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Genetically modified and
unmodified cellular approaches
to enhance graft versus leukemia
effect, without increasing graft
versus host disease: the use of
allogeneic cytokine-induced
killer cells
Benedetta Rambaldi1*, Giuliana Rizzuto1,2,
Alessandro Rambaldi1,3 and Martino Introna1

1Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy, 2Molecular
and Translational Medicine Doctoral Program (DIMET), University of Milano-Bicocca, Monza, Italy,
3Department of Oncology and Hematology, Università degli Studi di Milano, Milan, Italy
Although allogeneic hematopoietic cell transplantation (HCT) represents a

curative approach for many patients with hematological diseases, post-

transplantation relapse occurs in 20-50% of cases, representing the primary

cause of treatment failure and mortality. Alloreactive donor T cells are

responsible for the graft versus leukemia (GvL) effect, which represents the key

mechanism for the long-term curative effect of HCT. However, the downside is

represented by graft versus host disease (GvHD), largely contributing to

transplant-related mortality (TRM). Multiple factors play a role in regulating the

delicate balance between GvL and GvHD, such as the optimization of the donor

HLA and KIR match, the type of graft source, and the adaptive use of post-

transplant cellular therapy. In addition to the standard donor lymphocyte infusion

(DLI), several attempts were made to favor the GvL effect without increasing the

GvHD risk. Selected DLI, NK DLI, activated DLI andmore sophisticated genetically

engineered cells can be employed. In this scenario, cytokine-induced killer (CIK)

cells represent a suitable tool to boost GvL while minimizing GvHD. CIK cells are

T lymphocytes activated in culture in the presence of monoclonal antibodies

against CD3 (OKT3), interferon-gamma (IFN-g), and interleukin-2 (IL-2),

characterized by the expression of markers typical of NK cells and T cells

(CD3+, CD56+, with a prevalent CD8+ phenotype). CIK cells can mediate

cytotoxicity through both MHC and non-MHC restricted recognition, which is

the so‐called “dual‐functional capability” and display minimum alloreactivity.

Allogeneic CIK cells showed a favorable rate of response, especially in the setting

of minimal residual disease, with a rate of GvHD not exceeding 25%. Finally, the

CIK cell platform can be adapted for chimeric antigen receptor (CAR) cell
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strategy, showing promising results in both preclinical and clinical settings. In this

review, we describe the main immunological basis for the development of the

GvL and the possible cellular therapy approaches used to boost it, with a

particular focus on the use of CIK cells.
KEYWORDS

hematopoietic cell transplant, donor lymphocyte infusion (DLI), cytokine-induced killer
(CIK) cells, leukemia, graft versus leukemia (GVL), chimeric antigen receptor (CAR)
1 Introduction

Allogeneic hematopoietic cell transplantation (HCT) remains a

curative approach for many patients with malignant and non-

malignant hematological diseases (1). Acute myeloid leukemia

(AML) represents the most frequent indication for HCT,

accounting for 38% of transplants in Europe (2). In medically fit

patients, HCT represents the most used post-remission therapy,

reducing relapse incidence by eliminating residual leukemic cells

(3). However, post-transplantation relapse occurs in 20-50% of

patients, still representing the primary cause of treatment failure

and mortality (4–6).

The anti-leukemic effect of transplant is due to the conditioning

regimen, consisting of high-dose chemotherapy with or without

total body irradiation (TBI), and to the donor immune surveillance.

The conditioning regimen aims not only to kill residual leukemic

cells but also to reduce recipient bone marrow hematopoietic and

immune cells. The intensity of the conditioning used depends on

the fitness and age of the patient (7, 8). Although myeloablative

conditioning (MAC) showed better activity in controlling the

disease recurrence in AML and in myelodysplastic syndrome

(MDS) patients, compared to reduced intensity conditioning

(RIC) (9), the use of RIC regimens increased over time, allowing

the treatment of elderly or unfit patients too.

Alloreactive donor T cells are responsible for the graft versus

leukemia (GvL) effect, which represent the key mechanism for the

long-term curative effect of HCT, especially after RIC HCT (10).

However, donor T cells are also responsible for alloreactivity against

normal tissues, leading to graft versus host disease (GvHD), largely

contributing to the transplant-related mortality (TRM) (6). The first

description of the GvL effect goes back to the experimental mouse

model, in which the animals injected with leukemic cells were treated

with TBI followed by the administration of isologous or homologous

myeloid tissue. Both graft sources could restore the hematopoietic

compartment, but only the latter one displayed the ability to protect

from leukemia. However, it was also associated to lethal toxicity

(diarrhea) (11). These preliminary experiments showed for the first

time the tight connection between GvL and GvHD. In 1994, Gale and

colleagues reproduced these data in patients, showing that HCT from

sibling donors can potentially cure patients with AML, while a minor

effect was seen using a syngeneic donor (12, 13).
02
Post-transplant relapse is often driven by the ability of the

tumor to escape from the immunological surveillance, hampering

the GvL activity (14). Principal mechanisms of immune escape after

HCT are loss of mismatched human leukocyte antigen (HLA)

haplotype (15–17) HLA downregulation (18–20), and inhibition

of allogeneic T cells through overexpression of inhibitory receptors

or the perturbation of anti- and pro-inflammatory cytokines (19).

Moreover, different strategies are used to modulate the donor T cell

alloreactivity and prevent GvHD, such as the optimization of the

donor match, the T cell depletion (both in vivo and ex vivo), and

several immunosuppressive drugs (21). However, the same

approaches could hamper the desired GvL activity, increasing the

risk of disease relapse. For these reasons, multiple strategies were

tested to boost the GvL activity after transplant, including different

cellular therapy approaches, such as donor lymphocyte infusion

(DLI), selected DLI, activated DLI, cytokine-induced memory-like

(CIML) NK cells, and cytokine-induced killer (CIK) cells. Finally,

genetically modified lymphocytes using chimeric antigen receptor

(CAR), represent a potent tool to boost the GvL in specific disease

setting, where a target antigen is available.

This review aims to describe the main immunological basis for

the development of the GvL after HCT and the possible cellular

therapy approaches used to boost it, with a particular focus on the

use of CIK cells.

2 Immunological basis of GvL: donor
selection through HLA, KIR matching
and graft source

The GvL activity can be predicted and modulated during the

selection of the suitable transplant donor, in terms of HLA

matching, killer Ig-like receptor (KIR) alloreactivity, and type of

graft source (Figure 1).
2.1 HLA matching

The HLA genes, which are located on the short arm of

chromosome 6 (6p21.3), encode for the molecules responsible for

presenting antigens to T lymphocytes, making these genes the key
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players of the alloreactivity. The HLA loci are divided into two

subclasses: HLA class I and HLA class II. Generally, HLA class I

alleles -A, -B, and -C are expressed on all nucleated cells and display

antigen to CD8+ T cells, while HLA class II alleles -DR, -DQ, -DP

are expressed on antigen-presenting cells (APCs) and initiate a

response by CD4+ T cells, playing an important role in recognizing

non-self, infected or malignant cells. In the thymus, T cells with

various T cell receptors (TCRs) undergo positive selection and

negative selection, among which those that do not respond to the

HLA-antigen peptide complex or have a strong response to self-

antigens are eliminated (22). In addition to classic HLA class I and

HLA class II alleles, there are also fewer polymorphic genes in these

regions, including HLA-E, HLA-F, and HLA-G in HLA class I

regions and HLA-DO and HLA-DM in HLA class II regions. These

less polymorphic genes are also important regulators of the immune

system. To date, more than 30,000 HLA alleles have been

identified (23).

Considering the role of HLA proteins in the discrimination

between the self and non-self, the search for an HLA-matched

donor is crucial in the setting of tissue and organ transplantation,

especially for HCT (24). HLA-matched related donors (MRD)

generally share both alleles of HLA-A, -B, -C, -DR, -DQ, and -DP

(12 of 12) because they have inherited the same parental copies of

chromosome 6 encompassing the major histocompatibility complex

(MHC). In MRD HCT the targets of T-cell alloreactivity are almost

exclusively minor histocompatibility antigens (mHAgs), mediated

by donor naïve T cells. This explains the lower rate of GvHD but

also a less potent GvL effect in MRD HCT compared to transplants
Frontiers in Immunology 03
performed with alternative donors (25). In HLA-matched unrelated

donor (MUD) HCT, patients and their HLA-matched donors carry

the same 8 of 8 alleles at HLA-A, -B, -C, and -DRB1, without

sharing their respective genetic backgrounds. Genetic disparity

between unrelated individuals frequently includes the HLA-

DRB3/4/5, -DQ, and -DP loci which are targets of direct T-cell

alloreactivity. In this case, both naïve and memory donor T cells can

recognize different recipient HLA-restricted peptides regardless of

their derivation from novel or recall antigens. Due to strong linkage

disequilibrium between HLA-DRB1 and -DRB3/4/5 and -DQ,

mismatches for these genes are relatively rare in MUD. In

contrast, HLA-DP mismatches are present in over 80% of MUD

HCT, representing a key aspect of both GvL and GvHD in this

transplant setting (26, 27). Moreover, HLA-DR+ leukemias and

lymphomas generally co-express HLA-DP, making it an attractive

GvL target (28). Of note, homozygosity for HLA-DP genes

represents a frequent event, often resulting in unidirectional (only

graft-versus-host [GvH] or host-versus-graft [HvG] direction)

HLA-DP mismatches in MUD-HCT. Indeed, HLA-DPB1

mismatches are associated with increased risks of acute GvHD

after 8 of 8 HLA-matched MUD HCT, but also with a significantly

reduced risk of leukemia relapse, resulting in no net impact on

overall survival (OS) (25). The notion of permissive mismatches is

based on accumulating evidence suggesting that limited

alloreactivity is sufficient for GvL, whereas aggressive

alloreactivity can lead to clinically uncontrollable GvHD (29). In

this view, permissive mismatches are those eliciting limited

alloreactivity, shifting the balance from GvHD to GvL (30, 31).
FIGURE 1

Graft versus Leukemia (GvL) immunological basis: donor selection through HLA, KIR matching and graft source. The donor-recipient matching for
HLA and KIR, and the type of graft source (UCB) are detrimental factors during the selection of the HCT donor and contribute to the final balance
between a GvL and GvHD. HCT, allogeneic hematopoietic cell transplantation; KIR, killer Ig-like receptor; UCB, umbilical cord blood; M, methionine;
T, threonine; GvHD, graft versus host disease. Image created with BioRender.com.
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Current guidelines for patients transplanted for malignant disease

recommend selection of an HLA-DPB1 allele-matched or

permissively mismatched MUD, available with a probability of at

least 70% (32). Also, Rutten and colleagues, in ex vivo analysis, first

demonstrated the importance of CD4+ T cells alloreactive to HLA-

DP in patients responding to DLI after MUD HCT (33). Moreover,

to enhance the GvL effect, some groups propose to use in vitro

expanded cytolytic T-lymphocytes (CTL) selected from the CD4+

naïve T cells alloreactive against HLA-DP specificities (34).

In the absence of an HLA-matched donor, the use of an

alternative donor, such as an HLA-mismatched unrelated donor

(MMUD, less than 8/8 alleles at HLA-A, -B, -C, and -DRB1),

umbilical cord blood (UCB) or haploidentical related donor, has

increased the number of patients that can access to the transplant

procedure. However, in the MMUD setting, even a single allele

mismatch negatively impacts patient outcomes after transplant

(35). Specific strategies are needed to achieve the attenuation of

the donor T cell alloreactivity in haploidentical HCT. The use of

high-dose post-transplant cyclophosphamide (PTCy) has become

the most frequently used due to its relatively easy applicability (36).

Other strategies are represented by the use of rabbit-derived anti-

thymoglobulin polyclonal antibodies (REFS) granulocyte-colony

stimulating factor (G-CSF) mobilized bone marrow grafts with

extensive immunosuppression (37) or ex vivo graft manipulation,

suchasCD34megadose (38, 39)ora/bTcell depletion (40). Finally, the

Perugia group proposed a novel approach using a T-cell-depleted graft

and a subsequent infusion of regulatory and conventional T cells,

without any post-transplant immune suppression (41).

Altogether, the GvL effect can benefit from a careful choice of

the HLA-compatible donor, particularly in the setting of permissive

HLA-DP mismatched MUD (Figure 1).
2.2 NK cell alloreactivity and KIR matching

A special emphasis is being placed on using natural killer (NK)

cells to harness both innate and adaptive immunity after HCT (42).

NK cells are uniquely regulated by activating and inhibitory

receptors and can mediate a critical GvL effect, also referred to as

NK cell alloreactivity, without mediating GvHD (43–46). NK cell

alloreactivity can potentially provide a better antitumor effect, as

documented by lower relapse rates and better survival in patients

with higher NK cell numbers early post-transplant (47, 48).

Cytotoxic activity of NK cells is mediated primarily by a balance

between inhibitory and activating receptors expressed on the cell

surface, the former being mainly accounted KIRs that recognize

HLA class I molecules on the surface of target cells (49). When NK

cells encounter the matching HLA-class I ligand for their inhibitory

KIR, they are considered “educated” or “licensed” and refrain from

an attack on healthy tissues under a steady state. When NK cells are

accustomed to this inhibitory signal and subsequently encounter a

cell that does not express the appropriate KIR-ligand (“missing

ligand”), they can mount an effector response, if the target also

expresses stress-ligands that trigger activating NK-cell receptors

(such as natural killer group 2 member D, NKG2D, Figure 1). Due

to the lack of exposure to their corresponding ligand, unlicensed
Frontiers in Immunology 04
NK cells are “un-educated” and hyporesponsive at a steady state

rather than being triggered by self-tissues lacking the ligand (50).

