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Paris, France, 3Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital
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In recent years, following the groundbreaking achievements of chimeric antigen

receptor (CAR) T cell therapy in hematological cancers, and advancements in cell

engineering technologies, the exploration of other immune cells has garnered

significant attention. CAR-Therapy extended beyond T cells to include CAR

natural killer (NK) cells and CAR-macrophages, which are firmly established in

the clinical trial landscape. Less conventional immune cells are also making their

way into the scene, such as CARmucosal-associated invariant T (MAIT) cells. This

progress is advancing precision medicine and facilitating the development of

ready-to-use biological treatments. However, in view of the unique features of

natural killer cells, adoptive NK cell immunotherapy has emerged as a universal,

allogenic, “off-the shelf” therapeutic strategy. CAR-NK cytotoxic cells present

targeted tumor specificity but seem to be devoid of the side effects associated

with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for

cancer immunotherapy. However, their application is hindered by significant

challenges, particularly the limited persistence of CAR-NK cells in the body,

which poses a hurdle to their sustained effectiveness in treating cancer. Based

upon the foregoing, this review discusses the current status and applications of

both CAR-T cells and CAR-NK cells in hematological cancers, and provides a

comparative analysis of the structure, genetics, and clinical outcomes between

these two types of genetically modified immune cells.
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1 Introduction

Cellular immunotherapy [also known as adoptive cell therapy

(ACT)] has produced significant progress in the fight against cancer

by enabling physicians to harness the power of engineered immune

cells (1). A highly promising anticancer ACT strategy involves the

incorporation of chimeric antigen receptors (CARs) on T

lymphocytes or (more recently) natural killer (NK) cells or

macrophages (2, 3). CAR-modified immune cells (whether either

autologous or allogenic, i.e. purified from patients or donors,

respectively) are designed to specifically target tumor cells and

have proven to be accurate and efficacious in the treatment of

cancer. CAR-T cell immunotherapy has been evaluated in

thousands of clinical trials, many of which are ongoing (4).

However, CAR-T cell therapy faces various challenges, including

(i) an elevated risk of adverse events, such as cytokine release

syndrome (CRS), immune-effector-cell-associated neurotoxicity

syndrome (ICANS), and on-target off-tumor effects (i.e. reactions

against antigens expressed in healthy tissues), and (ii) a lack of

efficacy and thus disease relapse related to tumor antigen escape.

Moreover, allogeneic CAR-T cell therapy faces additional hurdles,

such as the need for human leukocyte antigen (HLA) matching to

prevent life-threatening graft-versus-host disease (GvHD) (5).

Furthermore, CAR-T cell therapy is confronted with

manufacturing problems because of the limited T cell sources (5).

Extensive research efforts to overcome these challenges are ongoing,

and various experts have reviewed the literature on these hurdles in

the context of both hematological and solid cancers (5, 6).

Alternative sources of immune cells for CAR immunotherapy are

being actively evaluated, and interest in NK cells is growing because

of the latter’s unique characteristics (7).

Here, we review, compare and contrast the structural (i.e.

engineering-related), genetic and clinical characteristics of CAR-T

cells vs. CAR-NK cells, from the bench to the bedside.
2 CAR structure

2.1 Different generations of CAR-T cells
and CAR-NK cells

2.1.1 CAR-T cell engineering
CD4+ and CD8+ T cells have a crucial role in tumor

immunosurveillance via the recognition of tumor-associated

antigens (TAAs), which results in the secretion of various

cytokines and chemokines and then a powerful cytotoxic response

against cancer cells (8, 9). However, tumors can hijack the body’s

immune defenses via various escape mechanisms, such as the

downregulation of major histocompatibility complex (MHC)-I

expression (10), the restriction of antigen recognition (11), the

accentuation of immune-checkpoint-mediated inhibitory signaling

(leading to immune dysfunction or exhaustion) (12), and the

creation of an immunosuppressive tumor microenvironment

(TME) (13). Therefore, T cells genetically engineered to express a

synthetic CAR were developed so that immune cells could be
Frontiers in Immunology 02
reprogrammed to specifically target cancer cells and overcome

some of these hurdles. One of the main advantages of CAR-T

cells is their ability to recognize tumor-expressed TAAs and

eliminate the target cell in an MHC-independent manner. Recent

CAR-T cell engineering strategies can also potentiate tumor

infiltration, counteract the immunosuppressive TME, and

overcome inhibition by negative immune checkpoint receptors (6).

