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Decoding mutational hotspots
in human disease through
the gene modules governing
thymic regulatory T cells
Alexandre A. S. F. Raposo1*, Pedro Rosmaninho1, Susana L. Silva1,2,
Susana Paço1, Maria E. Brazão1, Ana Godinho-Santos1†,
Yumie Tokunaga-Mizoro1†, Helena Nunes-Cabaço1,
Ana Serra-Caetano1, Afonso R. M. Almeida1 and Ana E. Sousa1

1Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa,
Lisboa, Portugal, 2Serviço de Imunoalergologia, Hospital de Santa Maria, Unidade Local de Saúde
(ULS) Santa Maria, Lisboa, Portugal
Computational strategies to extract meaningful biological information from

multiomics data are in great demand for effective clinical use, particularly in

complex immune-mediated disorders. Regulatory T cells (Tregs) are essential for

immune homeostasis and self-tolerance, controlling inflammatory and

autoimmune processes in many diseases with a multigenic basis. Here, we

quantify the Transcription Factor (TF) differential occupancy landscape to

uncover the Gene Regulatory Modules governing lineage-committed Tregs in

the human thymus, and show that it can be used as a tool to prioritise variants in

complex diseases. We combined RNA-seq and ATAC-seq and generated a matrix

of differential TF binding to genes differentially expressed in Tregs, in contrast to

their counterpart conventional CD4 single-positive thymocytes. The gene loci of

both established and novel genetic interactions uncovered by the Gene

Regulatory Modules were significantly enriched in rare variants carried by

patients with common variable immunodeficiency, here used as a model of

polygenic-based disease with severe inflammatory and autoimmune

manifestations. The Gene Regulatory Modules controlling the Treg signature

can, therefore, be a valuable resource for variant classification, and to uncover

new therapeutic targets. Overall, our strategy can also be applied in other

biological processes of interest to decipher mutational hotspots in

individual genomes.
KEYWORDS

regulatory T cells, inborn errors of immunity, translational multiomics, chromatin
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Introduction

Immunological and inflammatory diseases are often associated

to a complex genetic basis and epigenetic perturbations. Whole-

genome sequencing (WGS) has been increasingly used to unravel

the multigenic contribution to these disorders, but the promise of

molecular profiling and individual therapies remains short of

expectations (1–3). Most strategies are based on Genome-Wide

Association Studies (GWAS) and many rare Single-Nucleotide

Variants (SNV) found are of unknown significance (VUS) or

correspond to gain-of-function variants not addressed by

annotation. Also, SNVs falling in non-coding regions are often

insufficiently indicative of causality (4). Finally, and most

importantly, modelling of combined impact of multiple SNV is

challenging, with research still mainly limited to digenic systems

(5). Integration of WGS with gene regulatory networks addresses

both issues by aggregating weak genetic signals through

independent evidence of causal link (6). Such strategy may

uncover previously undescribed trait-associated interactions and

provide a way to prioritise variants and reveal therapeutical insights.

This is of utmost importance given the wide variety of phenotypes

associated with many immunological and inflammatory diseases.

CD4 T cells are the main organisers of immune responses. They

are essential to mount effective antibody responses, to promote the

generation of cytotoxic lymphocytes targeting tumors and infected

cells, and to govern innate immune responses (7). Therefore, CD4 T-

cell disturbances are likely to have a crucial impact in the outcome of

immune disorders. CD4 T cells are functionally grouped in effector

conventional (Tconvs) and suppressive regulatory T cells (Tregs).

They develop primarily in the thymus, although Tregs can also be

induced from Tconvs after leaving the thymus in the so called

periphery (8–12). Thymic Tregs (tTregs) are believed to be

enriched in self-reactive T-cell receptors (TCRs), which is thought

to further enable them to limit auto-reactive responses, and,

therefore, are particularly relevant for self-tolerance and immune

homeostasis (13, 14). Identifying the regulatory modules that control

the Treg signature in the human thymus is crucial to reveal factors

whose deregulation may play a role in immune pathology (15).

Despite this, the focus has been so far on total peripheral Tregs,

including both thymic-derived and peripherally-induced Tregs

(15, 16). Moreover, such studies fail to explore the chromatin

accessibility landscape of Tregs (15, 17). In the thymus, single-cell

sequencing has been employed in the characterisation of early T-cell

commitment and organogenesis, both in mice and humans (18–25).

Although this technique allows the profiling of heterogeneous, rare

cell populations, and their developmental dynamics, it cannot yield

the sequencing depth achieved by bulk RNA-seq, and does not

warrant full coverage of the universe of transcripts (26), nor the

sensitivity required by second order analyses of ATAC-seq data such

as TF occupancy (27). Altogether, there is still a need for genome-

wide data on chromatin accessibility in human tTregs, and higher

resolution analyses, supported by quantification methods, to

understand how tTreg-specific gene expression is regulated.

Lineage-specific expression is regulated by lineage-enriched

binding of multiple TF to cis-regulatory elements in the genome
Frontiers in Immunology 02
(Transcription Factor Binding Sites, TFBS) (28, 29). Whilst ChIP-

seq is the most established technique to fully map and quantify

TFBS, it is demanding in cell numbers. Alternative techniques, such

as CUT&RUN (30), also require TF-specific antibodies which limit

studies to a few tens of TF regulators. ATAC-seq provides a

comprehensive alternative: combined with appropriate digital

genomic footprinting of Regions of Open Chromatin (ROC), it

allows the compilation of the full lexicon of cis-regulatory elements,

as well as an estimate of TF occupancy at the respective genomic site

(27, 31). Whilst it is assumed that TF occupancy/binding is a

measure of TF activity, differences in TF binding at the same

TFBS can be informative on the activity of the same TF in

different lineages (27, 28). This quantification, however, is so far

surprisingly absent in published regulatory models for gene

expression during thymocyte development (32).