Several models of donor-recipient NK cell alloreactivity have been

proposed. The KIR ligand incompatibility (ligand–ligand) model, in

which NK cells will react and kill host cells that lack the HLA class I

ligand(s) for inhibitory KIR, was first proposed by the Perugia

group (51). Alloreactive NK cells in the GvH direction helped

promote engraftment and GvL, resulting in a reduced risk of

leukemia relapse and better survival in adults with AML without

increasing the rate of GvHD (52). An alternative model called the

receptor-ligand ormissing-ligandmodel, proposed that NK cells will

react if at least one KIR gene expressed in the donor’s NK cell

repertoire does not recognize any of the HLA molecules in the

recipient’s ligand repertoire. This model showed a better ability to

predict NK alloreactivity and lower the risk of leukemia relapse in a

pediatric study of patients with high-risk leukemia given CD34+

selected haploidentical graft (53). The educational/missing licensing

proof model required that the NK cells were educated against a

specific antigen in order to become alloreactive when encounter a

recipient cell that lack its cognate ligand (54). Other groups have

used the KIR-haplotype model which takes into consideration the

presence or absence of a B-KIR haplotype in the donor, as ameasure of

enrichment for activating versus inhibitoryKIRs. Theuse of thismodel

demonstrated a reduced risk of leukemia relapse when patients were

transplanted from donors with centromeric B-haplotypes (55, 56).

Finally, the KIR genotyping model, analyzes KIR genes between donor

and recipient to observe a correlation between KIR match/mismatch

and transplant outcomes. This model has shown discrepant results in

studies with different HCT platforms (57).

Although a definitive and easy-to-apply model for the

evaluation of donor-recipient KIR alloreactivity is not currently

available in clinical practice, the presence of a KIR mismatched have

shown to positive impact the prognosis of leukemia patients after

transplant, augmenting the NK-mediated GvL.
2.3 T and NK cells alloreactivity through
the HLA-B leader

The last factor to take into consideration for modulating T and

NK cell alloreactivity is the HLA-B leader (Figure 1). The leader

sequence refers to the peptide encoded by exon 1 of the 7 exons that

comprise the HLA-B gene. It has been shown that in HLA-B, the

leader sequence encodes methionine (M) or threonine (T) at

position -21 and can give rise to TT, MT, or MM genotypes. In

the setting of MMUD, there is an increased risk of severe acute

GvHD when the patient has an M in the leader sequence and when

the leader sequence is mismatched (58). Moreover, the leader

sequence of HLA class-I molecules is presented by the non-

classical class I molecule, HLA-E, and stabilizes HLA-E

expression on the cell surface, enhancing binding to receptors on

NK cells. It is hypothesized that HLA-B presentation by HLA-E and

subsequent recognition by NK cells may contribute to

improvements in non-relapse mortality (NRM) that have been

demonstrated in several HCT settings (MMUD, haploidentical,

and UCB HCT) (59–61).
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The HLA-B leader status contributes regulating the GvL/GvHD

balance and may inform relapse and NRM risk after HCT.
2.4 Graft source and alloreactivity: the case
of UCB transplant

Multiple data are now favoring the use of UCB HCT for patients

with high-risk leukemia, suggesting the role of the graft source in

determining the GvL effect (Figure 1). In the retrospective analysis

performed by Milano and colleagues, 582 consecutive patients

with acute leukemia or myelodysplastic syndrome received a first

myeloablative hematopoietic-cell transplant from an UCB

(140 patients), an MUD, or an MMUD (344 and 98 patients,

respectively). Authors observed that among patients with pre-

transplant minimal residual disease, the probability of OS after

receipt of a transplant from a UCB was at least as favorable as that

after receipt of a transplant from anMUDandwas significantly higher

than the probability after receipt of a transplant from an MMUD.

Furthermore, the probability of relapse was lower in the UCB group

than in either of the other groups, suggesting a higher GvL activity in

the UCB group (62). In addition, the pediatric study by Verneris and

colleagues revealed an enhanced GvL effect in acute leukemia patients

after transplantation with 2 partially HLA-matched UCB units

compared to 1 single unit UCB (63). In another prospective,

multicenter, pediatric study recently published, 367 patients affected

by AML/MDS undergoing T-cell replete HCT were analyzed. One-

hundred and twelve patients underwent a UCB HCT, the remaining

255 received other cell sources. Although a higher incidence of poor

prognosis features in the UCB group, these patients showed an

unexpectedly favorable EFS (64.1%). In a multivariable analysis, the

UCB cohort had significantly improved EFS, time to relapse, and

reduced chronic GvHD, with some evidence of improved OS. The

effect appeared similar regardless of the minimal residual disease

(MRD) status, suggesting that UCB HCT without serotherapy may

be the optimal transplant option for childrenwithmyeloidmalignancy

(64). Finally, so far, there are no reports of HLA loss, as a strategy of
Frontiers in Immunology 05
leukemia immune escape, in the setting of UCB transplantation (Prof

Luca Vago, personal communication).

UCB represents a suitable graft source to boost GvL after HCT

and should be considered in the setting of high-risk disease.
2.5 Graft manipulation and alloreactivity

Different approaches were used to modify the graft in order to

reduce the incidence ofGvHDwhilemaintaining theGvL effect (Table

1). The first strategy used the CD34+ megadose in the setting of

haploidentical transplantation, without the addition of any other

immunosuppression (38). This strategy showed low incidence of

relapse and remarkably low incidence of GvHD. Another approach

includes the depletion of possible alloreactive T cells, defined as a/b
TCR positive cells, in association with ATG and rituximab. This

strategy was mostly developed in the pediatric haploidentical setting

by Locatelli and colleagues with promising results (40). Again, the

group of Perugia further expanded the concept of CD34+ megadose,

with the Treg/Tcon graft strategy, where a known dose of

haploidentical regulatory (Treg) and conventional (Tcon) T cells

were administrated to the patient. This strategy showed remarkably

low incidence of both acute and chronicGvHDwith a favorable relapse

incidence (65, 66).

Finally, Bleakley and colleagues, elegantly tested the effect of a

naïve T cell depleted graft in the setting of MRD or MUD, by

eliminating the CD45RA+ cells from the graft. These trials showed a

non-detrimental impact on relapse incidence with low cGvHD, but

an aGvHD still above 50% (67, 68).
3 Cellular therapies to boost
GvL effect

Adaptive and innate immunity are both crucial in maintaining

the delicate balance between GvHD and GvL effect. The major

players in this scenario are the T and NK cells lymphocytes.
TABLE 1 Selection of main clinical trials on prophylactic graft manipulation strategies to prevent GvHD and enhance GvL.

Graft manip-
ulation type

HCT
setting

Patients
(N)

GvHD
prophy

aGVHD
incidence

cGVHD
incidence

Relapse
incidence

Median FU
months (range)

Reference

CD34+ megadose Haplo 104 None 8/100 (8%) 5/70 (7%) 26/104 (25%) 22 (1-65) Aversa et al. JCO
2005 (38)

a/b T and B
cell depletion

Haplo 80 ATG
Rituximab

24/80 (30%) 4/73 (5%) 19/80 (24%) 46 (26-60) Locatelli et al.
Blood 2017 (40)

Tregs/Tcons CD34+ Haplo 43 None 6/41 (15%) 1/41 (2%) 2/41 (5%) 46 (18-65) Martelli et al.
Blood 2014 (65)

Tregs/Tcons CD34+ Haplo 50 None 15/50 (30%) 1/50 (2%) 2/50 (4%) 34 (5-72) Pierini et al. Blood
Adv 2021 (66)

CD45RA+ depletion MRD 35 Tac 23/35 (66%) 3/35 (9%) 21% at 2yrs / Bleakley et al. JCI
2015 (67)

CD45RA+ depletion MRD/
MUD

138 Tac +/- Mtx
and MMF

103/138 (75%) 9/138 (7%) 23% at 3yrs 49 (9-61) Bleakley et al. JCO
2022 (68)
N, number; prophy, prophylaxis; MRD, matched related donor; MUD, matched unrelated donor; Haplo, haploidentical donor; yrs, year; aGvHD and cGvHD, acute and chronic graft versus host
disease; Treg, regulatory T cells; Tcon, conventional T cells; Tac, tacrolimus; Mtx, methotrexate; MMF, mycophenolate mofetil.
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Different strategies were tested to use unmodified or modified T and

NK cells in the setting of HCT to prevent or treat leukemia

recurrence (Figure 2). Here we describe the major utilized cellular

therapy approaches, highlining the ability of CIK cells to combine

both T and NK cell properties.
3.1 Secondary HCT

Although outcomes for AML/MDS patients relapsed after HCT

are quite disappointing, a second HCT may offer a chance of

survival in selected patients, representing a valid cellular therapy

option. However, a second HCT is generally limited to medically fit

patients due a high rate of TRM, reaching up to 73.5% in the first

series of studies (69). A more encouraging TRM was reported with

the introduction of RIC regimens, ranging from 30% to zero, mostly

associated with a short interval between the two transplants and the

disease status at the time of the second HCT (70). A recent

retrospective single-center study analyzed data from 407
Frontiers in Immunology 06
consecutive patients with relapsed AML/MDS after the first HCT.

Sixty-two patients had a second HCT (15%) and 345 did not. The 2-

year cumulative incidence rates of NRM and relapse following the

second HCT were 26% and 50%, respectively. Patients who

underwent a second HCT had a better outcome, compared to

patients who did not, with 5-year OS rates of 25% and 7%,

respectively. In this study, the use of a second HCT was

associated with longer survival especially in patients with longer

remission after the first HCT (71). Since the loss of mismatch, HLA

is one of the most relevant and understood mechanisms of immune

escape after HCT (15, 16, 72, 73), a careful choice of the second

HCT donor should be mandatory (74). In addition, emerging data

on the use of easily accessible, alternative donor sources, such as

UCB or haploidentical donors, may promote the practice of

switching donors for second allotransplants. Indeed, in patients

who relapsed with an HLA loss, a second HCT using a donor with a

different HLA haplotype provided promising results (16). Different

retrospective studies have tried to determine which is the best donor

for the second HCT, with different results. In one single center
FIGURE 2

Adoptive cellular therapy in the post-HCT setting. Adoptive cellular therapy strategies include: (A) unmanipulated donor lymphocyte infusions (DLI);
(B) manipulated DLI: CD8+ T cell depleted DLI, a/b T and B cell depleted DLI and CD45RA+ naïve T cell depleted DLI to mitigate the risk of graft
versus host disease (GvHD); regulatory T cell (Treg) depleted DLI, to enhance graft versus leukemia (GvL) activity; natural killer (NK) cell and
cytokine-induced killer cell (CIK) DLI to both minimize GvHD and increase GvL; cytokine-induced memory-like (CIML) NK cell DLI for enhancing NK
killing capacity and persistence; activated DLI, either with cytokine (IL-2, IL-15, IL-21) or with dendritic cells or G-CSF primed DLI to augment graft
versus leukemia (GvL) activity; leukemia-specific CTLs (cytotoxic T lymphocytes) and leukemia-associated antigens (LAAs) to redirect specificity;
(C) genetically engineer cells: chimeric antigen receptor (CAR) T cells, genetically engineered to recognize and kill targets: allogeneic CAR-T;
“universal” CAR (UniCAR) cells are inactive under physiologic conditions, but can recognize a soluble adaptor, called targeting module (TM), directed
against the specific target; CAR-NK and CAR-CIK cells, to minimize the risk of GvHD; dual-CAR-T target multiple antigens simultaneously to
circumvent immune escape arising from antigen-negative disease; UCART where the endogenous TCR can be disrupted in mature T cells to
abrogate GvHD potential. Image created with BioRender.com.
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experience including 40 patients undergone a second HCT, authors

showed that an allograft with a new mismatched haplotype may

improve outcomes following a second HCT (75). However, in a

retrospective German registry study on 179 patients undergone a

second HCT, changing the stem cell donor for the second transplant

did not provide a significant advantage for disease recurrence or long-

term survival, compared with the choice of the original donor for the

second transplant (76). Of note, no haploidentical or UCB transplants

were included in this analysis.Moreover, in a retrospectivemulticenter

EBMT study, including 556 patients who underwent a second HCT,

similar outcomes were observed in patients after a second HCT with

the same or different matched donor. In this analysis, patients were

divided into three groups based on the type of the secondHCT donor:

same donor, different matched donor, or haploidentical donor. The

two-year leukemia-free survival (LFS) rate was 23.5%, 23.7%, and

21.8%, respectively. In addition, a non-T-cell depleted haploidentical

transplant was associated with a similar relapse rate, but higher NRM

(77). A different study from the EBMT conducted in acute

lymphoblastic leukemia (ALL) patients demonstrated that T-cell

replete haploidentical donors in second HCT had a 1.5-fold higher

2-year OS (49% vs. 31%) albeit non statically difference in OS when

choosing either a MUD or haploidentical donor (78). Finally, some

groups showed the feasibility of a UCB for a second HCT. In a

retrospective Japanese analysis of 263 consecutive patients with

different hematological malignancies, OS, NRM, and relapse at 2-

years were 16.7%, 46.9%, and 40.6%, respectively. In multivariate

analysis, younger age (<50), good PS (0-1), and long interval

between HCTs (≧1 year) showed a superior OS (79). Similar positive

results were collected in a pediatric series treated with a second/third

UCB HCT, showing 3-year OS and EFS of 69.2% and 64.9%,

respectively. The cumulative incidence of TRM at 3 years was 19.2%.