CAR-T cell therapy is mainly based on the infusion of

genetically engineered autologous T cells. Allogeneic CAR-T cells

is progressing with regard to “off-the-shelf” availability and

scalability; challenges like GvHD and immune rejection need to

be addressed and so the current focus is still on well-established

autologous methods (14, 15).

The CAR combines the specificity afforded by an extracellular

antigen-specific recognition domain with the activation afforded by

an intracellular signaling domain. Hence, a CAR has four main

components: (i) the extracellular, antigen-binding domain

consisting of a single-chain variable fragment (scFv) derived from

an antibody, (ii) a hinge region derived from CD8, CD28, IgG1 or

IgG4 molecules, (iii) a transmembrane domain (TMD) usually

derived from type I proteins, such as CD3z, CD4, CD8a, or
CD28, and (iv) an intracellular signaling domain (SD) containing

one or more co-stimulatory domains (CD), such as CD28, 4-1BB

(CD137), CD27, MYD88, CD40, OX40 (CD134) or inducible T cell

co-stimulator/ICOS (CD278) molecules. CARs can be classified into

five generations (Figure 1). The first three generations have been

extensively described (16), with a focus on the intracellular

domains’ impact(s) on the resulting CAR-T cells’ cytotoxic

potential and therapeutic efficacy (17).

2.1.2 CAR-NK cell engineering
NK cells are the main cytotoxic innate lymphoid effector cells

and are involved in cancer immunosurveillance (18). Clinical

studies of patients with various cancers have shown that NK cell

activation is associated with better clinical outcomes (18). Unlike T

cells, NK cells recognize and kill infected or cancerous cells in an

MHC-independent manner. For this reason, NK-based ACT is

associated with lower risks of adverse events (19, 20). NK cells

kill target cells through finely tuned missing-self, induced-self and

antibody-dependent cell-mediated cytotoxicity (ADCC)

mechanisms (21, 22). Between 40% and 90% of cancers

downregulate their MHC-I expression (23), which enables tumor

cells to evade CD8+ T cell-mediated recognition but renders them

sensitive to NK cells (24). Activated NK cells are strongly cytotoxic

and produce the pro-inflammatory cytokines interferon gamma

(IFN-g) and tumor necrosis factor alpha (TNF-a). Thus, CAR-NK
cell therapy has emerged as a prominent area of research and a

promising new approach to cancer treatment. Furthermore, the

manufacturing techniques related to various sources of NK cells

might make this therapeutic strategy a good option for “off-the-

shelf” therapy and immediate clinical use; this would avoid the long

latency periods inherent to the preparation of autologous

therapeutic products (25). Indeed, clinical-grade CAR-NK

therapies could be produced from peripheral blood (PB),

umbilical cord blood (UCB), NK cell lines (NK-92), and NK cells
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generated from induced pluripotent stem cells (iPSCs) or CD34+

hematopoietic stem cells (HSCs) (19, 26, 27).

As with CAR-T cells, CAR-NK cells can be classified into

several generations as a function of how their intracellular

domains are organized (Figure 1). First-generation CAR-NK cells

have a single CD3z activation SD, while second- and third-

generations include one or two additional CD, respectively. These

intracellular domains come from conventional T cell-associated

activating receptors (like CD28, ICOS, 4-1BB, CD27 and OX40) or

NK-specific signaling molecules (like DAP10, DAP12, DNAM-1

and 2B4); the latter are reportedly more suitable for potentiating

NK cell activation (28–32). Several preclinical studies have been

conducted to evaluate the potential of the different TMD and

intracellular domains, and also the best combinations between

these domains in terms of NK cytotoxicity, in vivo survival

capacity and ultimately antitumor activity. For example, Xu et al.

showed that anti-CD5 CAR-NK cells expressing the NK-specific

receptor 2B4 displayed greater antitumor activity than anti-CD5

CAR-NK cells expressing 4-1BB, due to greater cytotoxicity in vitro

and in vivo and greater IFN-g and TNF-a production (30).

Moreover, Huang et al. provided a new CAR screening platform

that may facilitate CAR-NK design and showed that the in vitro

cytotoxicity against hepatocellular carcinoma (HCC) cells was

greater with DNAM-1-2B4-glypican 3 (GPC3)-targeted CAR-NK
Frontiers in Immunology 03
cells than with anti-GPC3 CAR-NK cells containing other co-

stimulatory domains (CD3z, CD28-CD3z, DNAM-1-CD3z and

2B4-CD3z) (33). In fact, concurrent stimulation of CD16 and

other activating receptors (namely 2B4, NKG2D, and DNAM-1)

led to a greater intracellular Ca2+ concentration than activation of

CD16 alone (34).