Here we defined the expression signature that distinguishes the

Tregs in the thymus for their conventional counterparts and

quantified genome-wide TF binding. Applying an artificial

intelligence approach to TF differential binding maps, we

uncovered the main Gene Regulatory Modules (GRM) shaping

the identity of tTregs in the human thymus. The identified genes are

likely to play a key role in the regulation of autoimmune and

inflammatory processes. Therefore, we tested whether these GRM

generated from healthy thymuses are predictive of mutational

hotspots in a cohort of patients with Common Variable

Immunodeficiency (CVID) featuring severe autoimmune and

inflammatory manifestations not associated with monogenic

mutations. CVID is here used as a model for complex immune

diseases (33–35). The whole genome sequencing (WGS) datasets of

patients with a disease with a likely polygenic basis provide unique

testing data to validate the model by inferring the combined impact

of rare SNV. Additionally, the integration of WGS data support the

biological relevance of the GRM model. Thus, the GRM of human

thymic Tregs delivers both a blueprint for the genome-wide

transcriptional programme defining the Treg lineage, as well as a

tool to help categorise multiple rare variants in immune disorders.
Materials and methods

Human samples

Thymic samples were obtained during paediatric reconstructive

cardiac surgery, using tissue that would be otherwise discarded (3 male

and 3 female children, between 1 and 27 months of age, without

evidence of immunodeficiency or syndromic diseases). Peripheral

blood from 35 patients with a clinical diagnosis of CVID (36, 37),

under follow-up at the adult PID outpatient clinic of Hospital de Santa

Maria, Lisbon, Portugal, were selected based on their severe

inflammatory/autoimmune clinical phenotypes, as depicted in

Supplementary Table 8. All participants or their legal representatives

provided written informed consents. The study was approved by the

ethical boards of the Hospital de Santa Cruz and of the Hospital de

Santa Maria (HSM)/Faculdade de Medicina da Universidade de Lisboa

(FMUL)/Centro Académico Medicina de Lisboa (CAML).
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Cell sorting and flow cytometry analysis

Thymocytes isolated by Ficoll-Hypaque (GE Healthcare) from

cell suspensions obtained by thymic tissue manual dispersion, were

sort-purified to obtain regulatory (Tregs) and conventional

(Tconvs) mature CD4 single-positive (CD4SP) thymocytes

(purities above 95%), based on the surface expression of CD4,

CD8, CD27, CD25 and CD127 using a FACS Aria III (BD

Biosciences), as illustrated in Figure 1A. We decided to sort only

CD27+ thymocytes in order to exclude immature cells. CD3 was

intentionally not used to avoid possible signaling, but the sorting

strategy was validated in parallel using CD3 and intracellular

FOXP3 (Figure 1A) in a Fortessa flow cytometer (BD

Biosciences), using staining protocols previously described (38),

and the antibodies listed in Supplementary Materials

(Supplementary Table 12). Analysis was performed using FlowJo

v10 software.
RNA-seq and differential
expression analysis

RNA was extracted from cell pellets of 600,000 sorted tTregs and

tTconvs from three different thymuses, using the AllPrep DNA/RNA

kit (QIAGEN) and following the manufacturer’s instructions. Libraries

were built selecting for polyadenylated RNA after depleting ribosomal

fraction and then sequenced at both ends by high-throughput parallel

sequencing (RNA-seq) in an Illumina Hiseq4000 sequencer (BGI Tech

Solutions, Hong Kong, China). Raw sequencing was processed and

analysed with SAMtools (39), and sequence quality assessed

with FastQC (see Supplementary Table 12 in Supplementary

Material). The resulting ca. 200 million paired-end reads per

biological replicate (PE100) were uniquely mapped and annotated to

the human genome (hg38) with TopHat2 (40) and transcript

expression quantified with R package HTSeq (41). Count libraries

were normalised to sequencing depth in Count Per Million (CPM),

excluded of genes with less than 1 CPM in more than 2 libraries, scaled

by Trimmed Mean of M-values (TMM) normalisation and corrected

for heterogeneity of samples specific to contrast matrix with weighted

scaling based on voom (42), followed by the quantification of

Differential Expression between tTregs and tTconvs with R package

edgeR (43). Finally, we fitted multiple linear models by lmFit.

Conversion between annotations was made with R biomaRt (44).

Differential Gene Expression threshold set between tTregs and tTconvs

at |log2FC| ≥ 1, with FDR < 0.05 (Supplementary Table 2). Pipeline in

http://10.5281/zenodo.12167484.
ATAC-seq libraries, regions of open
chromatin and differential
chromatin accessibility

ATAC-seq was performed following the Omni-ATAC protocol

(45) with minor modifications, using 5x104 sorted tTreg or tTconv

cells purified from 3 different thymuses. Cells were lysed for 3
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minutes on ice, in 50uL of ATAC-Resuspension Buffer (10mMTris-

HCl pH 7.4, 10mM NaCl, 3mM MgCl2) containing 0.1% NP40,

0.1% Tween-20, and 0.01% Digitonin. tn5 tagmentation was

performed using TDE1 Enzyme and Buffer TD (Illumina) at 37°C

for 30 minutes, shaking at 1000rpm. After purification with a

MinElute PCR Purification Kit (Qiagen), samples were amplified

with NEBNext High Fidelity 2x PCR Master Mix (New England

Biolabs) (31). Final PCR reaction was then purified with a MinElute

PCR Purification Kit followed by size-selection (150bp-1000bp

using Ampure XP beads, Beckman Coulter). Sequencing was

performed using a MGISEQ-2000 (BGI Tech Solutions), yielding

a total sequencing depth between ~200 and 600 million PE50 reads,

and sequencing quality was assessed using FastQC. Reads were

uniquely mapped to hg38 using Bowtie2 (46) and adapted for peak

calling by MACS2 (47) using inhouse pipeline, namely by

converting to appropriate formats and correcting tn5 shift

(https://10.5281/zenodo.10683657). Peaks from all samples were

merged to create the total landscape of Regions of Open Chromatin

(ROC) and signal assigned with BAMscale (48). These peaks were

annotated to Nearest Transcription Start Site with PeakAnalyzer

(49), using GTF annotation for hg38. To determine chromatin

accessibility and its variation between tTregs and tTconvs

(Differential Chromatin Accessibility, DCA), we applied the same

tools, method, normalisations/rescaling as those described above for

RNA-seq libraries, with the Peak_ID of each Region of Open

Chromatin serving as the anchor for signal computation

(Supplementary Table 3 and pipeline in http://10.5281/

zenodo.12167484). DCA vs DEG linear regression analysis

calculated with MM-type estimators (“lmrob” function of

robustbase R package) to correct for data heteroscedasticity.
Digital genomic footprinting and
transcription factor binding analysis

We used the TOBIAS framework 0.12.6 (27) to quantify protein

occupancy in Regions of Open Chromatin (ROC, Supplementary

Table 3), “treg_score” and “tconv_score” and then identify the

underlying consensus motif (“motif_score”, which measures the

sequence match) at each of the genomic footprints - or TF binding

sites (TFBS). Continuous footprint scores with p < 0.01 across

accessible chromatin regions were considered ‘bound’ by a

transcription factor. Transcription factor motifs within ROC

were identified using the Positional Weight Matrixes (PWMs)

in the JASPAR Core database (50, 51). We selected 639 motif

profiles matching “Homo Sapiens species” + “Latest Version”.