Notably, no toxicity-related deaths were seen in the 16 patients who

received UCB after 2015, suggesting an improvement in transplant

care in this setting. The 3-year cumulative incidence of relapse was

15.9%, remarkably low for these very high-risk patients (80). In our

center, we retrospectively collected data from 61 patients undergone a

second HCT. Forty-five patients received the second HCT for disease

relapse, while 16 for graft failure. Seventy percent of the patients were

conditionedusinga reduced-intensity regimen. In54%of thepatients a

differentdonorwaschosen for the secondHCTand in6patients aUCB

was used. Concerning disease status at the second HCT, 36% were in

CR and 64% had active disease. At a median follow-up of 8.36months

(range: 0.2 – 276.3), 18 patients were alive. Twenty-seven patients died

due to disease recurrence or progression. The 5-year cumulative

incidence of NRM was 22%. The 5-year OS and PFS rates were 29%

and 28%, respectively. Patients undergoing second HCT due to graft

failure exhibited a 56% survival rate, higher compared to ones

transplanted for disease recurrence (20%) (81).

Overall, recent data have shown an acceptable NRM and

reasonable long-term survival in selected patients who underwent

a second HCT.

3.2 Donor lymphocyte infusion

DLI can induce a GvL effect, defined as the ability of donor T

lymphocytes to recognize and kill leukemia cells. The efficacy and
Frontiers in Immunology 07
toxicity of a DLI are hard to predict and depend on the wide range

of different cell populations present in a leukapheresis product. In

the DLI product, the majority of lymphocytes consists of CD3+ T

cells (75-80%) (a/b T cells, regulatory T cells, and gd T cells),

followed by NK cells (5-20%) and B cells (5%) (82, 83). ab T cells

represent the largest and best-studied effector population,

mediating alloreactivity by recognizing minor histocompatibility

antigens (MiHA). Unmodified DLIs are the simplest way to increase

GvL reactivity after HCT (Figure 2). However, studies have given

different results, due to multiple variables, such as the type of

conditioning regimen, in vivo/ex vivo T-cell depletion, post-

transplant immunosuppression, the source of DLI, (unstimulated

leukapheresis or G-CSF-stimulated products), fresh or

cryopreserved products, the interval between the HCT and the

first DLI, cell doses, and the number of infusions (82, 84). From the

beginning, DLI was successfully employed in chronic myeloid

leukemia (CML) (85), while less impressive results were observed

in patients affected by AML (86, 87).

DLI therapy can be classified based on treatment intention into:
1. therapeutic, when used for the treatment of hematological

relapse, often performed in conjunction with another anti-

leukemic treatment;

2. preemptive, when used for the treatment of minimal

residual disease or mixed chimerism;

3. prophylactic, when used in patients in disease remission

but with a high risk of relapse (82, 83).
DLI was also tested in combination with other anti-leukemic

drugs for both relapse treatment or maintenance after HCT.

Schroreder and colleagues analyzed 154 patients with AML and

MDS who relapsed after HCT and were treated with 5-azacytidine

(AZA). All patients received a median number of 4 courses of AZA

of those, 105 patients received concomitant DLI. Complete and

partial remission rates were observed in 27% and 6%, respectively.

The OS at 2 years was 29%, in MDS patients the 2 years OS was 66%

and correlated with disease burden. Therefore, the authors conclude

that AZA and DLI is an effective and well-tolerated treatment

option in R/R patients after HCT, particularly for those with low

disease burden (88). Later, in 2021, Guillaume retrospectively

analyzed a cohort of 77 AML and MDS patients considered at

high risk based on either their genomic or clinical status at

transplantation. Following allogeneic transplantation, they

received at least 1 cycle of prophylactic or preemptive low-dose

AZA with or without escalating doses of DLI. Almost one-half of

the patients were able to receive the full 12 cycles of AZA, and a

majority (79%) received at least one DLI. Among the whole cohort,

19 patients relapsed, with a cumulative incidence of relapse (CIR)

was 22% at 24 months. OS and progression-free survival (PFS) at 24

months were 70.8% and 68.3%, respectively. Grade II-IV acute

GvHD and chronic GvHD were 27.4% and 45%, respectively (89).

Finally, some studies compared the efficacy of DLI in treating

disease relapse with a second HCT. In one retrospective study 89

patients with a relapse disease or a graft failure, were treated with a

second HCT (56%) or DLI (44%). The same HCT donor of the first

transplant was used in 50% of the patients. The median number of
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DLI administered was 2 (range 1-11). This study showed that a

second HCT may improve outcomes when performed for relapse if

patients achieve a CR at the time of the second HCT, while DLI may

be reserved for patients with active disease (90). In a retrospective

EBMT study involving 418 adults with relapsed AML who received

a second HCT (N=137) or DLI (N=281) there was no difference in

OS whether a second HCT or DLI was prescribed, with a 5-year OS

of 19% and 15% for second HCT and DLI, respectively. The best

outcomes seem to be achieved in patients relapsing after 6 months

from the first HCT or those in complete remission at the time of

either second HCT or DLI (91).

The most feared adverse event following DLI therapy is the

onset of GvHD, mediated by the infusion of donor lymphocytes, not

controlled by immunosuppressive therapy (92). Depending from

the DLI source and from the study the incidence of aGvHD and

cGvHD varies from 20-60% and 20-40%, respectively (82). For this

reason, efforts have been made to develop more targeted cellular

therapy strategies to promote the GvL effect without increasing the

GvHD effect. Table 2 outlines the major studies using modified or

manipulated DLI divided according to the strategy used into
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different groups: selected T cell DLI, NK cell DLI, antigen-specific

DLI and activated DLI. The first three groups include products of

specific lymphocyte subset, such as Treg-depleted DLI, CD8+ ab-
depleted T cells, ab T cells against specific leukemic antigens (WT1,

NPM1) and NK DLI, while the latter group includes products

activated using different cytokine cocktails or drugs, such as CIK

cells or cytokine-induced memory like (CIML) NK cells (Figure 2).

DLI has been shown to boost the GvL activity and to improve

the patient outcome, especially in the setting of MRD and pre-

emptive settings. However, the risk of subsequent GvHD is

considerable and may increase the NRM, thus reducing the OS

benefit of this cellular therapy.
3.3 Selected DLI

In order to reduce the GvHD risk and maintain a GvL effect, the

DLI product can be manipulated. Back to 2004, Alyea and

colleagues published a study using CD8+ depleted DLI for the

treatment of disease recurrence after HCT. Patients were targeted to
TABLE 2 Clinical trials on modified donor lymphocyte infusion (DLI): selected T cell, NK cell, antigen-specific, and activated DLI.

Study DLI Type Patients
(N)

Setting DLI
donor
source

Cell dose/
N infusions

Response GvHD OS

Selected T cell DLI

Meyer et al.
Blood
2007 (219)

CD8-depleted DLI 23 Prophylaxis MRD (3)
MUD
(13)
MMUD
(7)

DL1 1×106 CD4+ T
cells/kg (day +60
after MRD and
+120 after MUD/
MMUD)
DL2 3×106

DL3 1×107

DL4 3×107 CD4+ T
cells/kg (day +60
to +90)

4/23 convert
in
full
chimerism

5 transient
grade I
aGvHD, 2
(grade II/
III) aGvHD

/

Orti et al.
Transplantation
2009 (220)

CD8-depleted DLI 28 Treatment MRD
(12)
MUD
(11)
MMUD
(5)

MUD/MMUD
1×106 CD4+ cells/kg
MRD 3×106 CD4+

cells/kg

ORR 5/11
Conversion
to full
donor
chimerism

5/28 aGVHD
(grade II-IV)
1 cGvHD

/

Maury et al. BJH
2014 (100)

CD25/regulatory T-
cell-depleted DLI

17 Treatment MRD
(13)
MUD (4)

1-10×107 CD3+/kg / 5 aGvHD
1 cGvHD

4 Alive in CR

Alyea et al. BMT
2004 (93) and
Bachireddy et al.
Blood 2014 (94)

CD8-depleted DLI 29 Treatment MRD (28
MID (1))

Planned dose 3×107

CD4+ cells/kg
7 CR 1 aGvHD

(grade II)
1 cGvHD

/

Nikiforow et al.
Hematological
2016 (101)

CD25/regulatory T-
cell-depleted DLI

21 Prophylaxis MRD
(13)
MUD (8)

DL1 1×107 (n=6)
DL2 3×107 CD3+

cells/kg (n=15)

DL1 5 pts
had PD, 1
SD.
DL2 8 CR,
1 PR

1y
GVHD 33%

1-y OS 53% (dose
level 2)

Muffly et al.
Blood Adv
2018 (96)

Donor-derived CD8+
memory T cell

15 Treatment MRD 1×106, 5×106, or
10×106 cells/Kg

ORR 67%
(10/15): 7
CR, 1 PR,
2 SD

2 aGvHD
(grade II)

Median OS
4.9 months

(Continued)
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TABLE 2 Continued

Study DLI Type Patients
(N)

Setting DLI
donor
source

Cell dose/
N infusions

Response GvHD OS

Selected T cell DLI

Dunaikina et al.
BBMT
2021 (221)

Low-dose memory
(CD45RA-depleted)
DLI after ab T cell-
depleted
haploidentical HCT

76/149 Pre-emptive Haplo 25×103/kg of CD3+

(day 0)
50×103/kg of CD3+

(day +30, +60, +90,
and +120)

2-year NRM
2%, CIR 25%,
EFS 71%

grades II–IV
aGVHD was
14% (vs 12%
in the
control group)

2-year relapse 25%
EFS 71%
OS 80%

Maung et al.
BBMT
2021 (103)

Naïve-depleted DLI 16 Prophylaxis MRD (8)
MUD (8)

1×105 CD3+/kg,
1×106 CD3+/kg,
5×106 CD3+/kg,
1×107 CD3+/kg.

/ 1 aGvHD
(6.2%)(grade
II)
1
cGvHD (6.2%)

2-y PFS 50%
OS 68.8%

Castagna et al.
Transplant and
Cellular Therapy
2021 (222)

CD45RA+
Depleted DLI

23 Pre-emptive Haplo First dose: 5×105

CD3+/kg, second
dose: 1×106 CD3+/
kg, third dose:
5×106 CD3+/kg.

/ 1 aGvHD
(grade II)
2
moderate
cGvHD

1-y OS 79%
1-y PFS 75%; 100-
days NRM 5%, 1-y
NRM 12%

Vydra et al.
Clinical
Lymphoma,
Myeloma and
leukemia
2023 (223)

Allogeneic g d
T Lymphocytes

7 Treatment Haplo 1×106 cells/kg (n =
3),
1×107 cells/kg (n =
3),
1×108 cells/kg (n
= 1).

1 CR, 1 CRi,
1 SD, 1 NR

None /

NK DLI

Rizzieri et al.
BBMT
2010 (224)

NK-DLI 30 Prophylaxis MRD
(16)
Haplo
(14)

Median NK cells:
10.6×106 cells/kg
(MRD) 9.21×106

cells/kg (Haplo)

/ 8 aGvHD
(Grade I/IV)
1 cGvHD

1-yr OS 43%
(MRD)
42% (Haplo)

Choi et al.
BBMT
2014 (225)

NK-DLI 41 Prophylaxis Haplo DL1 0.2×108 cells/kg
(n = 3),
DL2 0.5×108 cells/kg
(n = 3),
DL3 1.0×108 cells/kg
(n = 8),
DL4 ≥1.0×108 cells/
kg (n = 27),
(at 2 and 3 weeks
after HCT)

/ aGVHD
(grade II/IV)
17%
cGVHD
(moderate to
severe) 15%

Significant
reduction in
leukemia
progression
compared to
control (74%
vs 46%)

Shaffer et al.
BBMT
2016 (226)

NK-DLI 8 Prophylaxis Haplo Median NK cells
10.6×106/kg
median CD3+ cells
2.1×103/kg

CR: 2/8 pts;
response, but
relapse; 1/8:
durable CR

None Median OS
12.9 months

Choi et al.
BBMT
2016 (227)

DNKI (donor natural
killer cell)

51 Prophylaxis Haplo Median DNKI 0.5,
0.5, 1.0, and
2.0×108/kg cells.
(days +6, +9, +13,
and +20 after HCT).

CR 1 month
after
HCT 57%

Grade 2 to 4
aGVHD: 28%,
cGVHD 30%.

3-year CIR 75%

Jaiswal et al.
Cytotherapy,
2017 (228)

CD56-enriched donor
cell infusion

10 Prophylaxis Haplo minimum of 1×106

CD56+ cells/Kg and
<1×106 CD3+CD56−

cells/Kg

/ 0 aGvHD
2 cGVHD

5/10 relapsed.
NRM 10%.