Interestingly, in a recent study published in June 2024, Wang

et al. developed seven different CD19 CAR-NK cells and evaluated

their antitumor activity and persistence in vivo. The results

indicated that all CAR constructs improved tumor-killing

capacities and prolonged survival in mice with tumors. Notably,

CAR1 (CD8 TMD-CD3z SD) engineered NK cells demonstrated

superior efficacy in treating tumor-bearing mice and showed

enhanced persistence when combined with the OX40 CD. In

addition, survival rates were notably better in mice treated with

CAR1, CAR2 (CD8 TMD-FceRIg SD), CAR3 (CD8 TMD-OX40

CD-CD3z SD), and CAR4 (CD8 TMD-OX40 CD- FceRIg SD) NK
cells compared to those treated with CAR5 (CD28 TMD-FceRIg
SD), CAR6 (CD8 TMD-4-1BB CD-CD3z 1-ITAM SD), and CAR7

(CD8 TMD-OX40 CD-CD3z 1-ITAM SD) engineered NK cells

(35). This comparative study revealed the importance of the nature

of TMD, SD and CD, as well as the associations between these

domains. It is too early to determine the best CAR design, as studies

are still ongoing and no consensus has yet been reached.
FIGURE 1

A schematic diagram of the structure of the successive generations of CAR-T and CAR-NK cells. First generation CAR-T/NK cells have only CD3z in
their signaling domain and lack co-stimulatory molecules. Second generation CAR-T/NK cells include CD3z and one co-stimulatory molecule,
enabling dual signaling pathways. Third generation CAR-T/NK cells combine CD3z with multiple co-stimulatory molecules for enhanced signaling.
Fourth generation CAR-T cells, also known as T cells redirected for universal cytokine-mediated killing (TRUCKs), are similar to third generation, but
they are a specific type of armored CAR-T cells that produce and secrete cytokines to promote tumor killing. Fifth generation CAR-T cells have an
additional intracellular domain compared to earlier generations. These CARs include truncated intracellular domains from cytokine receptors (such
as fragments of the IL-2R chain) that feature motifs for binding transcription factors like STAT-3/5.
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2.2 Armored CAR-T cells and CAR-NK cells

2.2.1 Generation of armored CAR-T cells and the
latest generation of CAR-T cells

Fourth-generation CAR-T cells are also known as T cells redirected

for antigen‐unrestricted cytokine‐initiated killing (TRUCKs). From

2011 onwards, researchers have investigated the co-expression of one

or more cytokines or the combination of their receptors to generate

gene-edited, interleukin (IL)-armored, anticancer immune cells.

TRUCKs represent a significant advance in the field of CAR-T cell

therapy, and TRUCKs with various ILs (e.g. IL-2, -7, -12, -15, -18, -21

and -23) constitute an active field of research.

Regarding the gc-dependent cytokines, IL-7, IL-15, and IL-21

have been extensively investigated with a view to overcoming the

drawbacks of IL-2 and improving the quality of cellular products.

IL-15 is known to be a potent immunostimulatory cytokine that

modulates innate and adaptive immune responses.

It was described as having the greatest potential in cancer

immunotherapy by the US National Cancer Institute in 2008

(36), so that various research groups have explored the addition

of IL-15 to CAR-T cell engineering. Hoyos et al. engineered CAR

(iC9/CAR19/IL-15 T) T cells with a greater expansion potential (10-

fold greater in vitro and 3- to 15-fold greater in vivo), greater

persistence, and stronger antitumor effects in a SCID lymphoma

human xenograft model (37). Similarly, Hurton et al. engineered a

CAR19 T cells with a membrane-bound IL-15 (mbIL-15) fusion

protein (mimicking the unique physiological mechanism of IL-15

trans-presentation) that showed greater activity and a strong

memory phenotype in a humanized NOD-SCIDg mouse

model (38).

IL-15 has also been integrated into other CARs to target other

types of tumor; these include IL13Ra2-CAR (39) and fibroblast

growth factor-inducible 14 (Fn14-CAR) (40) for glioblastoma and

GD2-CAR (41) for neuroblastoma. The results of these studies have

consistently shown that IL15-armored CAR-T cells exhibit potent

antitumor efficacy and enhanced persistence in vivo. The first

clinical demonstration of the mbIL-15-CAR-T cells’ good levels of

safety and efficacy featured a patient with B-cell acute lymphoblastic

leukemia (B-ALL) and in whom CD19- and CD22-CAR-T cell

therapies had failed (42). The patient received an infusion of

CAR19-4-1BB-CD3 z -mbIL15 T cells and was achieved a

complete response for 5 months, despite a heavy tumor burden.