Supplementary Table 5 lists TFBS data. Further in silico

epigenomics analysis described in Supplementary Material.
Differential binding cluster analysis and
gene regulatory modules

We found that 14.8% of all TFBS associated to Differential

Expressed Genes can be attributed to more than one transcription
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factor at the same exact location. This may occur for three reasons:

ambiguity of transcription factors within the same DNA-binding

domain family; a reflection of the cellular diversity contained in

bulk NGS data; or, importantly, this may reflect the

heterodimerisation of many relevant transcription factors when

binding to DNA –which is the case of those participating in the AP-

1 complex. We therefore followed the benchmark practice of
Frontiers in Immunology 04
including all motifs detected, even when they map to the same

genomic coordinates (52). To assess the existence of patterns

between the TFBS and the tTreg Signature genes a matrix was

built with the genes as rows and TFBS as columns. After scaling the

matrix by rows and calculating the optimal number of clusters

through elbow and silhouette methods, two k-means algorithms

were run simultaneously, one for the rows, one for the columns.
FIGURE 1

The human thymic Treg signature of expression and chromatin accessibility. (A) tTreg and tTconv sorting strategy and validation of the sorting
strategy showing CD3bright and CD27 expression in CD4SP and levels of FOXP3 in the sorted tTregs and tTconvs. (B) RNA-seq and ATAC-seq for
top 1,000 genes and top 1,000 Regions of Open Chromatin (ROC), ranked by respective fold-change of Differential Gene Expression and Differential
Chromatin Accessibility, segregating between tTregs (red sidebar) and tTconvs (blue sidebar). (C) Profiles of raw expression and accessibility to
chromatin at representative genes in tTreg (red) and tTconv (blue); Top track - chromosome localisation; Bottom track - Gene: black for sense; blue
for antisense; black bars in “Regions of Open Chromatin” track indicate detected peaks proximal to the gene loci in either lineage. FOXP3, with ROC
mostly within introns overlapping the Conserved Non-Coding Sequences (CNS) targeted by its regulators, for CTLA4, at the promotor and two
introns, for CD40LG, at both genic and upstream loci of the corresponding Transcription Start Site (TSS), and for the IL7RA promotor region. Green
arrow indicates ROC with significant higher accessibility in tTregs for CTLA4. (D) Linear regression analysis for Differential Gene Expression (DGE,
|log2FC|≥1 and FDR<0.05, RNA-seq) and Differential Chromatin Accessibility (DCA, q-value < 0.05, ATAC-seq) between regulatory (tTreg) and
conventional (tTconv) thymocytes; black line, linear regression, R2 = 0.2308, p<2.2*10-16; bubbles on mean DCA (log2FC) for all the ROC associated
to each DEG (log2FC), with size of bubble proportional to number of regions; labels refer to known markers of either lineage. See also
Supplementary Tables 1-4.
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Differential binding densities were calculated as the sum of all mean

differential binding quantified in each Gene Regulatory Module

divided by its surface area (number of DEG * number of TF), and

the top 6 were selected (excluding the single-TF CTCF module). We

calculated the contribution of the duplicate TFBS due to

overlapping motifs in each cluster selected. The high differential

binding up_AP1 cluster only contains 5.4% duplicate TFBS, far

below the average for all TFBS (14.8%, as described above). As a

counterexample, the cluster enriched for ETS family consensus

motif in up-regulated genes has low differential binding density

despite containing 16% of duplicated TFBS. Conversely, the TFBS

duplicate content for the high differential binding down_ETS

cluster is just 6.8%. Duplicated TFBS for the KLF/SP1 family are

spread between two clusters of upDEG and downDEG, 17% and

13%, respectively, neither very far from the overall contribution.
Whole-genome sequencing and
variant calling

Genomic DNA extracted from peripheral blood of 35 CVID

patients and sequenced to an average read depth of 30x (BGI-

Shenzhen). The sequence reads were mapped to the reference

GRCh37 genome using the BWA-MEM aligner, version 0.7.17

(53). Downstream processing was performed with SAMtools, and

Picard Tools (http://broadinstitute.github.io/picard). Additionally,

we used WGS data from 35 “Healthy Control” (HC) GRCh38

genomes, gender-balanced (17M/18F) and randomly selected

amongst the subset “Iberian populations in Spain”, download

from the International Genome Sample Resource (IGSR) (54),

generated from blood cells of healthy individuals. The loci for

haplotype calling (expressed genes; Treg Signature genes; GRM

genes) were converted to GRCh37 genome to match the CVID

cohort assembly with the appropriate liftOver utility (55). GATK4

germline short variant calling pipeline (56), following Best

Practices, VCFanno (57) and Ensembl Variant Effect Predictor

(58), and genome Aggregation Database (59) were used for

haplotype calling, filtering, and annotation of single-nucleotide

variants (SNV) found at the loci of genes expressed in tTreg and

tTconvs and at regions of open chromatin associated with these

genes. Calls with a read coverage of <30x were filtered out.