Antigen-specific DLI

Chapuis et al.
Sci Transl Med
2013 (104)

HLA-A*0201–
restricted WT1-
specific donor-
derived CD8+

11 Treatment
Prophylaxis

MRD
MUD

Maximum dose 1010

CTLs/m2
/ None 3 alive in CR

(Continued)
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TABLE 2 Continued

Study DLI Type Patients
(N)

Setting DLI
donor
source

Cell dose/
N infusions

Response GvHD OS

Antigen-specific DLI

cytotoxic T
cell (CTL)

van Balen et al.
Frontiers of
immunology
2020 (229)

HA-1H T-Cell
Receptor Gene
Transfer
to Redirect Virus-
Specific T Cells

5/9 Treatment
(1) and
Prophylaxis
(4)

MRD (2)
MUD (3)

Not reported No response
in the
treatment
group

None Two patients are
alive and well
without GVHD.

Lulla et al. Blood
2021 (230)

Leukemia-specific T
cells (mLSTs) against
PRAME, WT1,
Survivin, and NY-
ESO-1

25 Treatment
and
Pre-emptive

MRD
(21)
MUD (1)
Haplo (3)

0.5 to 10×107 cells/
m2 for 6 infusions

1 CR and 1
PR (active
disease
cohort)

No aGVHD>
grade 2

Not-yet-reached
OS and LFS at
1.9 y

Activated DLI (both T and NK)

Slavin et al.
Blood
1996 (231)

IL-2-DLI 17 treatment MRD 0.2×108/kg to
4.6×108/kg + rhIL-2

/ 3 aGvHD
(grade II-IV)

Median OS
38 months

Huang et al. JCI
2008 (232)

G-CSF-primed
peripheral blood
progenitor cells

33 Prophylaxis MRD 1–2 × 108 cells/Kg
and 0.93×106/Kg

15 relapses 6 aGvHD
(Grade II/IV)
20 cGvHD

16 alive in CR

Yoon et al. BMT
2009 (233)

CD34 generated NK-
DLI after in vitro
expansion with IL-15
and IL-21

18 Prophylaxis Haplo Median 9.28×106

cells/kg
No anti-
leukemia
effect

1 aGvHD
5 cGvHD

/

Hardy et al.
Blood
2012 (234)

Tumor-derived donor
lymphocyte (TDL)

8 Treatment MRD (4)
MUD (3)
UBC (1)

Median 2.04×107

TDL/kg
2 transient
PET response
and 2
mixed
responses

None /

Ho et al. Am J
Hematol
2014 (235)

Dendritic cells (DC)
+ DLI

16 Treatment MRD DL1 5×106 DC cells/
kg
DL2 1×107 DC cells/
kg
DL3 5×107 DC cells/
kg
3×107 CD3+cells/kg
(1 day after DC)

durable
remissions
4/14

1 aGVHD
(Grade II)
1 cGVHD

/

Kottaridis et al.
PLOS ONE
2015 (236)

Tumor-primed NK
cells (TpNK)

7/13 Treatment Haplo DL1 1×106 NK
cells/kg
DL2 5×106 NK
cells/kg
DL3 1×107 NK
cells/kg.

At 6 mo: 3
patients in
CR remain in
CR, 1 in PR
achieved
CR1, 2
relapsed and
one died

None Median OS was
400 days
post infusion

Jaiswal et al.
BBMT
2016 (237)

G-CSF-primed DLI 31 Prophylaxis Haplo Days +35, 60, 90
(NMC)
Days +21, 35,
60 (MAC)

10/10
PD (NMC)

No GvHD
(NMC)
aGvHD 31%
(MAC)
cGvHD
41.2 (MAC)

18-months OS
52.9% and
PFS 43.9%

Ciurea S. et al.
Blood
2017 (238)

mbIL21 expanded
donor NK cells

13 Prophylaxis Haplo 1×105 to 1×108 NK
cells/kg
(days -2, +7 and
+28 after HCT)

/ aGvHD (grade
I-II) 54%,
none cGvHD

11/13 were alive
with a median
follow-up of
14.7 months.

(Continued)
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receive 3x107 CD4+ T cells/kg. Nine patients were enrolled, 3 CML,

3 myeloma, 2 CLL, and 1 NHL. CD8 depletion was highly specific,

with a median recovery of CD4+ cells of 75%. All CML patients

achieved a complete molecular remission. A CLL patient

demonstrated a complete response. One patient developed grade

II acute GVHD and subsequently chronic GVHD (93). A

subsequent study demonstrated that response to DLI was

associated with quantity of preexisting marrow CD8+ T cells and

local reversal of T-cell exhaustion (94).

Murine models showed that CD8+CD44hi memory T (TM) cells

could eradicate malignant cells without inducing GvHD (95).

Muffly and colleagues evaluated the feasibility and safety of

infusing freshly isolated and purified donor-derived CD8+ TM

cells into patients relapsed after HCT. Fifteen patients received

CD8+ TM cells at escalating doses, 9 had active disease and 13

received cytoreduction before cell infusion. No adverse infusion

events or dose-limiting toxicities occurred. GvHD developed in 1

patient (grade 2 liver) and 10 patients (67%) maintained or achieved

a response. Median EFS and OS were 4.9 months (1-19.3 months)

and 19.6 months (5.6 months to not reached), respectively (96).

Regulatory T cells (Treg) are CD4+ T lymphocytes that express

CD25 and FoxP3 and are negative for the CD127 marker. These

cells play a crucial role in modulating the immune response and

may reduce the GvL activity (97–99). Some groups have tried to

eliminate these cells from the DLI product to boost the anti-tumor

activity. Maury and colleagues treated 17 patients with relapses of

various hematological malignancies after HCT. All patients had

failed to respond to standard DLI and had no history of GvHD.

Treg-depleted DLI were prepared by depleting CD25+ cells from

donor leukapheresis using anti-CD25 magnetic microbeads.

Compared with unmanipulated DLI, Treg-depleted DLI showed a
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better GvL effect, however with an increased GvHD incidence (6 out

of 17 patients). With a mean follow-up of 6-years, Treg-depleted

DLI treatment was associated with improved survival among the

whole trial cohort (100). Colleagues from Dana-Farber Cancer

Institute explored the use of Treg-depleted DLI in a phase I study

treating 21 patients with different hematologic malignancies who

had relapsed after transplantation. Seven subjects (33%) developed

GvHD by 1 year, including one patient who died. The 1-year

survival rate was 53% among patients treated with dose level 2. A

shorter period between relapse and infusion was associated with

response at dose level 2. Compared to unmodified DLI in 14

contemporaneous patients meeting study eligibility, Treg-depleted

DLI treatment was associated with a better response rate and

improved EFS (101).

The DLI product can also be manipulated to reduce the risk of

GvHD, especially in the setting of mismatched donors. In a Phase II

multicenter study of 23 patients with acute leukemia, a

haploidentical, naïve T cells-enriched product, depleted of

recipient-alloreactive T cells, called ATIR101 was infused in a

single dose at 1 month after a T-cell depleted haploidentical

HCT. Patients received a MAC conditioning with anti-thymocyte

globulin (ATG) as a sole GvHD prophylaxis. NRM at 1-year was

inferior for patients receiving ATIR101 concerning recipients of

conventional haploidentical HCT, as well as improved GRFS (102).

In another Phase I study, CD45RA+ naïve T-cells depleted DLI was

given at 2 months following HLA-identical non-myeloablative HCT

for hematologic malignancies. One patient developed grade 2 acute

GvHD of skin and GI, and one moderate chronic GvHD of the

lungs following the DLI. After a median follow-up of 2.8 years, 2-

year PFS and OS were 50% and 68.8%, respectively (103). An

ongoing phase I study (NCT03939585) is testing the safety of
TABLE 2 Continued

Study DLI Type Patients
(N)

Setting DLI
donor
source

Cell dose/
N infusions

Response GvHD OS

Activated DLI (both T and NK)

Vela M. et al.
Cancer letters
2018 (239)

IL-15/4-1BB-L
activated NK

20
(10
previous)

Treatment Haplo DL1 5×107 NKAE
cells/kg,
DL2 1×108 NKAE
cells/kg.
+ rhIL-2

CR/MRD- 10
CR/MRD+ 6

None 4 patients alive
with median FU of
750 days

Otegbeye et al.
Transplantation
and Cellular
Therapy
2022 (240)

NK-DLI (donor-
derived IL-2 ex
vivo expanded)

3 (only 1
after HCT),

Treatment Third-
part non-
matched
healthy
donor

DL1 1×107/kg,
DL2 2.5×107/kg,
DL3 5×107/kg.
(2 infusions in
2 weeks)

1/3 CRi, 1/3
SD with
AML/MDS

None /

Shapiro et al.
JCI 2022 (120)

CIML-NK cells +
rhIL-2

6 Treatment Haplo 5-10×106 cells/kg 3 CR 1 PR None /

Lee et al.
Leukemia
2023 (241)

IL-15 and IL-21
activated donor NK
cells
(randomized study)

36/77 Prophylaxis Haplo 1.0 × 108/kg and
1.4 × 108/kg (days
+13 and +20)

/ No increased
GvHD
compared
controls

Disease progression
35% vs 61%
N, number; MRD, matched related donor; MUD, matched unrelated donor; MMUD, mismatched unrelated donor; haplo, haploidentical donor; ORR, overall response rate; CR, complete
response; PR, partial response; SD, stable disease; NR, no response; NRM, non-relapse mortality; yr, year; PFS, progression free survival; EFS, event free survival; LFS, leukemia free survival; DFS,
disease free survival; OS, overall survival; FU, follow-up; MRD, minimal residual disease; aGvHD and cGvHD, acute and chronic graft versus host disease; BM, bone marrow; HA-1H is a
hematopoiesis-restricted MiHA presented in HLA-A∗02:01; mbIL21, membrane-bound interleukin 21; NMC, non-myeloablative conditioning; MAC, myeloablative conditioning; DC, dendritic
cells; rhIL-2, recombinant human interleukin-2; G-CSF, granulocyte colony-stimulating factor.
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prophylactic TCR-ab T and B cells depleted DLI infused on day 28

following HCT from MRD or haploidentical donor. This study

hypothesizes that this DLI enriched in NK and TCR-gd T cells

displays a better GvL effect without increasing the risk of GvHD.

Finally, manufacturing T cells that can selectively target

leukemia associated antigens (LAAs) represents an opportunity to

promote antileukemic activity without inducing GvHD. Wilms

tumor antigen 1 (WT1) is a transcription factor overexpressed in

some leukemias. HLA-A*0201–restricted WT1-specific donor-

derived CD8+cytotoxic T cell (CTL) clones were safely

administered after HCT in 11 patients. Transferred cells exhibited

direct evidence of antileukemic activity in two patients: a transient

response in one patient with advanced progressive disease and the

induction of prolonged remission in a patient with MRD.

Additionally, 3 treated patients at high risk for relapse after HCT

survived without leukemia relapse, GVHD, or additional anti-

leukemic treatment. In this study, the exposure of CTLs to

interleukin-21 (IL-21) increased in vivo CTL survival (104).

Another strategy is to edit the TCR to be specific for a tumor

antigen (105). However, TCR gene transfer results in competition

for surface expression and inappropriate pairing between the

exogenous and endogenous TCR chains, resulting in suboptimal

activity and potentially harmful unpredicted specificities. To

overcome this limitation, Bonini and colleagues designed zinc-

finger nucleases (ZFNs) promoting the disruption of endogenous

TCR b and a chain genes. ZFN-treated lymphocytes lacked CD3/

TCR surface expression. These cells were subsequently infected with

a lentiviral to express a WT1-specific TCR. these TCR-edited cells

did not mediate off-target reactivity while maintaining anti-tumor

activity in vivo (106).

Selected DLI have shown to reduce the risk of GvHD, while

maintain the desirable GvL activity. However, the best approach to

apply has not been defined yet.
3.4 Natural killer cell strategy: NK DLI and
cytokine-induced memory-like NK cells

Several studies have shown a correlation between transplant

outcomes and an impaired NK cell recovery, especially after

haploidentical transplant with PTCy, suggesting the need to boost

NK cells recovery early after transplant (47, 107–109). NK cells have

long been utilized in the field of cellular therapy, leveraging their

ability to recognize and kill tumor cells in a non-MHC-mediated

manner (49). Moreover, they exhibit a better toxicity profile

compared to T cells, reducing the risk of GvHD and the need for

autologous sources, and opening the possibility of off-the-shelf,

ready-to-use products. An important limitation of NK cell therapy

is associated with their limited ability to persist in vivo and maintain

immunologic memory (42, 110–112).

Various forms of NK cells have been tested in clinical settings,

including haploidentical NK cells, cord blood-derived NK cells,

stem cell-derived NK cells, NK-CAR cells, and CIML NK cells

(113). Devillier and colleagues tested in a phase I study the

prophylactic infusion of IL-2 activated NK cells after HCT from

MRD with favorable results (114). Colleagues from MD Anderson
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employed an NK expansion method using K562 feeder cells

expressing membrane-bound IL21 and 4-1BBL (FC21) to prepare

NK DLI. In this phase I/II study, 25 patients received 3 prophylactic

doses of donor NK cells administered on days −2, +7, and +28 after

haploidentical HCT. After a median follow-up of 24 months, the 2-

year relapse incidence and the LFS were improved compared to

contemporaneous 160 case-match controls from the CIBMTR

dataset (4% vs. 38%, and 66% vs. 44%, respectively). Only one

relapse occurred in the study group, in a patient with a high level of

donor-specific anti-HLA antibodies (DSA) presented before

transplantation. Acute GvHD occurred in 10 patients and no

patient developed chronic GvHD (115). Other trials testing the

prophylactic NK cell infusions following HCT are ongoing

(NCT03300492 and NCT02452697).