However, the tumor eventually started to progress again following

CD19 antigen escape (42).

The comparative analysis of two Phase I studies (one evaluating

GPC3 CAR-T cell therapy (NCT02932956, NCT02905188) and the

other evaluating the same CAR combined with IL-15 expression

(NCT04377932, NCT05103631) revealed higher peak expansion, a

higher response rate and similarly effective tumor trafficking for the

IL-15 GPC3 CAR-T cells (Steffin et al. American Society of Pediatric

Hematology/Oncology Conference (ASPHO 2023)). It should be

also mentioned the trial of IL-15 GD2 CAR-T cell therapy for

neuroblastoma and osteosarcoma (NCT03721068), which is

underway. Lastly, a Phase I study in T-ALL patients found that

the administration of CD5-IL15/IL15sushi CAR led to a rapid
Frontiers in Immunology 04
reduction in the malignant T cell count within 4 weeks of

infusion (43) (see section 4.1.2). These results suggest that the

incorporation of IL-15 and its receptor complex might be a safe,

valuable means of potentiating CAR-T cell therapy (Figure 2).

As seen with IL-15, the overexpression of IL-21 drives long-

term T cell persistence in vivo (44). Batra et al. designed GPC3

CAR-T cells co-expressing IL-15 and IL-21 and observed robust

expansion and sustained persistence of these T cells in their HCC

xenograft models; the resulting tumor control and survival rates

were higher than those with CAR-T cells equipped with only one

cytokine or the other (45). These results provide a strong rationale

for evaluating these CAR-T cells in patients with liver cancer

(NCT04715191, NCT02932956) (45).

With regard to the cytokines with the most potent

inflammatory effects, considerable efforts have been made to

establish IL-12 in tumor therapy. The combination of CAR-T cell

therapy with constitutive or inducible IL-12 expression has

exhibited a remarkable level of efficacy in the treatment of several

solid tumors in preclinical models (46–49). However, in a Phase I

clinical trial, stable disease was the best observed response to

treatment with constitutively IL-12-secreting CAR-T cells

(NCT02498912), furthermore, two-thirds of the lymphodepleted

patients showed dose-limited toxicity (50). A clinical trial

evaluating the efficacy and safety of inducible IL-12 CAR-T cell

therapy is ongoing (NCT03542799) (49).

CAR-T cells that secrete IL-18A might constitute a safer

alternative to TRUCK IL-12 cells. IL-18 induces IFN-g expression

in T cells and has been shown to activate monocytes and lymphocytes

without causing severe toxicity in clinical trials (51). Forced

expression of other cytokines (such as IL-23 and granulocyte

macrophage colony-stimulating factor) also increases the

persistence and antitumor effects of CAR-T cells (52, 53), and

other cytokines are now being investigated [for reviews, see (48, 49)].

The fifth and latest generation of CAR-T cells involves the

addition of an intracellular domain for cytokine signaling receptors;

for example, the IL-2 receptor b-chain (IL-2Rb) activates the Janus
kinase/signal transducers and activators of transcription (JAK-

STAT) signaling pathway in an antigen-specific manner. This

modification makes it possible to introduce the third signal

required physiologically for T cell activation and proliferation

(Figure 1) (48). This activation promotes the proliferation and

persistence of CAR-T cells and enhances their in vivo antitumor

effects (54, 55).

2.2.2 Generation of armored CAR-NK cells
The fourth generation of armored CAR-NK cells has been

engineered to express both cytokines and contain co-stimulatory

domains, in order to mitigate the cells’ short lifespan in vivo. As

performed with CAR-T cells, researchers have engineered armored

NK cells that produce cytokines ectopically; this approach increases

the persistence and proliferation of CAR-NK cells through the

autocrine production of essential cytokines (56–60). Almost every

aspect of NK cell immunity is regulated by IL-15, and so the value of

this cytokine or its analogs in the treatment of various cancers are

being investigated in several ongoing clinical trials (61). NK cells
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have been genetically modified to produce secretory IL-15 (sIL-15)

or mbIL-15 and then evaluated in several preclinical and clinical

models of acute myeloid leukemia (AML) (62–64), lymphoma (65),

pancreatic cancer (66), and multiple myeloma (MM) (64); the NK

cell survival rates and levels of antitumor efficacy were significantly

improved (Figure 2).