Synonymous variants in gene loci were excluded and the

remainder were only included for allelic frequency in non-Finnish

Europeans (AF_NFE) < 0.01. The pipeline was adapted from

Motta-Raymundo et al. (60) (Supplementary Material). Variants

were analysed within the universe of genes expressed in our CD4SP

RNAseq data (n=11,596) and with the subsets pertaining to the

tTreg signature (n=1,357 DEG), or the different identified GRM

(total n=368 DEG).
Other data visualisation

Custom tracks were obtained by loading the respective RNA-

seq and/or ATAC-seq bigwig files into IGV (61). All heatmaps were

created with the aid of the R “ComplexHeatmap” package. The
Frontiers in Immunology 05
other charts were created with the R packages “ggplot2”, or

“enhancedVolcano”. Visual representations of the gene regulatory

networks (cluster network graphs) were generated with Cytoscape

v3.8.2 (62) using the force-directed Compound Spring Embedder

(Cose) layout followed by a removal of overlaps between the nodes

(yFiles Remove Overlaps).
Quantification and statistical analyses

All quantifications and statistical significance were calculated

with R/Bioconductor, unless indicated otherwise. False-Discovery

Rate, FDR, corresponds to adjusted p-value by multiple testing with

Benjamin-Hochberg correction. The cut-off for expression of 2-fold

change (| log2FC | ≥ 1) combined with FDR < 0.05 warrants the

selection for differences with potential biological relevance.
Results

The human thymic Treg signature and
landscape of accessible chromatin

Regulatory T cells, particularly those committed in the thymus,

play a non-redundant role in the control of autoimmune and

inflammatory diseases. Therefore, it is critical to identify the

relevant networks of epigenomic interactions governing tTregs, or

GRMs. For this purpose, we used the genome-wide expression

(RNA-seq) and chromatin accessibility maps (ATAC-seq) of

purified CD4 single-positive (CD4SP) Treg and Tconv cells from

three human thymuses (Figure 1A). RNA-seq yielded 12,909 genes

with non-neglectable expression levels in at least one of the lineages

(Figure 1B top, table in E-MTAB-11211), whilst peak-calling of

ATAC-seq signal identified 188,169 Regions of Open Chromatin

(ROCs) (Figure 1B bottom, Supplementary Table 1 and E-MTAB-

11220), including in promoters, gene body, or intergenic regions

(63). Figure 1C illustrates the analysis done with a focus on genes of

key relevance for Tregs (FOXP3, CTLA4, and IL7R), or

Tconvs (CD40LG).

We first investigated the association between the 1,357

Differentially Expressed Genes (DEG) defining the “tTreg

Signature” (|log2FC| ≥ 1 and FDR < 0.05, Supplementary Table 2)

and the ROC to model the regulatory topology controlling it at the

transcriptional level. In parallel, quantification of differential

chromatin accessibility (DCA) between the tTreg and tTconv

asserted that only 2,504 (1.3% of all ROC) show significant

differences in accessibility (Supplementary Table 3, empirical FDR/

q-value ≤ 0.05, corresponding to |log2FC| ≥ 0.68, (47). Since ROC

bearing both significant and non-significant differences in

accessibility may influence differential expression, we annotated all

ROC (including those corresponding to |log2FC| < 0.68) to the

nearest Transcription Start Site (TSS). This results in 8,062 ROC

potentially regulating 1,265 differentially expressed genes, with a

median of 4 ROC per annotated tTreg signature gene (Figure 1C;

Supplementary Table 4, ROC annotation/DEG overlap of 1,265/1,357

= 93%). All ROC annotated to the tTreg Signature - 329 “open”, 57
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“closed”, and 7,676 “unchanged” - were then included in the

remaining analysis and defined as the “tTreg chromatin landscape”

(Supplementary Table 4).

We therefore assessed how much of the differences in

chromatin accessibility could explain those in gene expression

between the lineages. Regression analysis of DCA vs DEG (R2 =

0.2308, p < 2.2*10-16, Figure 1D; Supplementary Tables 2–4),

showed that, differences in gene expression can only partially be

explained by differential chromatin accessibility, and that most of

the up/down DEG (from now onwards, “upDEG” and

“downDEG”) cannot be predicted by the associated open/closed

ROC, respectively, suggesting further layers of transcriptional

control localising to these regulatory sites.

To investigate aditional layers of regulation we focused on tTreg

associated TF activity. The tTreg Signature (Supplementary Table 2)

includes 56 up-regulated and 16 down-regulated transcription

factors (TF), with FOXP3, the master Treg TF, as the most

upregulated (log2FC=5.93, Figure 1D; Supplementary Table 1). In

addition, tTregs and tTconvs express many other TF (Figure 2A),

which may also contribute to define the Treg identity.
Frontiers in Immunology 06
We asked which TF are targeting tTreg signature genes using

digital genomic footprinting of ATAC signal, both at tTreg and

tTconv ROC, by crossing the JASPAR database of consensus

sequences for 639 TF against the 1,010 TF that are expressed in

human CD4SP thymocytes (Figure 2A) (64). To measure TF local

activity, a Transcription Factor Binding Site (TFBS) was defined for

each TF interaction with the genome and the estimated impact

quantified by the relative occupancy on its respective genomic

segment (27), TFBS binding score, Figure 2A). Thus, we

identified 34,167 TF binding sites (TFBS) in the tTreg chromatin

landscape, corresponding to 233 different TF expressed and bound

to DEG in tTreg (Supplementary Table 5).

We next focused on FOXP3, the most important TF in Treg

identity (65), measuring its mark on our analysis. We found that

FOXP3 binds directly to 87 TFBS in tTregs, potentially regulating

74 DEG (Figure 2B; Supplementary Tables 5, 6). Of the FOXP3

direct targets, 44 are upDEG and include known Treg markers, and

many currently unreported transcripts potentially required for Treg

identity in the human thymus (Figure 2B). Conversely, we found

IL7R and CD40LG amongst the 30 downDEG directly bound by
FIGURE 2

Binding of transcription factors to the thymic Treg signature (A) top, Expression levels for all transcription factors (TF) in tTreg and tTconv data sets
(TF, n=1,010, log2CPM shown in column Z-score); left box referring to 16 TF down-regulated in tTregs (downDEG) and right box indicates 56 TF up-
regulated in tTregs (upDEG), with FOXP3 as the TF with highest fold-change. Bottom, gene expression in each of the three replicates in tTregs and
tTconvs data sets for all transcription factors that can be identified through a position-weight matrix (PWM) in the JASPAR database (233 of 639,
log2CPM shown in row Z-score). (B) FOXP3 regulatory network: arrows represent binding of TF (square nodes) to their target DEG (circular nodes).
Blue, downDEG; red, upDEG. See also Figure S1; Supplementary Tables 2, 5, 6.
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FOXP3 (Figure 2B; Supplementary Tables 5, 6). FOXP3

downstream direct regulation includes potential FOXP3 binding

to TF which may have their own direct targets downstream of

FOXP3 (RORA, IKZF4, NR4A3, TGID2); and to three subnetworks

of co-regulation (Figure 2B; Supplementary Table 6), defined as

simultaneous FOXP3 binding to a TF and its targets (66).