Interleukin 15 (IL-15) is a cytokine that stimulates both CD8+ T

cell and NK cell antitumor responses. Romee and colleagues first

tested this hypothesis in patients with myeloid malignancies

relapsed after HCT using the IL-15 superagonist complex ALT-

803. Thirty-three patients were treated with ALT-803 without

observing any no dose-limiting toxicities or GvHD. Responses

were observed in 19% of evaluable patients, including 1 complete

remission lasting 7 months (116). The same group explored the use

of recombinant human IL-15 (rhIL-15) after lymphodepleting

chemotherapy and haploidentical NK cells. Of 26 treated patients,

36% had robust in vivo NK-cell expansion at day 14, and 32%

achieved CR. The use of rhIL-15 was associated with cytokine

release syndrome (CRS) in 56% of the cases and some cases of

neurological toxicity (117). This study included some patients

relapsed after a previous HCT.

CIML NK cells are generated ex vivo after cultivation with IL-

12, IL-15, and IL-18, conferring a typical memory-like phenotype,

an increased ability to secrete cytokines and exert cytotoxicity, and

enhanced in vivo persistence (weeks/months) (118). Furthermore,

they displayed excellent anti-leukemic activity both in vitro and in

vivo. The first phase I human study (NCT01898793) showed the

safety and initial efficacy of allogeneic CIML NK cells, along with

concurrent administration of IL-2, in relapsed/refractory (R/R)

AML patients (objective response rate - ORR 5/9 patients,

including 4 complete responses) (119). These results were

confirmed by a subsequent phase I study, demonstrating the

safety and initial efficacy of CIML NK cells even in the context of

relapse after HCT (120). This study reported the results of the first 6

treated patients, showing a rapid expansion of NK cells, lasting for

several months. Fever and cytopenia were reported as the most

common adverse events.

NK cell-based DLI have shown promising results, breaking

down the GvHD incidence and enhancing the GvL effect. However,

the poor persistence of the NK cells remains a major limitation of

this approach, leading to an unsatisfactory duration of response and

limited benefit in terms of patients OS.
3.5 Cytokine-induced killer cells

CIK cells represent a rare T cell subpopulation, recapitulating

both T and NK cell features. CIK cells are obtained starting from
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peripheral blood mononuclear cells activated in culture in the

presence of monoclonal antibodies against CD3 (OKT3),

interferon-gamma (IFN-g), and interleukin-2 (IL-2) (121). IL‐2

and fresh culture medium need to be supplemented regularly

until after 14-21 days of culture. At this point, an enrichment of

CIK cells is observed, characterized by the expression of markers

typical of NK cells and T cells, especially defined as CD3+, CD56+,

with a prevalent CD8+ phenotype (122). Of note, CIK cells are a

cluster of heterogeneous cells comprising CD3+CD56− T cells,

CD3−CD56+ NK cells, and CD3+CD56+ NKT cells (121, 123).

CIK cells have the unique ability to recognize and kill malignant

or infected cells, both through TCR-mediated cytotoxicity typical of

T cells and through non-MHC restricted recognition, similar to NK

cells, which is the so‐called “dual‐functional capability” (124–126).

Indeed, as T cells, CIK cells express the polyclonal TCR repertoire.

However, similarly to NK cells, they show an increased expression

of cytotoxic receptors including NKG2D, DNAX accessory

molecule-1 (DNAM-1), TRAIL, FasL, LFA-1, low density of

NKp30 and CD16, and inducing the secretion of perforin and

granzyme, but lack expression of NKp44, NKp46, KIR2DL1,

KIR2DL2, KIR3DL1, NKG2A, CD94 (122, 127). Thanks to these

characteristics, CIK cells have the unique ability to induce a GvL

effect with a low risk of exacerbating GvHD (128–131).

In 2010 the International Registry on CIK cells (IRCC) was

established, to collect and evaluate clinical trials using CIK cells for

the treatment of different types of cancer. In the last update from the

IRCC, a total of 106 clinical trials including 10,225 patients were

collected, of which 4,889 patients in over 30 distinct tumor entities

were treated with CIK cells alone or in combination with

conventional or novel therapies. Of note, only 8 and 5 studies

used allogeneic CIK cells and UCB-derived CIK cells, respectively.

CIK dose varies between studies, with a wide range of 7.9 × 108 to

7.9 × 1010. The number of infusions also varied according to the

treatment efficiency or adverse effects. Ten studies reported that

more cycles of CIK cell infusion were significantly related to the

prolonged OS and PFS (132). In this meta-analysis including mostly

solid tumor trials, the ORR was 38% with 9 studies reporting a

significantly increased 5‐year survival rate. Moreover, mild adverse

effects were observed and the rate of acute and chronic GvHD was

modest and in most cases was controlled by the administration of

immunosuppressive corticosteroids (133, 134). Initial studies using

autologous CIK cells showed feasibility and no adverse events, but

limited efficacy (135–137). Subsequent clinical trials tested

allogeneic CIK cells in the setting of post-HCT relapse (138–148)

Results of these trials are summarized in Table 3. Globally, these

data confirmed the safe profile of CIK cells and the low rate of

GvHD (not exciding 25% for aGvHD).

Our group showed promising results generated by phase I

studies demonstrating the feasibility and safety of clinical-grade

allogeneic CIK cell production (139, 140). Moreover, we conducted

a phase II study on the sequential use of DLI and CIK in 74 patients

relapsed post-transplant, demonstrating a low incidence of GvHD

and adequate disease control. Acute GvHD was observed in 16% of

patients, of these, 7 presented with grade I-II and in 5 with grade III-

IV. Chronic GvHD manifested in 15% of cases. A CR was observed

in 26%, partial response (PR) in 4%, stable disease (SD) in 11%, and
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progression in 56% of cases. PFS at 1 and 3 years was 31% and 29%,

respectively (141). Other groups have confirmed the low rates of

acute and chronic GvHD after CIK infusion as a treatment for post-

HCT relapse (142, 144, 145). In addition, a recent retrospective

analysis from the Frankfurt group, comparing CIK cell infusions

with DLI in a pediatric enriched cohort of HCT patients showed a

low rate of acute and chronic GvHD and exciting outcomes when

used in a prophylactic/pre-emptive setting (145). Of note, in this

study, 63% of patients had a MMUD donor and CIK cells were

produced by adding IL-15 and harvested after a shorter period (10-

12 days of culture). In view of this low risk of alloreactivity, a phase

I/II trial using haploidentical donor derived CIK cells for post-HCT

relapse is currently ongoing at our institution (NCT03821519).

Finally, CIK cell therapy provides a suitable platform for

combination strategies with monoclonal antibody (anti-CD20)

(149), bispecific drugs, such as blinatumomab (anti-CD3 and

anti-CD19) (150), immune checkpoint inhibitors including PD‐1,

PD‐L1, KIR, LAG‐3, or TIM‐3 (151) or gene modification through

the insertion of Chimeric Antigen Receptor (CAR) (152). The latter

strategy has also been tested for AML (153–155). Also, some studies

demonstrated that CIK cells stimulated by or armored with IL‐6, IL‐

7, IL‐12, IL‐15, IL‐21 or thymoglobulin manifested phenotype

alteration, proliferation improvement, and cytotoxicity

enhancement (156–160).

Data from different trials conducted in various institutions

worldwide have shown the ability of CIK cell infusions to boost

the GvL activity, with high rate of response especially in the setting

of MRD and pre-emptive therapy and with a minimum impact on

GvHD onset, leading to an OS benefit.
4 Genetically engineered cell
therapy strategies

4.1 Chimeric antigen receptor T cells

CAR-T cell therapy is an emerging novel therapeutic strategy in

the context of relapsed/refractory lymphomas and leukemias,

including AML (161). CARs have revolutionized the concept of

immunotherapy by combining the specificity of monoclonal

antibodies with the cytotoxic activity mediated by T-cells against

tumor-associated antigens (TAA). The CAR consists of an

extracellular antigen-binding domain, derived from the fusion of

a variable portion of the light and heavy chain of immunoglobulins

(scFv), and an intracellular portion characterized by one or more

activating domains for T-cells, particularly the zeta chain of CD3

belonging to the T-cell receptor (TCR) complex (162). In the

beginning, the approach for CAR-T cell development involved

the use of viral vectors (adenovirus or lentivirus). However, the

high production costs and complex manufacturing processes

limited their clinical use. The introduction of non-viral

transfections, using transposons through the Sleeping Beauty (SB)

system, has proven to be an efficient and safe alternative (163, 164).

Besides the choice of CAR construct design and the method of

transgene insertion into the cell genome (viral or non-viral), the
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https://doi.org/10.3389/fimmu.2024.1459175
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 3 Clinical trials on cytokine-induced killer (CIK) cell after HCT.

Response GvHD Outcome

1 SD
1 PR
3 CR

4 aGvHD (grade
I-II)
2 cGvHD

Alive 5/11

1 CR 1 aGvHD
(grade III)

Alive 0/5

2 CR
8 disease
related deaths

2 aGvHD (grade
II)
1 limited cGvHD

Alive 10/18

5 ORR 3 aGvHD 2-years Alive in CR 2/16

2 PR None 2/2 dead

10 CR
1 PR
2 NR

6 aGvHD
(3 grade I and 3
grade III)
3 cGvHD

OS 69%

15 ORR 2 aGvHD
1 grade I and I
grade III

6 Alive

19 CR (26%)
3 PR (4%)
8 SD (11%)

12 aGvHD
(16%), 7 of grade
I-II
5 grade III-IV
11 cGvHD (15%)

3-year
PFS 29%
OS 40%
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Study Study design Patients
(N)

Disease
(N of pts)

Setting CIK
source

Cell dose/
N infusion

Additional
treatment

Introna et al.
Haematologica
2007 (140)

Single- center, open-
label phase I study

11 AML (4)
HD (3)
CML (1)
ALL (1)
MDS (2)

Treatment MRD
MUD

Median dose
12.4×106 cells/kg (range 7.2-
87.4)
(median infusions 2 range,
1-7)

None

Introna et al. BBMT
2010 (139)

Compassionate
use study

5 AML (4)
ALL (1)

Treatment UCB A median of 1.5×106 cells/kg
(range: 1-8×106 cells/kg
(median infusions 1 range,
1-4)

CT

Laport et al. BBMT
2011 (142)

Single center open-
label phase I study

18 NHL (n=5)
AML (n=3)
MM (n=3)
CLL (n=2)
ALL (n=2)
MDS (n=2)
HD (n=1)

Treatment MRD Escalation doses:
1×107 CD3+ cells/kg
5×107 CD3+ cells/kg
1×108 CD3+ cells/kg
(single infusion)

None

Linn et al. BBMT
2012 (143)

Phase I/II
clinical study

24
(16 infused)

AML (8)
ALL (3)
CML (1)
HD (3)
NHL (1)

Treatment MRD
(15)
MUD (8)
UCB (1)

from 10 to 200×106 cells/kg
(1-12 infusions)

None

Rettinger et al. BMT
2013 (147)

single- center study 2 AML Treatment Haplo (2) 15-170 x106 cells/kg
(from 7 to 9 infusions)

None

Rettinger et al.
Haematologica
2016 (146)

Retrospective
multicenter study

13 AML (5)
ALL (7)
CML (1)

Treatment MRD (1)
MUD (6)
Haplo (6)

From 5 to 100 x106 cells/kg
(from 1 to 6 infusions)

None

Luo et al. Leukemia
Research 2016 (138)

single- center, open-
label phase I study

15 AML (4)
ALL (2)
CML (3)
MM (2)
NHL (4)

Treatment MRD (8)
Haplo (7)

From 1×106 to 8×107 cells/
kg
(from 1 to 10 infusions)

HCT

Introna et al. BBMT
2017 (141)

Multicenter, open-
label phase IIA, study

74 AML (41)
ALL (19)
HD (3)
MM (4)
NHL (2)
MDS(2)
MPN (2)

Treatment MRD
(37)
MUD
(31)
Haplo (5)

1×106 cells/kg
5×106 cells/kg
10×106 cells/kg
(3 infusions)

DLI
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selection of the effector cell can have an impact on the

treatment outcome.

Autologous CAR-T cell therapy has shown excellent results in

the treatment of B-cell malignancies, such as B-cell acute

lymphoblastic leukemia (B-ALL), B-cell non-Hodgkin lymphomas

(B-NHL), chronic lymphocytic leukemia (CLL), and multiple

myeloma (MM) (165–173). Since 2017, six different CAR-T cell

therapies have been approved by the U.S. Food and Drug

Administration (FDA) and the European Medicines Agency

(EMA), including 4 anti-CD19 CAR-Ts and 2 anti-BCMA CAR-

Ts for the treatment of B-ALL, B-NHL, and MM (174).

