 macrophages in the ovarian tissue of the OV group were activated. (A) HE staining of ovarian tissues in
the Nor group and the OV group; (B–D) Immunofluorescence double staining marked the changes in positive cells of M1 (CD11b+CD86+) and M2
macrophages (CD11b+CD206+) in ovarian tissues; (E) qPCR analysis of the relative mRNA expression of inflammatory factor genes related to M1 and
M2 macrophages in the ovarian (8 samples in the Nor group and 8 samples in the OV group). * p<0.05, ** p<0.01, ns p>0.05.
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potential prognostic biomarker (25). The results of this study were

consistent with the above conclusions, although further research is

needed to explore the mechanism of MRPS12 in the occurrence and

development of ovarian cancer. HPDL is a mitochondrial gene that

encodes a 4-hydroxyphenylpyruvate dioxygenase-like protein. It is

associated with several diseases including breast cancer. Its

overexpression promotes the malignant progression of pancreatic

ductal adenocarcinoma cells (26). The protein encoded by the

MRPL14 gene promotes the biogenesis of mitochondrial large

ribosomal subunits and mitochondrial translation (27). It is

highly expressed in thyroid cancer and it is a potential oncogene

(28). The protein encoded by COA6 is mainly located in the inner

membrane of mitochondria and is mainly involved in the formation

of cytochrome C oxidase (29). It is significantly upregulated in lung

adenocarcinoma and is associated with poor prognosis (30).

ACSM1 is highly expressed in prostate cancer and promotes its

metastasis through the extracellular matrix-receptor interaction

signaling pathway (31). However, it is poorly expressed in ovarian

cancer (32). The ALDH1L1 gene, located on chromosome 3q21.3,

encodes a protein that belongs to the aldehyde dehydrogenase

family. Its loss of function or expression is associated with

decreased apoptosis, increased cell motility, and cancer

progression (33). ALDH1L1 mRNA and protein expression is

significantly reduced in hepatocellular carcinoma, and the low
Frontiers in Immunology 16
expression of the protein is a potential prognostic marker for

hepatocellular carcinoma (34). RNF144B, located on the

mitochondrial membrane, negatively regulates apoptosis and

ubiquitin-dependent protein catabolism (35). It promotes the

proliferation, migration, and invasion of ovarian cancer cells (36).

CAPN10, a member of the mitochondrial calpain system, promotes

caspase-independent programmed cell death by mediating

apoptosis-inducing factors. Its expression is associated with

insulin-stimulated glucose uptake and type 2 diabetes (37). This

gene is regulated by the GAEC1 gene and promotes the progression

of esophageal squamous cell carcinoma (38). In the present study,

RPL23, FGFR1OP2, CAPN10, ALDH1L1 and ACSM1 were

significantly downregulated in ovarian cancer, while the up-

regulation of RPL23, FGFR1OP2, CAPN10 and ALDH1L1 was

associated with poor prognosis in patients with ovarian cancer.

PKM2, MRPS12, NDUFC2, HPDL, MRPL14, COA6 and RNF144B

were significantly upregulated in ovarian cancer, but the down-

regulation of NDUFC2, HPDL, MRPL14, COA6 and RNF144B was

associated with poor prognosis in patients with ovarian cancer. The

expressions of the twelve genes in ovarian cancer cells were detected

and the expected consistent results were obtained.

Biomarkers such as RPL23, MRPS12, and ALDH1L1 have been

used to predict the prognosis of ovarian cancer, but most studies

focus on the prognostic role of a single biomarker (25, 39, 40).
FIGURE 12

Comparison of IPS scores between high and low risk groups in the training set and predictive ability of mitochondrial risk score for immunotherapy
response based on TIDE algorithm. (A) Comparison of IPS scores between the two groups of patients treated with CTLA-4 inhibitors; (B) Comparison of
IPS scores between the two groups of patients treated with PD-1 inhibitors; (C) Comparison of IPS scores between the two groups of patients treated
with CTLA-4 inhibitors combined with PD-1 inhibitors. (D) Linear analysis of risk score and TIDE score; (E) Comparison of TIDE scores between high-risk
and low-risk groups; (F) Comparison of immunotherapy efficacy between high-risk and low-risk groups. P value * P<0.05, **P < 0.01, *** p< 0.001.
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However, prognostic models constructed using multiple genes are

more comprehensive and effective in different malignancies than

prognostic models constructed using a single gene. For example, Ye

et al. (41) constructed an ovarian cancer prognostic model based on

histone acetylation-related genes, and Qi et al. (42) constructed an

ovarian cancer prognostic model related to ferroptosis, while in this

study an ovarian cancer prognostic prediction model was

constructed based on mitochondrial genes.
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Accumulating somatic mutations lead to the occurrence of

cancer and promote the expression of neoantigens (43). TMB has

a specific value in predicting the prognosis of patients with liver

cancer and gastric cancer (44, 45), suggesting that it might become a

new prognostic prediction marker. The results of this study are

consistent with those in the above-mentioned studies. The

mitochondria-related risk score was significantly negatively

correlated with TMB, and the response rate to immunotherapy in
FIGURE 13

Validation of mitochondrial risk scores based on the IMvigor210 cohort predictive power of immunotherapy response. (A) Comparison of risk scores
between the response (CR/PR) group and the non-response (SD/PD) group; (B) Comparison of risk scores between the high-risk group and the
low-risk group; (C) Comparison of immunotherapy efficacy between the high-risk group and the low-risk group; (D) Comparison of overall survival
between the high-risk group and the low-risk group. * p<0.05, **** p<0.0001.
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ovarian cancer patients in the low-risk group was significantly

higher than that in patients in the high-risk group. TMB and risk

score differentiated the prognostic status of ovarian cancer patients.