Specifically, we found FOXP3 TFBS at the repressor RUNX1, and

at their co-downregulated targets (67); at IRF4 and their

co-regulated genes, including IL2RA and IKZF2; and other TF

with no DEG targets in common with FOXP3, such as KLF6 and

TGIF1. Finally, FOXP3 binds to up-regulated PRDM1, which our

data predicts to co-bind several FOXP3 direct targets, including

FOXO1 – which might constitute a forward feedback loop for

FOXP3 (66, 68) (Figure 2B; Supplementary Table 6).

To validate our in-silico TFBS, we quantified the amount of

FOXP3 ChIP-seq signal obtained from human naïve regulatory T

cells (Schmidl et al., 2014) mapping to the TFBS found in tTregs for

DEG targeted by FOXP3 and confirmed that FOXP3 sites in tTregs

can be bound by FOXP3 based on available ChIP-seq data

(Supplementary Figure S1, and Supplementary Tables 5, 6).

Overall, these results indicate that the regulation of

transcription of the genes defining the Treg signature in the

human thymus depends, in part, on increased/decreased

chromatin accessibility and uncover binding patterns of TF

programs dist inct from that of FOXP3 that deserve

further exploration.
TF Differential binding reveals main gene
regulatory modules controlling the
tTreg Signature

Next, we reasoned that assessing differential binding associated

to DEG may uncover the most relevant modules of the tTreg

gene regulatory network. Therefore, we scored the tTreg vs tTconv

differential binding for the 233 candidate TF (Figure 3; Supplementary

Figures S2, S3), at each of the 22,180 and 11,987 TFBS detected in

association with the upDEG and downDEG, respectively

(Supplementary Table 5). To determine the TF groups associated

with different chromatin landscapes potentially regulating the

tTreg signature and their target DEG, we considered only sites with

a significant binding score in tTregs (ie, “TFBS tTreg bound”, p < 0.01)

and used k-means for unsupervised double clustering of TF and DEG

according to their TF differential binding profiles (Figure 3;

Supplementary Figures S2, S3; Supplementary Table 5). This strategy

allowed us to identify the Gene Regulatory Modules (GRM) – defined

as the pairing between a TF cluster and a DEG cluster – with the

highest differential binding densities in upDEG and downDEG

(Figure 3; Supplementary Figure S4). The selected GRM comprise:

the AP-1 family; the ETS domain family; and the KLF/SP protein

family (Figures 3-5; Supplementary Figures S2-4, Supplementary

Table 7).

The AP-1 TFBS cluster (Figures 3, 4A, B; Supplementary Table 7)

is formed by BATF (log2FC=3.01), MAFK, BACH2, FOSL2, FOS,
Frontiers in Immunology 07
JUNB, and JUND, which featured high differential binding in tTregs to

a cluster of 35 upDEG that included the Treg lineage marker CTLA4

(69); the cytokine receptors IL15RA (70), IFNLR1 and IL4R; PRDM1;

RORA; genes coding for proteins involved in cell trafficking, such as

PERP, CDH1, PCDH12; and the chromatin remodeller HDAC9.

The ETS domain TF cluster is characterised by high differential

binding in tTregs in downDEG (Figures 3, 4C, D, Supplementary

Table 5), and includes ELF2, ETS1 and 2; ETV5 and 6, ELF1, ELK1,

ELK3 and 4, FLI1, chromatin remodeller ZBTB7A (or LRF, partner

to ZBTB7B/Thpok) (71); ZKSCAN5; and ETV1 and ELF4,

significantly upregulated in tTregs (log2FC=2.44 and log2FC=1.01,

Figure 4D; Supplementary Table 7). Notably, the ETS cluster binds

directly to the Tconv lineage marker CD40LG (72); and to RARG,

which binds to the Foxp3-CNS1 to maintain peripheral Tregs (73).

The third TF cluster is composed of KLF/SP family, which may

act as transcriptional activators or repressors (74, 75). The

transcriptional activator KLF6 is the only TF significantly

upregulated (log2FC=1.45, Figure 5A), although this cluster

includes several other TF also expressed in tTregs (Figure 5A;

Supplementary Table 7). The KLF/SP cluster forms distinct GRM,

according to higher or lower differential binding to corresponding

targets in four clusters of differential expression – two upDEG

(Figure 5B; Supplementary Table 7) and two downDEG (Figure 5C;

Supplementary Table 7).

The KLF/SP cluster targets with increased differential binding in

tTregs the upDEG cluster which includes BCL3, DUSP4, IL10RA,

the NF-kB pathway member RELB; and NFKBIZ, amongst other

NFKB2 pathway inhibitors; and the adhesion molecule CAV1

(Figure 5B top). The same TF cluster also targets a second cluster

of upDEG, but with decreased binding in tTregs (Figure 5B

bottom), including NFKB2, REL, both NFKB2 pathway members

and POU2F2 (Oct2); chromatin organiser LMNA; NR4A3, a

transactivator of FOXP3 expression; the procadherin PCDH9; and

NFIA, a putative pioneer factor.

Amongst the downregulatory modules (Figure 5C), high

differential binding of transcriptional repressors in tTregs (eg, KLF9

and KLF11) may explain the differential expression of a cluster of 70

downDEG (Figure 5C top), e.g., DNM3, a minus-end oriented

microtubule molecular motor; integrin ITGA6; EPAS1, a bHLH

factor indispensable to Treg function in mice (76); and CAMKK1.

Conversely, decreased binding of transcriptional activators (eg, KLF6

and KLF3) in tTregs is a potential mechanism of regulation of 32

downDEG (Figure 5C bottom), including CCR9; ITGA1; WNT5A;

CXADR; and CEBPB, involved in Tconv differentiation.