Differently, the use of allogeneic T cells poses unique challenges

owing to potential alloreactivity. Allogeneic CAR-T cells can be

collected either from an allogeneic donor (donor-derived) or from

patients who relapsed after HCT (patient-derived). Table 4 reported

studies using either autologous or allogeneic CAR source as long as

administrated after an HCT. Patient-derived donor T cells may be

expected to carry a lesser risk of acute and chronic GVHD if the

CAR T cells are generated from tolerized cells. Of note, data on

patient-derived allogeneic CAR cells were collected from trials using

mostly autologous CAR-T outside the setting of HCT. In these

trials, the rate of GVHD was often not reported, but some of these

studies show low rate or absence of GvHD after CAR-T cell therapy

(166, 175–182). However, more recent studies did report some

incidence of both aGvHD and cGvHD (183, 184). Unfortunately,

the value of donor chimerism at the time of lymphocyte apheresis

was nearly always not available.

Surprisingly, initial reports using donor-derived allogeneic

CAR-T cells showed a low incidence of GvHD. These studies,

however, did not include lymphodepleting regimens and showed

limited efficacy (185–188) More recent trials have tested allogeneic

CAR-T cells with lymphodepletion in the setting of disease

recurrence after HCT (189, 190) and even haploidentical HCT

(184, 191) with positive results.

However, several strategies are under investigation to mitigate

the risk of causing or aggravating GvHD. One possibility is to

choose different effector cells other than T cells, such as CIK cells

(152) or NK cells (192, 193). Another possibility is to perform gene

editing to delete the endogenous TCR (194–200). Interestingly, with

the exemption of two studies (196, 197), no GvHD was reported in

this series of patients. Finally, also the CAR-T cell production

method plays a role in improving treatment efficacy. The goal is

to favor protocols that promote the differentiation of T cells into

stem memory cells (SCM) or central memory T cells (CM), which

have shown better anti-tumor activity compared to effector memory

T cells (EM) (201).

CAR cell therapy has shown unprecedented results in different

hematologic diseases, however data on the use of allogeneic

products is still limited.
4.2 Alternative effector cell sources:
genetically modified CIK and NK cells

CIK cells can be employed as alternative effectors for CAR cell

therapy. Anti-CD19 CAR-CIK cells have shown an excellent safety
T
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TABLE 4 Clinical trials on chimeric antigen receptor (CAR) cell therapy after HCT.

Study Study
design

CAR
product

Number
of
patients
infused/
enrolled
(after
HCT)

Disease HCT
Donor

CAR
source

Response GvHD
post
CAR-T

Outcome

Patient-derived T cell

Grupp et al.
NEJM 2013 (175)

Case report Anti-CD19 4-
1BB CAR-T; LV

1 (post HCT
68%
donor
chimerism)

B-ALL UBC Patient-
derived

CR None CD19- relapse

Lee et al. Lancet
2015 (176)

Phase 1, dose-
escalation study

Anti-CD19
CD28z CAR-
T; RV

21/21 (8) B-ALL Not
specified

Patient-
derived

CR 50% None OS 51.6% LFS
78.8% (median
FU 10 months)

Turtle et al. J Clin
Invest 2016 (177)

Phase I, dose-
escalation study

Anti-CD19 4-
1BB CAR-T;
LV; (CD4/
CD8 = 1/1)

30/32 (11) B-ALL MRD (2)
MUD
(7) UBC
(1)
Haplo
(1)

Patient-
derived

11 CR 1 cGvHD /

Gardner et al.
Blood 2017 (178)

Phase I/II study Anti-CD19 4-
1BB CAR-T LV;
(CD4/
CD8 = 1/1)

45/45 (28) B-ALL Not
specified

Patient-
derived

CR 93% 1 aGvHD
(grade III)

/

Jacoby et al. Am J
Hem 2018 (242)

Phase Ib/
II study

Anti-CD19
CD28z CAR-T

20/21 (10) B-ALL Not
specified

Patient-
derived

18 CR None 1-yr EFS
73%
OS 90% (all
underwent HCT
after CAR-T)

Maude et al.
NEJM 2018 (179)

Phase I/II study Anti-CD19 4-
1BB CAR-T; LV

75/92 (46) B-ALL Not
specified

Patient-
derived

23 CR
31 CRi

None 6-months EFS
67%, OS 78%

Park et al. NEJM
2018 (166)

Phase I study Anti-CD19
CD28z CAR-
T; RV

53/83 (19) B-
ALL (19)

Not
specified

Patient-
derived

CR 83% None median EFS 6.1
months OS
12.9 months

Abramson et al.
The Lancet
2020 (243)

Phase I
multicenter
study

Anti-CD19 4-
1BB CAR-T
(LisoCel); LV

269/344 (9) NHL Not
specified

Patient-
derived

ORR 73% None /

Zhang et al. Blood
Advances
2020 (183)

phase I/II study Anti-CD19 4-
1BB or CD28z
CAR-T; LV

110/115 (16) B-ALL MRD,
MUD,
Haplo

Patient-
derived
(14)
Donor-
derived
(2)

15 CR 2 aGvHD
(grade I and
grade III)
2 cGvHD

1-year LFS
30.5%
OS 30.5%

Shah et al. Blood
2021 (244)

Phase I/II study KTE-X19
(Brexu-cel) anti-
CD19 CD28z
CAR-T; RV

45/54 (13) B-ALL Not
specified

Patient-
derived

ORR 69%
CR 53%
CRi 16%

None Median DOR
14.5 months

Shah et al. JCO
2021 (245)

Phase I dose-
escalation,
single-
center study

Anti-CD19
CD28z CAR-
T; RV

50/53 (22) B-ALL Not
specified

Patient-
derived

CR 62% Not reported Median OS 10.5
and EFS
3.1 months

Shah et al. Lancet
2021 (180)

Phase,
multicenter,
single-arm,
open-
label study

KTE-X19
(Brexu-cel) anti-
CD19 CD28z
CAR-T; RV

55/71 (24) B-ALL Not
specified

Patient-
derived

CR/CRi 71% None Median DOR
12,8 RFS 11,6
OS 18,2 months
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TABLE 4 Continued

Study Study
design

CAR
product

Number
of
patients
infused/
enrolled
(after
HCT)

Disease HCT
Donor

CAR
source

Response GvHD
post
CAR-T

Outcome

Patient-derived T cell

Shah et al.
Immunotherapy
Cancer 2023 (246)

Long follow-up
ZUMA-3 study

KTE-X19
(Brexu-cel) anti-
CD19 CD28z
CAR-T; RV

78/X (38) B-ALL Not
specified

Patient-
derived

/ None Median DOR
with (n=14) and
without (n=43)
subsequent
HCT was 44.2
and
18.6 months

Ghorashian et al.
Blood 2024 (218)

Phase I, open
label study

Anti-CD19
CAR-T and
CD22 CAR-
T; LV

12/13 (6) B- ALL Not
specified

Patient-
derived

10/12
CR (83%)

Not reported OS 75% EFS
60% at
12-month

Liu et al. Am J
Hematol.
2021 (184)

Phase I study Anti-CD19
CAR-T and
CD22 4-1BB
CAR-T; LV

27/32 (27) B- ALL MUD
(6)
Haplo
(20)
UBC (1)

Patient-
derived

23 CR
3 PR
1 early death

2 aGvHD
(grade II)
4 cGvHD

18-months EFS
65% OS 84%

Berdeja et al.
Lancet 2021 (247)
and Martin et al.
JCO 2023 (248)

Phase Ib/II
multicenter
study

Anti-BCMA 4-
1BB CAR-T
(Cilta-cel); LV

101/113 (8) MM Not
specified

Patient-
derived

ORR 97.9% Not reported 1-yr PFS 77%
1-yr OS 89%

Cowan et al.
Lancet Onco
2023 (249)

First in human
phase I study

Anti-BCMA
CAR-T; LV +
crenigacestat
(LY3039478)

18/19 (2) MM Not
specified

Patient-
derived

ORR 89% Not reported Median PFS 11
months
OS 42 months

Jin et al. J
Hematol Oncol.
2022 (250)

First in human
phase I study

Anti-CLL1 4-
1BB CAR-T; LV

10/10 (5) AML Not
specified

Patient-
derived

CRi 70% Not reported 6 patients alive
at the end of
the last FU

Zhang et al.
Leukemia.
2022 (251)

Phase I/II study Anti-CLL-1
CD28z-CD27
CAR-T; LV

8/8 (2) AML Not
specified

Patient-
derived

5 CR
1 CRi
1 PR
1 SD

Not reported /

Naik et al. Blood
2022 (252)

Phase I study Anti-CD123
CD28z, CD20
CAR-T; LV

6/13 (11) AML Not
specified

Patient-
derived

2 CR
1 PR

Not reported /

Voorhees et al.
Blood Advances
2020 (182)

Case report Anti-CD30
CAR-T

1 (with
previous
HCT, with
100%
chimerism)

EATL MRD Patient-
derived

CR None 30 months
in CR

Tambaro et al.,
Leukemia
2021 (181)

Phase I study Anti-CD33 4-
1BB CAR-T; LV

3/10 (3) AML Not
specified

Patient-
derived

No response None Died for
disease
progression

Donor-derived and patient-derived T cell

Budde et al. Blood
2017 (189)

First in human
phase I study

Anti-CD123
CD28z CAR-
T; LV

7/14 (6) AML (6)
BPDCN
(1)

Not
specified

Donor-
derived
Patient-
derived

3 ORR 1 GvHD /

Cui et al. J.
Hematol Oncol
2021 (253)

Phase I/II study Anti-CD38
CD28 4-1BB
CAR-T

6/6 (6) AML MUD
(2)

Donor-
derived
(2)

4 CR/CRi None /

(Continued)
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TABLE 4 Continued

Study Study
design

CAR
product

Number
of
patients
infused/
enrolled
(after
HCT)

Disease HCT
Donor

CAR
source

Response GvHD
post
CAR-T

Outcome

Donor-derived and patient-derived T cell

Haplo
(4)

Patient-
derived
(4)

Lu et al. Blood
2022 (254)

Phase I study Naturally
selected anti-
CD7 4-1BB
CAR-T
(NS7CAR); LV

20/20 (5) T- ALL
(14) T-
LBL (6)

Not
specified

Donor-
derived
(2)
Patient-
derived
(18)

5 CR
14 CRi
1 NR

aGvHD 1
(grade I)

4/6 patients
who did not
receive a HCT
remained in CR

Donor-derived T cell

Cruz et al. Blood
2013 (187)

Phase I study Anti-CD19
CD28z CAR-
T; RV

8/8 (8) B-ALL (4);
CLL (4)

MRD (5)
MUD
(2)
MMUD
(1)

Donor-
derived

2 CR None 1 remained in
CR for 8
months and the
other 1 for
8 weeks

Kochenderfer
et al. Blood
2013 (188)

Phase I study Anti-CD19
CD28z CAR-
T; RV

10/10 (10) CLL (4)
DLBCL (2)
MCL (4)

MRD (6)
MUD
(4)

Donor-
derived

CR (1) PR (1)
SD (6)

None /

Dai et al.
Oncoimmunology
2015 (255)

Pilot study Anti-CD19 4-
1BB CAR-T; LV

9/9 (3) B-ALL Not
specified

Donor-
derived
(2)
Patient-
derived
(1)

1 CR 2 aGvHD /

Brudno et al. JCO
2016 (185)

Phase I dose
escalation study

Anti-CD19
CD28z CAR-
T; RV

20/20 (20) B-ALL (5)
CLL (5)
DLBCL (5)
MCL (5)

MRD
(13)
MUD
(6)
MMUD
(1)

Donor-
derived

6 CR
2 PR

2 cGvHD /

Kebriaei et al. JCI
2016 (186)

Phase I dose
escalation study

Anti-CD19
CD28z CAR-
T; SB

26/50 (19) B-ALL
(17)
NHL (2)

MRD
(10)
Haplo
(9)

Donor
derived

11 CR 2 aGvHD
1 cGvHD

1-yr PFS 53%
OS 63%

Jia et al. Journal of
Hematology &
Oncology
2019 (191)

Case report Anti-CD19 and
CD19/CD22
bispecific 4-1BB
CAR-T

1
(after HCT)

B-ALL Haplo Donor-
derived

CR 1 aGVHD
(grade IV)

/

Zhang et al.
Leukemia
2021 (190)

Phase II study Anti-CD19 4-
1BB or CD28
CAR-T; LV

43/43 (43) B-ALL MRD
(17)
Haplo
(26)

Donor-
derived

CR 79% 2 GvHD
(grade I-II)

1-year EFS and
OS 43% 1-year
CIR 41%

Yang et al. Blood
Cancer Journal
2022 (256)

First-in-human
single-arm,
single-center,
proof-of-
concept phase
I study

Anti-CD19
CD28 F-CAR-
T; LV

25/25 (1) B-ALL Not
specified

Donor-
derived

CR 92% None 15 pts were
disease-free
with a median
DOR 734 days
(20/23 proceed
to HCT)

Li et al.
Transplantation
and cellular

Phase I study
donor CD7
CAR-T therapy

Anti-CD7 4-
1BB; LV

12/12 (1) T-
ALL (10)

MRD 1 Donor-
derived

CR 91% 3 aGvHD (2
grade II 1

1-year OS 92%
and DFS 57%

(Continued)
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TABLE 4 Continued

Study Study
design

CAR
product

Number
of
patients
infused/
enrolled
(after
HCT)

Disease HCT
Donor

CAR
source

Response GvHD
post
CAR-T

Outcome

Donor-derived T cell

therapy
2023 (217)

followed by
allo-HSCT
from the
same donor

grade IV)
3 cGvHD

Donor-derived non-T cell

Magnani et al. JCI
2020 (152) and
Lussana et al.
Blood 2022 (202)