The most encouraging results came from the Phase I/II clinical

trial conducted by Rezvani’s group, UCB-derived CD19 CAR-NK

cells engineered to express sIL-15 were reportedly safe in the

treatment of 37 patients with relapsed or refractory (r/r) CD19-

positive malignancies (NCT03056339) (20, 67) (see section 4.2.1).

It should nevertheless be noted that CAR-NK cells engineered to

secrete IL-15 caused early death in an immunodeficient mouse model

engrafted with human MV-4–11 AML cells (62). In this recent study,

the serum IL-15 concentration rose to more than 1000 pg/ml, which is

much higher than the values observed in other studies (57, 66). Further

optimization of the constructs might safely regulate the secretion of IL-

15 and a clinical trial of NK cells genetically engineered to secrete low

concentrations of IL-15 was recently initiated in patients with r/r non-

small cell lung cancer (NCT05334329).

Another means of enhancing the activity of genetically modified

sIL-15 NK cells involves targeting the down-regulators (i.e.

checkpoints) of IL-15 signaling. A recent study in a mouse xenograft

model of human Raji lymphoma found that a combination strategy –

i.e. the engineering of CAR19 UCB-NK cells to express IL-15, together

with disruption of the cytokine-inducible Src homology 2–containing

protein (CISH) locus – enhanced the cells’ antitumor cytotoxic activity

(65). Other studies have shown that CISH knock-out (KO) in CAR-NK

cells derived from iPSCs (68, 69), NK-92 cells or primary NK cells (70)
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led to greater antitumor activity. The engineering of CAR-NK cells

with mbIL-15 is also being explored (71, 72). Similarly, CAR-NK cells

expressing IL-15 tethered to the IL15 receptor a-chain (IL15-IL15Ra)
showed greater persistence and greater antitumor activity in an ALL

xenograft model (73). This strategy has already been included in iPSC-

derived CAR-NK cells targeting B-cell maturation antigen (BCMA) in

MM (FT576 NK cells) (74, 75) or targeting CD19 in B-cell

malignancies (FT596 NK cells) (Fate Therapeutics) (76). These

products have been evaluated in clinical trials (NCT04245722,

NCT05934097 and NCT04555811).

Even though the use of IL-15-armored CAR-NK cells is

promising, there are many unsolved or controversial issues with

regard to IL-15 and its pleiotropic effects. Firstly, human IL-15 has

at least four functional forms in vivo, (i) soluble monomeric IL-15,

(ii) the soluble IL-15/IL-15Ra complex, (iii) trans-presented IL-15,

and (iv) mbIL-15 (77–79). It is not clear which forms of IL-15 are

most abundant under physiological and pathological conditions or

which form is best for NK cell expansion in vivo (80). Secondly,

long-term or repeated exposure to IL-15 results in NK cell hypo-

responsiveness, which impairs the cells’ survival, activation,

cytotoxicity, and antitumor activity (81, 82). Thirdly, and

although IL-15 promotes the antitumor immunity mediated by

NK cells and CD8+ T cells, certain tumor-promoting properties of

IL-15 and/or IL-15/IL-15Ra have been noted in patients with

leukemia or solid tumors (83, 84). Recently, newly designed IL-

21-armored CAR-NK cells were found to show significantly greater

IFN-g and TNF-a production and greater degranulation than IL-

15-armored counterparts; this resulted in greater activity of CD19-

CAR-NK cells against CD19-positive lymphoma in vitro (85).
FIGURE 2

A schematic diagram of CAR-T and CAR-NK cell armoring with IL15 [Adapted from Zhou Y et al., 2022 (86)]. (A) The signaling cascade of IL-15 and
its receptor complex involve IL-15 being presented on antigen-presenting cells through IL-15Ra, which binds with the b chain (IL-2/15Rb) and the
common g chain (gc) complex on effector cells. Activation of the b and gc receptors initiates intracellular signaling via the Janus kinase pathway,
activating signal transducer and activator of transcription (STAT) proteins downstream. Phosphorylated STATs then translocate to the nucleus,
altering gene expression. (B) T or NK cells can be armored with IL-15 to serve as therapeutic cells. They can be equipped, beside the CAR, with
either secretory IL-15 (sIL-15), membrane-bound IL-15 (mbIL-15), or IL-15, IL-15Ra fusion protein.
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3 Gene transfer strategies

3.1 Viral vector-based gene transfer

The viral vectors employed in CAR-T cell production are

derived either from integrating g-retroviral (RV) or lentiviral

vectors (LV), which enable prolonged, stable transgene

expression (87). Both types of viral vector have some drawbacks,

including limited insert size, difficulty in generating high titers of

stable vector particles, and the risk of insertional mutagenesis.