We defined the GRM based on direction of expression of targets

and the differences in TF occupancy between lineages, which are

likely to be further modulated by the TF expression levels, pointing

to the TF with highest expression in tTregs, namely BATF

(Figure 4B), ETV1 (Figure 4D), and KLF6 (Figure 5A).

Altogether, taking profit of TF differential binding to define

gene regulatory networks more accurately, as it allows us to model

DNA-protein interaction directly from genome-wide quantification

at a local level, we were able to identify six Gene Regulatory

Modules governing the human thymic Treg signature.
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Exploring the gene regulatory modules of
human thymic Tregs to decipher complex
immune disorders

Mutations falling on gene modules controlling the thymic Treg

signature are likely disruptive of the Treg population and/or its

function. Given the importance of thymic Tregs in immune-based

disorders, we hypothesised that tTreg GRM genes were particularly
Frontiers in Immunology 08
enriched in rare variants in such diseases (77). If so, the tTreg GRM

could be used as a tool to prioritise genomic variants when a

multigenic cause is expected.

To test this possibility, we selected patients with Combined

Variable Immunodeficiency (CVID), the most frequent

symptomatic primary immunodeficiency (PID). No monogenic

cause has been identified in 75 to 95% of the cases in CVID

cohorts with variable genetic backgrounds (36), suggesting a
FIGURE 3

Transcriptional factor differential binding reveals main gene regulatory modules controlling the human thymic Treg signature. Heatmaps of differential
binding score of expressed Transcription Factors (TF) bound to Differential Expressed Genes (DEG), upDEG (top) and downDEG (bottom); k-means
double clustering, Transcription Factor Binding Sites (TFBS) in columns, respective bound targets, or DEG, in rows; the significant Gene Regulatory
Modules (GRM) are highlighted with the name of the TF cluster on the top of the column; heatmap cells show the mean score for all binding sites of
each TF to each DEG. Side graphs show the representative consensus motif for TF family and the profiles of mean differential binding to respective DEG
from the GRM within 200bp centred at the respective footprint (LOESS curves), with the black and dashed line representing the mean differential binding
of all other DEG clusters targeted by the same TF cluster (background for upDEG in the top and downDEG in the bottom). All panels and graphs:
orange, increased binding in tTregs; green, decreased binding in tTregs. See also Supplementary Figures S2-4, Supplementary Table 7.
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polygenic basis, as illustrated by our own study in monozygotic

twins (35). Although the main diagnostic criteria are based on

impaired antibody production, the severe immune-dysregulatory

and inflammatory manifestations featured by CVID patients are

likely driven by T-cell defects (33, 35, 60). Therefore, the tTreg

GRM offer a strategy to infer biological meaning from the SNVs

documented in CVID patients, including non-coding mutations. To

evaluate this possibility, we explored the mutational landscape

obtained by whole-genome sequencing (WGS) of 35 CVID
Frontiers in Immunology 09
patients featuring severe clinical inflammatory/autoimmune

phenotypes (Supplementary Table 8).

We focused on rare SNVs (non-Finnish European allelic

frequency, AF_NFE < 0.01) and excluded indels and larger

structural variations from this analysis. We quantified both the

fraction of genes carrying at least one SNV and the number of SNVs

per 100kb, since the mutation load estimative is a common

approach to evaluate the weight of disease-associated variants in a

panel of genes (78). Numbers obtained in the GRM associated genes
FIGURE 4

AP-1 and ETS gene regulatory modules and respective transcription factor differential expression in human thymic Treg signature. Interactome of the
AP-1 (A) and of the ETS (C) Gene Regulatory Modules (GRM) representing direct binding by the Transcription Factors (TF) in the respective cluster to
their target genes; TF nodes, grey squares; non-TF nodes, orange circles, higher binding by respective TF in tTregs. Analysis of the average
expression of the TF included in the AP1 (B) and ETS (D) GRM, as well as their differential binding to respective targets. The barplots in the top graphs
show TF Average Expression (log2CPM) in tTreg (black) and tTconv (hatch), superimposed to TF Differential Expression (red lineplot, log2FC); the
bottom graphs show the Transcription Factor Differential Binding in tTregs to targets by TF in these GRM. See also Supplementary Figure S4, and
Supplementary Table 7.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1458581
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Raposo et al. 10.3389/fimmu.2024.1458581
were compared to those obtained with the total tTreg signature, as

well as to those found in the universe of genes expressed in our

mature CD4SP thymocyte datasets (see Supplementary Tables 9,

S10). Results were further compared with those from de novo

haplotype calling on WGS from blood cells of 35 healthy

individuals of Iberian background (WGS data from IGSR, see

Supplementary Tables 9, 10).

We found that the fraction of genes with at least one rare SNV

in CVID patients was significantly higher for GRM genes,

performing better than the other gene sets considered (tTreg
Frontiers in Immunology 10
Signature and All Genes) in capturing the extent of core genes

possibly affected in CVID (Figure 6A, all comparisons p<10-5, see

Supplementary Table 9). Importantly, and although a similar result

is obtained for healthy individuals, the SNV-gene fraction was

always higher in CVID patients when compared to the HC

cohort (all p=1.9*10-12, see Supplementary Table 9). In addition,

we determined for each of the GRM gene the percentage of CVID

and HC individuals featuring at least one SNV, and found, for the

large majority of GRM genes, a higher prevalence of mutations in

the CVID cohort (Figure 6B; Supplementary Table 11).
FIGURE 5

KLF/SP gene regulatory modules and respective transcription factor differential expression in human thymic Treg signature. (A) The barplot in the left
graph shows TF Average Expression (log2CPM) in tTreg (black) and tTconv (hatch), superimposed to TF Differential Expression (red lineplot, log2FC);
Differential Binding (jitter plots) to targets by TF in the KLF/SP GRM; higher differential binding (orange) in tTregs and lower differential binding in
tTregs (green) in upDEG (centre graphs) and downDEG (right graphs). (B) Interactome of the KLF/SP GRM in upDEG (left) and downDEG (right),
representing direct binding by TF in the KLF/SP cluster and respective target genes with higher differential binding in tTregs (orange) and lower
differential binding in tTregs (green); TF nodes, grey squares; non-TF nodes, circles in orange for higher binding and green for lower binding by
respective TF in tTregs. See also Supplementary Figure S4, Supplementary Table 7.
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Mutated genes in the CVID cohort were overrepresented in each

of the distinct GRM, both for upDEG and downDEG (Figure 7A, all

comparisons p<10-10, see Supplementary Table 9), and there were

patients harbouring rare mutations in more than 60% of genes in

some GRM (eg, KLFhigh_downDEG – Supplementary Table 9). We

then questioned if there were specific GRMs more affected by SNVs

in some patients than others. To do this, we grouped the CVID

patients via hierarchical clustering analysis of prevalence of mutated

genes in each GRM (Figure 7B; Supplementary Table 9). The main

difference seems to be established between those patients with an

enrichment for the AP1_upDEG GRM and those without (first

branching, Figure 7B), although we could ultimately distinguish 6

clusters of patients (Figure 7B).