Macrophage polarization is involved in the prognosis of ovarian

cancer patients (46). The verification results of this study showed an

increasing trend of both M1 and M2 macrophages in the OV group,

and the number of M1 macrophages was significantly higher. The

mRNA expression of the M1-related inflammatory factors CD86, IL6,

and IL1-b was significantly increased in the OV group, that of the M2-

related inflammatory factors CD206, CD163, and IL10 was also

significantly increased. There are research reports that IL-4 has anti-

tumor effects (47, 48), and its expression has important reference value

for judging the malignancy of ovarian cancer and predicting prognosis.

In this study the expression of the macrophage regulatory gene IL4 in

the OV group was significantly down-regulated, suggesting that the

prognosis of ovarian cancer was poor. The inflammatory factor IFN-g
was significantly up-regulated, and that of TNF-a was significantly

down-regulated. The results showed that both M1 and M2

macrophages in the ovarian tissue of the OV group were

significantly activated, representing a reference for the investigation

of polarity changes in tumor-associated macrophages in the prognosis

and treatment of ovarian cancer. In addition, M1 macrophages were

prevalent in patients in the low-risk group, while M2 macrophages

were prevalent in patients in the high-risk group. The expression of M2

macrophage markers in the high-risk group was significantly negatively

correlated with the risk score, suggesting the presence of the

immunosuppressive cells M2 macrophages in the high-risk group,

creating an immunosuppressive microenvironment that inhibited the

eradication of tumor cells mediated by the immune system. As a result,

the prognosis of patients in the high-risk group of ovarian cancer

was poor.

Tumor cells activate immune checkpoint pathways with

different immunosuppressive functions (49). Immune checkpoint

inhibitors have certain efficacy in the treatment of gynecological

malignancies including ovarian cancer. The use of the TCIA

database revealed that the IPS in the low-risk group was
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significantly higher than that in the high-risk group, suggesting

that immune checkpoint therapy might be beneficial in patients in

the low-risk group. In addition, the mitochondria-related risk score

in the training set was positively correlated with the TIDE score,

suggesting that the lower the risk score, the more likely

immunotherapy is beneficial. Several reports show that cross-

tumor information can be used to predict the effect of

immunotherapy (44, 50) . The abi l i ty to predict the

immunotherapy response by mitochondria-related risk scores was

verified using the data of 298 urothelial cancer patients from the

IMvigor210 cohort, which showed that the response rate to

immunotherapy in the high-risk group (16.9%) was significantly

lower than that in the low-risk group (28.7%), and the OS of

patients in the high-risk group was significantly shorter than that of

patients in the low-risk group. This suggested that the

mitochondria-related risk score could be used as a powerful

indicator to predict the response to immunotherapy in

ovarian cancer.

Risk scores help the identification of therapeutic drugs that are

beneficial for ovarian cancer patients. In this study, vinblastine,

Acetalax, VX-11e, and PD-0325901 were more effective in the high-

risk group, while Sabutoclax, SB-505124, cisplatin, and erlotinib

were more effective in the low-risk group.

This study has some limitations: ① the constructed risk scoring

model needs to be further verified using prospective clinical data; ②

the mechanism and role between prognostic genes and

mitochondrial dysfunction still need to be explored.

In conclusion, a prognostic risk score model for ovarian cancer

patients was constructed in this study based on PL23, PKM2,

MRPS12, NDUFC2, HPDL, MRPL14, COA6, FGFR1OP2,

RNF144B, CAPN10, ALDH1L1, and ACSM1. The risk score was

not only highly correlated with macrophage infiltration in ovarian

cancer patients but was also a good predictor of the response to

immunotherapy. In terms of drug sensitivity, patients in the high-

risk group were more sensitive to vinblastine, Acetalax, VX-11e, and

PD-0325901, while patients in the low-risk group were more
FIGURE 14

Value of risk score in predicting ovarian cancer chemotherapy treatment. The vertical axis represents the difference between the median IC50 of the
high-risk group and the median IC50 of the low-risk group minus 1; the horizontal axis represents the names of 48 chemotherapy drugs. *P<0.05;
**P<0.01; ***P<0.001. Vinblastine, Changchun alkaloid; Cisplatin, cisplatin; Erlotinib, erlotinib.
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sensitive to Sabutoclax, SB-505124, cisplatin, and erlotinib. Thus,

the mitochondrial-related risk model might become a reliable

prognostic biomarker for the personalized treatment of ovarian

cancer patients.
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