Fortunately, this risk has virtually disappeared following the

introduction of self-inactivating (SIN) viral vectors (88). Of the

six CAR-T cell products approved by the FDA since 2017, two

(Yescarta® and Tecartus®) use RV and four (Kymriah®,

Breyanzi®, Abecma®, and Carvykti®) use the third-generation

SIN-LV (88, 89).

Compared with other hematopoietic cells in general and T cells

in particular, viral gene delivery to primary NK cells has proven to

be less effective (90). The innate immune properties of NK cells

probably contribute to the low viral transduction efficiency and

ultimately trigger apoptosis of these cells (91). This phenomenon

might be due (at least in part) to the greater expression and then

subsequent activation of pattern recognition receptors that detect

foreign genomic material as pathogen-associated molecular

patterns (92). However, some research groups have achieved good

yields with viral transductions (93) (Figure 3). LV transduction has

been notably improved by the introduction of novel enhancers that

aid viral entry (94) or inhibit antiviral cellular signaling (95).

Furthermore, Polten et al. recently used SIN alpha-RV to

genetically modify NK cells with a third-generation CAR, with a
Frontiers in Immunology 06
view to specifically targeting and eliminating cervical cancer cells.

This approach used anti-fibroblast activation protein and anti-

mesothelin (MSLN) CAR-NK cells and holds promise for clinical

applications. The study’s results (Abstract at the European Society

of Gene and Cell Therapy’s 30th Annual Congress) not only pave

the way for potential treatments for cervical cancer but also indicate

that the approach can be extended to other gynecological

malignancies and even to fibrotic diseases.
3.2 Non-viral strategies for gene transfer

Non-viral techniques for gene transfer have recently emerged

as potentially safer and less expensive than viral vectors and are

now being evaluated for use in CAR cell design (Figure 3).

Furthermore, the remarkable development of CRISPR-Cas9 and

transposon technologies has enabled transgene integration in the

absence of genome-integrating viral vectors. The initial strategy

for CAR-cell engineering through non-viral gene delivery

techniques was based on electroporation/nucleofection. The

electroporation studies carried out in the early 2000s highlighted

the high degree of heterogeneity in transfection efficiency and cell

viability (96, 97). These parameters have been improved with the

new developed protocols and electroporation is still a valuable

approach for ex vivo T and NK cell engineering until the other non

-viral methods have taken root for good (98, 99).

Alternatively, to viral- and electrical mechanical-based gene

delivery strategies, nanocarriers have been investigated owing to

their low cytotoxicity, low cost, and ease of use. To date, polymers

and lipids are the most commonly used biomaterials in CAR cell
FIGURE 3

Manufacturing processes in CAR-NK and CAR-T-cell-based therapy. NK cells can be obtained from peripheral blood (PB-NK), CD34-positive
hematopoietic stem cells (HSCs), umbilical cord blood (UCB-NK) induced hematopoietic stem cells (iPSCs), or in vitro cultured cell lines (NK-92).
T cells can be obtained from peripheral blood apheresis (not shown). T and NK cells can be modified to express specific CAR using viral transduction
with g-retrovirus, lentivirus or adeno-associated virus, or non-viral strategies such as transposon system, CRISPR-Cas base editing. Non-viral gene
transfer/delivery techniques are based on lipofection or electroporation/nucleofection.
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development (100, 101). Their use in pre- clinical applications of

CAR-T cell engineering has been explored with success.

Nevertheless, in most pre-clinical studies, the transfection values

obtained in cell lines are substantially higher than those obtained

in primary cultures (101). In a recent study by Golubovskaya et al.,

mRNA-lipids nanoparticles (LNP) technology was used to

transfect NK cells derived from primary PBMCs. The

encapsulation of CD19-CAR and BCMA-CAR mRNA within

LNPs resulted in remarkable CAR expression levels in NK cells

(78% and 95% respectively) and significantly enhanced cytotoxic

activity (102).

With regard to the tools used to integrate the transgene,

transposon systems (notably Sleeping Beauty (SB) and PiggyBac

(PB)) have received significant attention for the cost-effective gene

delivery into human lymphocytes in general and the generation of

CAR-T cells in particular (103, 104). The objective is to make

CAR-therapy more affordable and more widely available to

patients (105, 106). When compared with RV and LV vectors,

transposon systems offer a higher level of safety because they do

not integrate into transcriptionally active genes (i.e. near

transcription start sites) or genes outside transcriptional units

but which are involved in cancer.