Additionally, we estimated the mutation load and made the

same analysis, which produced concordant results (Supplementary

Figure S5; Supplementary Table 10). The CVID cohort featured

much higher values of SNV counts per 100kb than healthy controls

in all gene sets (p=2.0*10-12, Supplementary Figure S5A,

Supplementary Table 10). All GRM contributed to this high

variant density in CVID (p<10-5, Supplementary Figure S5B,

Supplementary Table 10). When clustering CVID patients

according to the mutation load in each GRM, we observed two

clusters and, again, with a main segregation imposed by the

AP1_upDEG GRM (Supplementary Figure S5C, Supplementary

Table 10).

Finally, and given the importance of TFBS in the definition of

the GRM, it would be reasonable to assume that these are sites of

significant accumulation of variants in CVID patients. Surprisingly,

we only found 3 SNVs falling on such TFBS: rs535861886 in patient
Frontiers in Immunology 11
103; rs74639548 in patient 113; and rs536121979 in patient 109.

These affect binding sites occupied by EGR2 (103 and 113) and SP1

(possibly SP2, 3, or 4, patient 109).

These results provide experimental support to the identification

of GRM as a reliable methodology for the integration of T-cell

multiomics to identify relevant downstream pathways defining Treg

identity and function. The tTreg GRM are significantly enriched in

genic regions overlapping rare SNVs found in CVID patients,

strongly suggesting that these GRM and downstream pathways

are disrupted in patients with CVID. These data support the use of

differential TF binding and Gene Regulatory Modules – GRM - as a

tool to assist in the investigation of core genes or pathways

underlying the pathogenesis of complex immune disorders.
Discussion

The definition of Gene Regulatory Modules – GRM – by

unsupervised clustering of differential binding provides a

quantified approach to identify the transcriptional program

controlling the Treg lineage in the human thymus. We uncoupled

the analyses of the cellular TF expression from the TF binding to the

accessible regions in the genome and investigated the direct

correlation between the TF differential binding and the

differential gene expression of their targets. The identified

modules included genes with recognised prominent role in Treg

function and new putative ones, and are enriched in variants in

patients with clinical evidence of immune dysregulation due to a

l ike ly mult igenic disease , namely Common Variable
FIGURE 6

Gene regulatory modules of tTreg are enriched in rare variants in CVID patients. (A) Fraction of genes with at least one SNV in their loci; comparison
between distributions for the healthy control cohort (HC, grey) and CVID cohort (purple), in: all genes expressed in tTregs and tTconvs; genes of the
tTreg Signature (DEG); and genes forming the GRM. Fraction of genes with SNV in CVID patients always higher than in HC, with significant enrichment in
GRM genes (showing only the upper bound of the p-value in all comparisons, p<10-5 – for exact p-values, see Supplementary Table 9). (B) Analysis of
the proportion of genes of the Gene Regulatory Modules (GRM) of thymic Treg (tTreg) with at least one SNV in the CVID versus healthy control cohorts;
the diagonal line indicates equal prevalence; each dot represents a gene (N=355; genes with no SNV in both cohorts are not shown), and those with
previously reported pathogenic mutations associated to CVID are highlighted in purple and to other primary immunodeficiencies (PIDs) in blue (from
The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity, https://doi.org/10.1007/s10875-022-01352-z; Human Inborn
Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee, https://doi.org/10.
1007/s10875-022-01289-3). See also Supplementary Figure S5.
frontiersin.org

https://doi.org/10.1007/s10875-022-01352-z
https://doi.org/10.1007/s10875-022-01289-3
https://doi.org/10.1007/s10875-022-01289-3
https://doi.org/10.3389/fimmu.2024.1458581
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Raposo et al. 10.3389/fimmu.2024.1458581
Immunodeficiency. We thus propose differential binding as a bona

fide measurement of TF specific activity, which can overcome

limitations in traditional computational inference approaches to

regulatory networks.

Modelling of Gene Regulatory Networks via bulk or single-cell

ATAC is usually based on a few TF, selected by the top frequency of

consensus motifs in regions of open chromatin, by the enrichment

at promoters, or by the TF expression level (32, 79–82). The

alternative tools DiffTF and decoupleR (83, 84) use ATAC-seq

data instead of TF expression to estimate TF activity. However, their

strategy relies on binning accessible regions (peaks) by motif

frequency which again limits the identification of most TF

involved and precludes their use in local genome-wide analysis.

In contrast, our novel approach, based on local differential TF

occupancy in the chromatin landscape of tTregs and Tconvs,

provides a computational tool to infer the GRM governing

human regulatory T cells with meaningful biology significance.

The AP-1 GRM is defined by its higher differential binding to

upregulated genes in tTregs. AP-1 plays a central role in T-cell

activation (85), Th differentiation, and T-cell anergy (86). In murine

Tregs it may promote Foxp3 expression through binding to its

regulatory sites (86, 87). The AP-1 GRM includes BATF and the

repressor BACH2. In mice, BACH2 interacts with AP-1 members at

the shared consensus sites in thymic-derived Tregs (88), and targets

lineage super-enhancers (89). Our data show that BACH2 is

downregulated in tTregs, so its repressive function is likely
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alleviated in tTregs. Thus, our data further support a role for the

AP-1 family in the establishment of human tTreg cells (66).