Phase I/II study Anti-CD19
CD28z OX-40
CARCIK; SB

27/27 (27) B-ALL MRD (7)
MUD
(10)
Haplo
(10)

Donor-
derived

CR 66.7% None 6-months EFS
41.5% and OS
71.4%; median
DOR
9.5 months

Marin et al. Nat
Med 2024 (193)
and Liu et al.
NEJM 2020 (192)

Phase I/II study Anti-CD19-
CD28z-iCasp9-
IL15 CAR-
NK; RV

37/41 (1) B-ALL (1)
NHL (25)
CLL (11)

UBC Donor-
derived

day 100 OR
rates
were 48.6%

None 1-yr PFS 32%
OS 68%

Tang et al. Am J
Cancer Res
2018 (207)

Phase I, first-
in-man study

Anti-CD33
CD28z and 4-
1BB CAR NK
cells; LV

3/3 (1) AML NK-92
cell line

Cell-
derived

0 Not reported /

Huang et al.
Hemasphere
2023 (208)

Phase I Anti-CD33
CAR NK

10/10
(not
reported)

AML Not
reported

Donor-
derived

6 CR (MRD-) Not reported /

Modified donor-derived T cells

Sallman et al.
Blood 2022 (194)

Phase I, open-
label, dose-
escalation
multicenter
study

UCART123v1.2
Anti-CD123 4-
1BB CAR-T,
(TALEN editing
TCRako

CD52ko)

17/17 (9) AML non-
HLA–
matched
healthy
donor
cells

Donor-
derived

ORR 4/17 0 1 persisting
CR MRD-

Jain et al. Blood
2020 (195) and
Boissel et al.
Hemasphere
2023 (257)

Phase I open-
label dose-
escalation study

UCART22
(TALEN editing
TCRako

CD52ko)

18/19 (8) B-ALL non-
HLA–
matched
healthy
donor
cells

Donor-
derived

ORR 7/18 / /

Benjamin et al.
Lancet Haema
2022 (196)

Phase 1, open-
label,
multicenter
study

UCART19 anti-
CD19 4-1BB
CAR-T; LV
(TALEN editing
TCRako

CD52ko)

25/25 (18) B-ALL non-
HLA–
matched
healthy
donor
cells

Donor-
derived

ORR 48% 2 aGvHD
(grade I) (8%)

DOR 7,4 PFS
2,1 OS 13,4
months Median
FU 12,8 months

PAN et al. JCO
2021 (197) and
Tan et al. Journal
of Hematology &
Oncology
2023 (258)

Phase I study Anti-CD7 4-
1BB CAR-T;
LV; KDEL

20/20 (12) T ALL MRD 5
MUD 1
Haplo 14

Donor-
derived

ORR 95%
CR 90%

aGvHD 60%
(11 grade I
and 1 grade
II) 1 late onset
aGVHD grade
IV; 7 cGvHD

2-yrs PFS 36.8%
and OS 42.3%
Median PFS
11.0 and OS
18.3 months

Hu et al. Cell Res
2022 (198)

Phase I study RD13-01 anti-
CD7 4-1BB
CAR-T; RV
(CRISPR-Cas9
editing HLA-

12/12 (2) T ALL
(11)
AML (1)

non-
HLA–
matched
healthy

Donor-
derived

CRi 4; CR 3;
PR 2

None /

(Continued)
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profile and good response rates in patients with post-HCT R/R B-

ALL (152, 202). In this study, no GVHD following CAR-CIK was

reported. Preclinical studies using CAR-CIK cells against CD33 and

CD123 have shown promising results also in the setting of AML

(153–155). CAR-CIK cells were also tested in vitro against CD44v6

with encouraging results (203). In addition, one case report form

China, showed a transient response in an AML patient treated with

autologous CAR-CIK cells direct against CD33 (204). Finally,

preclinical data showed that CAR cell activity can be enhanced by

increasing BM homing through the expression of specific

chemokines (CXCR4) (205) or by armoring them to

constitutively secrete cytotoxic cytokine (IL-18) (206).

CAR-NK cells can be generated from either NK tumor lines

(NK92), induced pluripotent stem cells (iPSCs) differentiated into

NK cells, or isolated NK cells from peripheral or UCB (113). UCB-

derived CAR-NK cells demonstrated impressive clinical efficacy in

CD19-positive diseases (192, 193). In this study, only one patient

presented a post-HCT relapse/refractory disease and no case of

GvHD was reported. NK92-derived CAR-NK cells, targeting CD33
Frontiers in Immunology 20
and constitutively secreting IL-2, were used to treat 3 patients with

relapsed/refractory AML. This study observed no toxicity but also

no efficacy (207). NK cells derived from NK92 do not express some

activating/cytotoxic receptors such as CD16 and NKp44,

representing a limitation of this approach. Huang and colleagues

presented preliminary data from a phase I study on multiple

infusions of allogeneic CAR-NK cells targeting CD33 in 10

patients with relapsed/refractory AML, reporting no toxicity, and

6 out of 10 patients achieved MRD-negative complete remission by

day 28 (208). Allogeneic CAR-NK cells targeting CD123, derived

from the peripheral blood of healthy donors, demonstrating anti-

leukemic activity in vitro and in vivo without toxicity to the normal

healthy myeloid compartment (209). Finally, Dong and colleagues

proposed an innovative approach, where NK cells were induced to

differentiate into CIML-like NK cells and then transduced with a

CAR recognizing the neopeptide derived from cytosolic oncogenic

nucleophosmin-1 (NPM1c), presented by HLA-A2 (210).

Currently, several clinical trials are recruiting patients with

relapsed/refractory AML for treatment with CAR-NK cells
TABLE 4 Continued

Study Study
design

CAR
product

Number
of
patients
infused/
enrolled
(after
HCT)

Disease HCT
Donor

CAR
source

Response GvHD
post
CAR-T

Outcome

Modified donor-derived T cells

IIkoCD7ko

TRCkoNKi+)
donor
cells

Ottaviano Sci
Tran Med
2022 (199)

Phase 1, open-
label, study

TT52CAR19
anti-CD19
CAR-T; LV
(CRISPR-Cas9
editing
TCRako

CD52ko)

6/8 (5) B-ALL non-
HLA–
matched
healthy
donor
cells

Donor-
derived

CR 66% 1 aGvHD
(grade I)

/

Chiesa et al.
NEJM 2023 (200)

Phase I study (BE-CAR7s)
anti-CD7 4-1BB
CAR-T; LV (BE
CD52koCD7ko

TRCbko)

3/3 (2) T ALL non-
HLA–
matched
healthy
donor
cells

Donor-
derived

2 CR MRD-

1 CRi MRD+
None /

Modified patient-derived T cells

Cummins at al.
Blood 2017 (259)

Pilot open-
label study

Biodegradable T
cells anti-CD123
4-1BB CAR
mRNA
tandem TCR

6/7 (4) AML Not
specified

Patient-
derived

No response Not reported 0

Wermke et al.
Blood 2021 (214)
and Blood
2023 (215)

Phase I dose-
escalating study

UNICART,
anti-TM CD28z
+ TM123

19/19 (12) AML Not
specified

Patient-
derived

ORR 53%
75%
(for MRD+)

Not reported Median DOR
5 months
N, number; MRD, matched related donor; MUD, matched unrelated donor; MMUD, mismatched unrelated donor; haplo, haploidentical donor; LV, lentivirus; RV, retrovirus; SB, sleeping
beauty; Flu, fludarabine; Cy, cyclophosphamide; MM, multiple myeloma; ORR, overall response rate; DOR, duration of response; yr, year; PFS, progression free survival; EFS, event free survival;
LFS, leukemia free survival; DFS, disease free survival; OS, overall survival; FU, follow-up; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; T-LBL, T-cell lymphoblastic
lymphoma; NHL, non-Hodgkin lymphoma; EALT, enteropathy-associated T cell lymphoma; TM, target molecule; MRD, minimal residual disease; KDEL, endoplasmic reticulum retention
signal sequence; aGvHD and cGvHD, acute and chronic graft versus host disease; BM, bone marrow; CCR, continuous complete remission; CR2, second CR; DIR, died in remission; LV, lentiviral
transduction; PR, partial remission; gRL, g-retroviral transduction; SB, Sleeping Beauty transposon; BE, base editing; F-CAR-T, fast CAR-T; NS7CAR, naturally selected CD7 CAR-T.
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targeting different epitopes: CD123, CD33, CCL1, and

NKG2DL (211).

Both allogeneic donor-derived CAR-CIK and CAR-NK cell

strategies have shown to exert a potent GvL activity with a

minimum GvL toxicity. Long-term survival analysis and data on

CAR cell persistence are needed to select the best strategy.
4.3 Novel strategy to improve CAR-T
cell therapy

One goal for the improvement of cellular therapy with CAR-T

cells is the use offit, ready to use donor T cells, without exacerbating

the risk of GvHD. Gene editing can be used to manipulate the T cell,

by deleting the endogenous TCR, allowing the use of allogeneic non

matched or third part T cells. Most studies on T-cell editing initially

began by deleting a TCR gene, then introducing a CAR using a

retroviral or lentiviral vector (212).

UCART are gene-edited CAR-T cells engineered using a

TALEN editing strategy, to knock down the TCR and the CD52

receptor. TALENs are chimeric proteins that contain two functional

domains: a DNA-recognition transcription activator-like effector

(TALE) and a nuclease domain. This technology allows the use of

third-party T cells, tearing down the risk of GvHD and the use of

alemtuzumab within the lymphodepleting regimen without the risk

of CAR-T depletion. Indeed in 3 different studies only 2 cases of

grade I aGvHD were reported (194–196).

In the setting of anti-CD7 CAR T cells, different editing strategies

were used to block the expression of CD7, the T cell receptor (TCR),

and human leukocyte antigen (HLA) class II, to avoid CAR T cell

fratricide, GvHD, and rejection, respectively (197–200). Furthermore,

in the study of Hu and colleagues, the expression of the NK inhibitor

(NKi) and the common cytokine receptor gamma chain (gc) was

induced to enhance CAR-T cell cytotoxic activity (198).

However, an interesting mouse study from the Memorial Sloan

Kettering Cancer Center showed that allogeneic second generation

CD28CAR-Tcells have lessGvHDcapacitywhilemaintainingananti-

lymphoma capability compared to first generation or second

generation 4-1BB CAR-T cells (213). These data suggested a natural

tolerogenic profile of CD28 CAR-T cells, while maintaining their

endogenous TCR.

Another approach to reduced CAR-T cell toxicity involves the

“universal” CAR-T cells (UniCAR). This second-generation

autologous CAR construct using a CD28 costimulatory domain is

designed to bind a soluble target module (TM) able to bind the

tumor antigen (CD123). In this phase I study, 19 patients were

treated, of which 12 after a relapse post-HCT. The ORR was 53%

and no case of GvHD was reposted (214, 215). Interestingly,

treatment-related toxicities quickly resolved with the suspension

of the target module administration.

Finally, to overcome the selection of the therapeutic target

considering the shared expression of antigens by both myeloid

precursors and malignant cells, valid alternatives include post-

CAR-T cell HCT (216, 217), targeting AML specific antigens

(such as NPM1) (210), and the use of dual-targeting CAR-T cells
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capable of recognizing more than one target and fully activated only

when both antigens are expressed on the target cell (155). In

addition, by targeting multiple antigens, the dual-CAR construct

can potentially overcome the tumor immune escape arising from

antigen-negative disease, such as in the case of CD19 loss (218).

Although the real risk of GvHD after donor-derived CAR-T

cells is still not well defined yet, novel gene editing strategies can be

effectively employed to mitigate the T cell alloreactivity in the

context of allogeneic or third-part CAR-T cell therapy.
5 Conclusions

Despite the successful rate of cure after HCT, a considerable

fraction of patients still experiences disease recurrence or

persistence. CIK cell-based therapy represents a suitable approach

to boost the GvL activity without increasing GvHD. Indeed, CIK

cells offer an allogeneic cell platform with a tolerogenic profile and

can be considered also for a third-part ready to use cellular therapy.

In addition, novel strategy using CAR-CIK cells showed efficacy

with limited toxicity and no report of GvHD in a setting of heavily

pretreated patients. Major limitations are represented by the limited

efficacy in the setting of overt hematological relapse and lack of

suitable targets and severe toxicities in the myeloid setting.