Many researchers have used transposon systems to generate

primary CAR-T cells (104). In a study conducted by Yang et al, a

CD133 CAR-T cell secreting PD-1 blocking scFv was built by

using an SB transposon system and minicircle technology. The

CD133 CAR-T cells demonstrated significant antitumor activity

against HCC, both in vitro and in mouse xenograft models (107).

Singh et al. conducted a Phase I clinical trial (NCT02807883)

evaluating the safety of CD19 CAR-T cells transduced with an SB

transposon system, in 14 patients with B-cell malignancies. They

reported that their SB-based CAR-T cell therapy is safe, cost-

effective and shows encouraging antitumor activity (108).

Regarding NK cell engineering, encouraging results have been

achieved in different preclinical studies using SB or PB transposon

system to introduce, (i) a CD33-CAR into cytokine-induced killer

(CIK) cells in an AML xenograft model (109), (ii) a MSLN-CAR

into NK-92MI cells in a pancreatic cancer model (110), (iii) a

CAR-NK cells expressing both NKG2D CAR and IL-15 in an

AML xenograft model (63). An innovative approach for CAR-NK

cell engineering has recently employed the SB transposon/

transposase-based system and a DNA minicircle. In this

strategy, Bexte et al. used the SB100X mRNA, rather than the

protein and showed better outcomes in terms of gene transfer

stability and cell toxicity. Their SB-transposed cells’ achieved

strong antileukemic potential both in vitro and in vivo in a

mouse ALL xenograft model (111).

In recent years, many research groups have investigated the

use of CRISPR technology to improve the preclinical performance

of T and NK cell immunotherapies. The first successful clinical

application of CRISPR-engineered TCR-T cells was reported in

2020 (112). CRISPR-Cas9 can be used for the multiplex KO of

inhibitory molecules or receptors, in order to enhance CAR-T cell

expansion and persistence in the treatment of both hematological

cancers and solid tumors. For instance, studies employing

CRISPR-Cas9 to disrupt PD1 expression in CAR-T cells have
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shown enhanced cytotoxicity and reduced exhaustion in

glioblastoma with anti-EGFRvIII CAR-T cells (113), increased

cytokine production, improved tumor control, and relapse

prevention in breast carcinoma with anti-MSLN CAR-T cells

(114), and increased in vivo antitumor activity against HCC

with anti-GPC3 CAR-T cells (115).

Similarly, specific gene editing strategies for primary NK cells

or (to a lesser extent) CAR-NK cells have targeted immune

checkpoint receptors (PD1 and TIM3), NK inhibitory receptors

(the siglec-7 receptor and NKG2A), CISH, and NK activation

regulators (e.g. a disintegrin and metalloproteinase (ADAM)-17)

(116). For example, targeting the PD1/PDL1 axis via PD-1 KO and

ADAM17 KO has been shown to increase antitumor activity (i) in

a xenograft model of ovarian cancer and (ii) against chronic

myeloid leukemia (CML) and AML cell lines in vitro (117).

The main features (advantages and disadvantages) of CAR-T

cells and CAR-NK cells are summarized in the Table 1 below.
TABLE 1 Main characteristics of CAR-T and CAR-NK cells.

Parameters CAR-T cells CAR-NK cells

Sources

Patient’s autologous T
cells from PB apheresis
(with some attempts

made using
allogeneic cells)

Various sources: PB, UCB, NK-
92 cell line, iPSCs or CD34

+ HSCs

Risk of GvHD
High risk with
allogenic source

Very low risk with allogenic
source which implies that it can

be off-the-shelf product.

CRS High risk Low risk

Tumor
Targeting

MHC-
independent function

MHC-independent function

Transduction

Typically done using
viral vectors with high

efficiency and
established protocols.
Cost-effective non-viral

methods are
being explored

More challenging; lower
transduction efficiency with viral
vectors. Alternative non-viral

methods (electroporation, LNPs)
are being explored to improve
efficiency and cost-effectiveness.