The KLF/SP GRMs may represent a more diverse mechanism in

differential binding. KLF factors regulate multiple aspects of T-cell

and lymphocyte biology, such as development, differentiation,

trafficking, maturation, and quiescence (90). Consistently, our

data indicates direct upregulation of diverse members of the NF-

kB pathway by the KLF/SP cluster. We speculate that KLF/SP

combine TF expression levels with alternating differential binding

to refine derepression/activation of specific transcripts in the tTreg

gene signature. Eg, whilst KLF6 overexpression drives the

upregulation of its bound targets (74), it may be out-competed in

binding to downregulated targets by less expressed repressors, e.g.,

KLF9, KLF11, or SP3. Of note, KLF6 regulates M1 proinflammatory

polarisation in mouse and humans as a NF-kB co-activator and its

role in lymphocyte biology remains largely unclear (91, 92).

Finally, we uncovered a GRM resulting from ETS family TF and

downDEG clusters. In mice, it has been suggested that Foxp3

exploits the enhancer landscape bound by Ets factors to specify

the Treg lineage. In addition, Elf4 facilitates thymic Foxp3

expression (93), which is consistent with ELF4 expression and

binding in human tTregs.

We believe that our original strategy to focus on mature thymic

regulatory and conventional cells represents an advantage for the

identification of the gene modules governing human Tregs. Our

approach avoids confounding factors generated by activated/
FIGURE 7

Mutated genes in the CVID cohort were overrepresented in each of the GRM with AP1_upDEG as main patient discriminator (A) Fraction of genes
with at least one SNV in their loci for each of the GRM (AP1_upDEG, KLFhigh_upDEG, KLFlow_upDEG, ETS_downDEG, KLFhigh_downDEG,
KLFlow_downDEG), compared amongst them and between CVID and HC cohorts. (B) Hierarchical clustering of CVID patients by fraction of genes
with SNVs in each GRM; six clusters were identified, with the most distinctive patterns set by high prevalence of variant-burden genes in AP1_upDEG
and ETS_downDEG (1st cluster from top) and in KLF GRM (4th cluster from top); scale, Z-score: darker magenta, higher fraction; darker cyan, lower
fraction. SNV were defined as rare variants (gnomADg, AF_NFE< 0.01) excluding synonymous nucleotide polymorphisms. HC genomes obtained
from sample collection of Iberian individuals (IGSR). All p-values adjusted by Benjamin-Hochberg, showing only the upper bound and omitting non-
significant values for clarity of visualisation. Please refer to Supplementary Tables 9, 11 for the exact p-values and percentages, respectively. See also
Supplementary Figure S5.
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differentiated cells in the periphery, since human conventional CD4

T cells may express Treg markers upon TCR stimulation,

challenging Treg lineage isolation (13). Moreover, a significant

component of peripheral Tregs may be regulatory T cells induced

from conventional CD4 T cells, which are thought to be more

plastic and to acquire more easily conventional profiles according to

environmental conditions (11, 12, 94). Additionally, thymic Tregs

are known to be particularly relevant in the control of

autoimmunity, in part due to their enrichment in self-reactive

TCRs (13, 95).

The omnigenic model (96) proposes that genomic variants with

small molecular effects may contribute toward a complex trait.

Their cumulative impact would be relayed to a set of core genes

through cell-specific regulatory networks. We showed that GRM

mapped to mutational hotspots in healthy subjects and were

significantly enriched in rare variants in CVID patients, which

represent an important model of a clinical setting of immune

dysregulation with a multigenic basis. These findings are strongly

suggestive of the biological relevance underlying the TF-target

interactions they codify. It is therefore reasonable to attempt the

stratification of CVID patients based on GRM variant enrichment.

We found an immediate classifier in AP1_upDEG, which is

consistent with the recognised role of this protein complex in

Treg development (66, 87) and the upregulation of the

transcription factor BATF in these cells. This is followed by KLF

GRM or ETS_downDEG GRM, defining a hierarchy for patient

segregation. However, at the time of this study we could not observe

a direct correlation between these clusters and clinical

manifestations in the respective patients, which may be in part

related to the overlap of clinical phenotypes in CVID patients with

immune dysregulation (60), as well as to the possible progressive

nature of the disease with some patients developing different

complications over time (97).

Future studies should validate our data in other CVID cohorts

and further investigate the variant landscape of other clinical

contexts. Although several lines of evidence support the biological

significance of the identified GRM, it would be of interest to

increase our confidence in their representativity by expanding the

number of replicates used to generate them. Another limitation of

the study was the use of paediatric thymuses. However, tTregs cells

ought to be long lived after thymic egress and therefore their

molecular signature is likely to remain impactful until late in

adulthood. In spite of the relatively small number of thymuses

there were a high degree of concordance between the samples at

both phenotype and transcriptional levels. Additionally, this study

is constrained by two technical limitations unfortunately common

to all epigenomic analyses: first, the available consensus motif

databases are not comprehensive enough to identify all TF

expressed in our cells. Second, it remains difficult to discriminate

each TF-DNA interaction as by the distribution of cells represented

in bulk data: different TFBS identified in proximity/overlap may

result either from distinct TF with similar motif affinity, or small

shifts for the same TF within its allowed degeneration around the

core motif. Either way, basing our clustering in differential binding

allows the determination of quantitatively distinct modules of

regulation whilst preserving possible qualitative ambiguities as
Frontiers in Immunology 13
DNA-binding domain families. This ambiguity may then be

experimentally resolved in future, more focused, studies.

Taken together, these results suggest an application for GRM in

the prioritisation of rare variants, and a possible alternative to

expression levels as a function/impact classifier. Moreover,

accumulation of SNVs associated to specific sets of GRM genes

could be used to infer candidate pathways to be further explored to

disentangle the polygenic basis of complex disorders and identify

potential targets for personalised therapy.

Here, we demonstrated how analysing differential binding

information extracted from bulk ATAC-seq from contrasting

cellular types is a valuable strategy to uncover gene regulatory

modules. We generated a resource of key gene regulatory modules

governing the human Treg expression through their signature

chromatin accessibility in the thymus. We found the application

to the CVID genomic context to be particularly suitable whilst

probing the GRM strategy in prioritising variants in complex

immune diseases. The results support a broader application of the

GRMmodel to other complex disorders, and to unlock the potential

of whole-genome sequencing, namely by helping to evaluate

variants of uncertain significance and/or their combined impact

at an individual level.
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