Moreover, high-level evidence coming from phase III randomized

controlled trials (RCTs) is needed in this field. Future perspective

includes the use of prophylactic CIK cell infusion, the use of novel

modified CIK cells, such as armored-CIK cells or CAR-CIK cells for

the treatment of disease recurrence after HCT.
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E, et al. Donor NK cell licensing in control of malignancy in hematopoietic stem cell
transplant recipients. Am J Hematol. (2014) 89:E176–83. doi: 10.1002/ajh.23802

55. Cooley S, Trachtenberg E, Bergemann TL, Saeteurn K, Klein J, Le CT, et al.
Donors with group B KIR haplotypes improve relapse-free survival after unrelated
hematopoietic cell transplantation for acute myelogenous leukemia. Blood. (2009)
113:726–32. doi: 10.1182/blood-2008-07-171926

56. Cooley S, Weisdorf DJ, Guethlein LA, Klein JP, Wang T, Le CT, et al. Donor
selection for natural killer cell receptor genes leads to superior survival after unrelated
transplantation for acute myelogenous leukemia. Blood. (2010) 116:2411–9.
doi: 10.1182/blood-2010-05-283051

57. Downing J, D’Orsogna L. High-resolution human KIR genotyping.
Immunogenetics. (2022) 74:369–79. doi: 10.1007/s00251-021-01247-0

58. Petersdorf EW, Stevenson P, Bengtsson M, De Santis D, Dubois V, Gooley T,
et al. HLA-B leader and survivorship after HLA-mismatched unrelated donor
transplantation. Blood. (2020) 136:362–9. doi: 10.1182/blood.2020005743

59. Sajulga R, Bolon Y-T, Maiers MJ, Petersdorf EW. Assessment of HLA-B genetic
variation with an HLA-B leader tool and implications in clinical transplantation. Blood
Adv. (2022) 6:270–80. doi: 10.1182/bloodadvances.2021004561

60. Solomon SR, AubreyMT, ZhangX, JacksonKC, RoarkCL, FreedBM, et al. Lineage-
Specific Relapse Prediction After Haploidentical Transplantation With Post-Transplant
Cyclophosphamide Based on Recipient HLA-B-Leader Genotype andHLA-C-Group KIR
Ligand. Transplant Cell Ther. (2022) 28:601.e1–8. doi: 10.1016/j.jtct.2022.06.023

61. Petersdorf EW, Gooley T, Volt F, Kenzey C, Madrigal A, McKallor C, et al. Use
of the HLA-B leader to optimize cord blood transplantation. Haematologica. (2020)
106:3107–14. doi: 10.3324/haematol.2020.264424

62. Milano F, Gooley T, Wood B, Woolfrey A, Flowers ME, Doney K, et al. Cord-
Blood Transplantation in Patients with Minimal Residual Disease. N Engl J Med. (2016)
375:944–53. doi: 10.1056/NEJMoa1602074
Frontiers in Immunology 23
63. Verneris MR, Brunstein CG, Barker J, MacMillan ML, DeFor T, McKenna DH,
et al. Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-
leukemia effect in recipients of 2 units. Blood. (2009) 114:4293–9. doi: 10.1182/blood-
2009-05-220525

64. Horgan C, Mullanfiroze K, Rauthan A, Patrick K, Butt NA, Mirci-Danicar O,
et al. T-cell replete cord transplants give superior outcomes in high-risk and relapsed/
refractory pediatric myeloid malignancy. Blood Adv. (2023) 7:2155–65. doi: 10.1182/
bloodadvances.2022009253

65. Martelli MF, Di Ianni M, Ruggeri L, Falzetti F, Carotti A, Terenzi A, et al. HLA-
haploidentical transplantation with regulatory and conventional T-cell adoptive
immunotherapy prevents acute leukemia relapse. Blood. (2014) 124:638–44.
doi: 10.1182/blood-2014-03-564401

66. Pierini A, Ruggeri L, Carotti A, Falzetti F, Saldi S, Terenzi A, et al. Haploidentical
age-adapted myeloablative transplant and regulatory and effector T cells for acute
mye lo id l eukemia . B lood Adv . ( 2021 ) 5 : 1199–208 . do i : 10 . 1182 /
bloodadvances.2020003739

67. Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S, et al.
Outcomes of acute leukemia patients transplanted with naive T cell–depleted stem cell
grafts. J Clin Invest. (2015) 125:2677–89. doi: 10.1172/JCI81229

68. Bleakley M, Sehgal A, Seropian S, Biernacki MA, Krakow EF, Dahlberg A, et al.
Naive T-Cell Depletion to Prevent Chronic Graft-Versus-Host Disease. J Clin Oncol.
(2022) 40:1174–85. doi: 10.1200/JCO.21.01755

69. Sanders JE, Buckner CD, Clift RA, Fefer A, McGuffin R, Storb R, et al. Second
marrow transplants in patients with leukemia who relapse after allogeneic marrow
transplantation. Bone Marrow Transplant. (1988) 3:11–9.

70. Göksoy HS, Arat M. The use of second allogeneic hematopoietic stem cell
transplantation for hematologic malignancies relapsed after the first: Does it worth to
do? Transfus Apher Sci. (2016) 54:91–8. doi: 10.1016/j.transci.2016.01.020

71. Yerushalmi Y, Shem-Tov N, Danylesko I, Canaani J, Avigdor A, Yerushalmi R,
et al. Second hematopoietic stem cell transplantation as salvage therapy for relapsed
acute myeloid leukemia/myelodysplastic syndromes after a first transplantation.
Haematologica. (2023) 108:1782–92. doi: 10.3324/haematol.2022.281877

72. Vago L, Toffalori C, Ahci M, Lange V, Lang K, Todaro S, et al. Incidence of HLA
Loss in a Global Multicentric Cohort of Post-Transplantation Relapses: Results from
the Hlaloss Collaborative Study. Blood. (2018) 132:818. doi: 10.1182/blood-2018-99-
112142

73. Rovatti PE, Gambacorta V, Lorentino F, Ciceri F, Vago L. Mechanisms of
Leukemia Immune Evasion and Their Role in Relapse After Haploidentical
Hematopoietic Cell Transplantation. Front Immunol. (2020) 11:147. doi: 10.3389/
fimmu.2020.00147

74. Vago L, Ciceri F. Choosing the Alternative. Biol Blood Marrow Transplant.
(2017) 23:1813–4. doi: 10.1016/j.bbmt.2017.09.009

75. Imus PH, Blackford AL, Bettinotti M, Iglehart B, Dietrich A, Tucker N, et al.
Major Histocompatibility Mismatch and Donor Choice for Second Allogeneic Bone
Marrow Transplantation. Biol Blood Marrow Transplant. (2017) 23:1887–94.
doi: 10.1016/j.bbmt.2017.07.014

76. Christopeit M, Kuss O, Finke J, Bacher U, Beelen DW, Bornhäuser M, et al.
Second allograft for hematologic relapse of acute leukemia after first allogeneic stem-
cell transplantation from related and unrelated donors: The role of donor change. J Clin
Oncol. (2013) 31:3259–71. doi: 10.1200/JCO.2012.44.7961

77. Shimoni A, Labopin M, Finke J, Ciceri F, Deconinck E, Kröger N, et al. Donor
selection for a second allogeneic stem cell transplantation in AML patients relapsing
after a first transplant: a study of the Acute Leukemia Working Party of EBMT. Blood
Cancer J. (2019) 9:88. doi: 10.1038/s41408-019-0251-3

78. Kharfan-Dabaja MA, Labopin M, Bazarbachi A, Ciceri F, Finke J, Bruno B, et al.
Comparing outcomes of a second allogeneic hematopoietic cell transplant using HLA-
matched unrelated versus T-cell replete haploidentical donors in relapsed acute
lymphoblastic leukemia: a study of the Acute Leukemia Working Party of EBMT.
Bone Marrow Transplant. (2021) 56:2194–202. doi: 10.1038/s41409-021-01317-7

79. Watanabe O, Yamamoto H, Yamaguchi K, Kageyama K, Kaji D, Taya Y, et al.
Single CBT As 2nd Allo-SCT Is Promising for Selected Patients with Relapsed
Hematopoietic Malignancies. Blood. (2023) 142:7096. doi: 10.1182/blood-2023-188946

80. Troullioud Lucas AG, Boelens JJ, Prockop SE, Curran KJ, Bresters D, Kollen W,
et al. Excellent leukemia control after second hematopoietic cell transplants with
unrelated cord blood grafts for post-transplant relapse in pediatric patients. Front
Oncol. (2023) 13:1221782. doi: 10.3389/fonc.2023.1221782

81. Castelli M, Grassi A, Algarotti A, Micò MC, Lussana F, Finazzi MC, et al.
Outcomes of second allogeneic hematopoietic stem cell transplantation for hematologic
diseases: a single-center real-world experience. EBMT. (2024).

82. Schmid C, Kuball J, Bug G. Defining the Role of Donor Lymphocyte Infusion in
High-Risk Hematologic Malignancies. J Clin Oncol. (2021) 39:397–418. doi: 10.1200/
JCO.20.01719

83. Pagliuca S, SchmidC, SantoroN, Simonetta F, Battipaglia G,GuillaumeT, et al. Donor
lymphocyte infusion after allogeneic haematopoietic cell transplantation for haematological
malignancies: basic considerations and best practice recommendations from the EBMT.
Lancet Haematol. (2024) 11:e448–58. doi: 10.1016/S2352-3026(24)00098-X

84. Maurer K, Antin JH. The graft versus leukemia effect: donor lymphocyte
infusions and cellular therapy. Front Immunol. (2024) 15:1328858. doi: 10.3389/
fimmu.2024.1328858
frontiersin.org

https://doi.org/10.1200/JCO.2005.09.117
https://doi.org/10.1056/NEJM199810223391702
https://doi.org/10.1182/blood-2017-04-779769
https://doi.org/10.1038/s41409-024-02199-1
https://doi.org/10.1038/s41586-023-06945-1
https://doi.org/10.1038/s41586-023-06945-1
https://doi.org/10.1182/blood-2011-04-347070
https://doi.org/10.1182/blood-2011-04-347070
https://doi.org/10.3389/fimmu.2016.00188
https://doi.org/10.3389/fimmu.2017.00465
https://doi.org/10.1038/nature07665
https://doi.org/10.1182/blood-2017-05-780668
https://doi.org/10.1182/blood-2017-05-780668
https://doi.org/10.1038/sj.leu.2404892
https://doi.org/10.1182/blood-2007-09-077438
https://doi.org/10.1182/blood-2007-09-077438
https://doi.org/10.1016/j.it.2011.06.001
https://doi.org/10.1182/blood.V94.1.333.413a31_333_339
https://doi.org/10.1126/science.1068440
https://doi.org/10.4049/jimmunol.172.1.644
https://doi.org/10.1002/ajh.23802
https://doi.org/10.1182/blood-2008-07-171926
https://doi.org/10.1182/blood-2010-05-283051
https://doi.org/10.1007/s00251-021-01247-0
https://doi.org/10.1182/blood.2020005743
https://doi.org/10.1182/bloodadvances.2021004561
https://doi.org/10.1016/j.jtct.2022.06.023
https://doi.org/10.3324/haematol.2020.264424
https://doi.org/10.1056/NEJMoa1602074
https://doi.org/10.1182/blood-2009-05-220525
https://doi.org/10.1182/blood-2009-05-220525
https://doi.org/10.1182/bloodadvances.2022009253
https://doi.org/10.1182/bloodadvances.2022009253
https://doi.org/10.1182/blood-2014-03-564401
https://doi.org/10.1182/bloodadvances.2020003739
https://doi.org/10.1182/bloodadvances.2020003739
https://doi.org/10.1172/JCI81229
https://doi.org/10.1200/JCO.21.01755
https://doi.org/10.1016/j.transci.2016.01.020
https://doi.org/10.3324/haematol.2022.281877
https://doi.org/10.1182/blood-2018-99-112142
https://doi.org/10.1182/blood-2018-99-112142
https://doi.org/10.3389/fimmu.2020.00147
https://doi.org/10.3389/fimmu.2020.00147
https://doi.org/10.1016/j.bbmt.2017.09.009
https://doi.org/10.1016/j.bbmt.2017.07.014
https://doi.org/10.1200/JCO.2012.44.7961
https://doi.org/10.1038/s41408-019-0251-3
https://doi.org/10.1038/s41409-021-01317-7
https://doi.org/10.1182/blood-2023-188946
https://doi.org/10.3389/fonc.2023.1221782
https://doi.org/10.1200/JCO.20.01719
https://doi.org/10.1200/JCO.20.01719
https://doi.org/10.1016/S2352-3026(24)00098-X
https://doi.org/10.3389/fimmu.2024.1328858
https://doi.org/10.3389/fimmu.2024.1328858
https://doi.org/10.3389/fimmu.2024.1459175
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rambaldi et al. 10.3389/fimmu.2024.1459175
85. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, et al. Donor
leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in
marrow transplant pat ients . Blood . (1990) 76:2462–5. doi : 10.1182/
blood.v76.12.2462.2462

86. Kolb HJ, Schmid C, Barrett AJ, Schendel DJ. Graft-versus-leukemia reactions in
allogeneic chimeras. Blood. (2004) 103:767–76. doi: 10.1182/blood-2003-02-0342

87. Schmid C, Labopin M, Nagler A, Bornhäuser M, Finke J, Fassas A, et al. Donor
lymphocyte infusion in the treatment of first hematological relapse after allogeneic
stem-cell transplantation in adults with acute myeloid leukemia: A retrospective risk
factors analysis and comparison with other strategies by the EBMT acute leukem. J Clin
Oncol. (2007) 25:4938–45. doi: 10.1200/JCO.2007.11.6053

88. Schroeder T, Rachlis E, Bug G, Stelljes M, Klein S, Steckel NK, et al. Treatment of
Acute Myeloid Leukemia or Myelodysplastic Syndrome Relapse after Allogeneic Stem
Cell Transplantation with Azacitidine and Donor Lymphocyte Infusions&x2014;A
Retrospective Multicenter Analysis from the German Cooperative Transplant Study
Gro. Biol Blood Marrow Transplant. (2015) 21:653–60. doi: 10.1016/j.bbmt.2014.12.016
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