Expansion
in vitro

Robust expansion
protocols established,
but time-consuming

and requires
specific cytokines

Generally, more challenging; NK
cells have lower expansion rates

and also require cytokines
(+/-feeder cells)

Persistence
in vivo

Long-term persistence Short persistence

Clinical Efficacy
Highly effective against

certain
hematological cancers

Promising results, especially in
hematological cancers

Regulatory
Status

Six FDA-
approved products

Still in early stages of clinical use
PB, peripheral blood; UCB, umbilical cord blood; iPSC, induced pluripotent stem cell; HSC,
hematopoietic stem cell; GvHD, graft versus host disease; CRS, cytokine release syndrome;
MHC, major histocompatibility complex; LNP, lipid nanoparticles.
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4 A comparative analysis of the
clinical efficacy of CAR-T cells and
CAR-NK cells in the treatment of
hematological cancers

4.1 CAR-T cells in hematological cancer

Since clinical trials of CAR-NK cell therapies are relatively rare,

compared with the large number of clinical trials of CAR-T cells, we

shall solely focus on a comparison of the two types of

immunotherapy in the field of hematological cancers and the

clinical trials mentioned below refer to data collected up to April

30th, 2024. As mentioned above, the FDA has approved six CAR-T

products (Table 2).

4.1.1 B-cell lymphoblastic leukemia/lymphoma
Clinical trials of CD19 CAR-T cell therapy have yielded

promising outcomes for patients with unfavorable prognoses. By

conducting a simple search on ClinicalTrials.gov, we note that there

are over 400 clinical trials involving CD19 CAR-T cells in cancer

treatment. Since clinical trials targeting CD19 have been extensively

described in the literature (124), we will avoid detailing them in this

article. However, many ongoing clinical trials of CAR-T cell therapy

are targeting different markers with the aim of achieving even better

outcomes in B-cell malignancies, particularly in patients who have

relapsed after receiving CD19-targeting CAR-T cells due to CD19

downregulation or loss.

Pan et al. conducted a study (ChiCTR-OIC-17013523) of 34

children and adults with r/r B-ALL and who had not responded to

anti-CD19 CAR-T cell therapy. After receiving anti-CD22 CAR-T

cells, 80% of the evaluated patients (24 out of 30) achieved either a

complete remission or remission with incomplete count recovery by

day 30 post-infusion. Of the patients who achieved a CR, 7 did not
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require further treatment, and 3 of the 7 maintained remission at 6,

6.6 and 14 months post-infusion (125). Spiegel et al. conducted a

Phase I clinical trial (NCT03233854) of a bispecific CAR (targeting

both CD19 and CD22) in adults with r/r B-ALL and large B-cell

lymphoma (LBCL). For the 17 patients with B-ALL, the response

rate was 100% and the complete response (CR) rate was 88%. For

the 21 patients with LBCL, the response rate was 62% and the CR

rate was 29%. The relapse rate was 50% among the B-ALL patients

(5 out of 10) and 29% among the LBCL patients (4 out of 14); the

relapses were characterized by low or null CD19 expression and did

not appear to be linked to CD22 expression levels (126). CD22 has

been the subject of even greater attention in many recent clinical

studies of CAR-T cells, both as a single target (127–132) and in

combination with CD19 (133–140) (for a meta-analysis, see

Fergusson et al. (141)).

CD20 has also been targeted in patients with B-cell

malignancies. The presence and expression levels of CD20 vary

from one B-cell malignancy to another: the lowest levels of CD20

expression are observed in chronic lymphocytic leukemia (CLL)

and the highest levels are observed in diffuse large B cell lymphoma

(DLBCL) and hairy cell leukemia (142). In 2012, Till et al. initiated

the first clinical trial (NCT00621452) of anti-CD20 CAR-T cells in

patients with relapsed indolent B-cell and mantle cell lymphoma:

the objective response rate (ORR) was 83%, and the CR rate was

50% (143). An early Phase IIa study (NCT01735604) of anti-CD20

CAR-T cells conducted by Zhang et al. subsequently found a

favorable response in advanced B-NHL: the CR rate was 54.5% (6

out of 11), the partial response (PR) rate was 27.3% (3 out of 11),

and thus the ORR was 81.8%. The remaining two patients showed

stable disease (SD). The median progression-free survival (PFS)

time was 6 months, and these data were obtained after a median

follow-up period of 8 months (144).

In a recent Phase I dose escalation and expansion trial

(NCT03019055), Shah et al. tested the efficacy of bispecific anti-
TABLE 2 Overview of CAR-T cell therapies approved by the FDA for the treatment of B-cell malignancies.

Generic name
Brand
name

CAR
Hinge, TM/
signaling
domains

First indication Pivotal trial(s)
First

FDA approval
Reference

Tisagenlecleucel Kymriah® CD19
CD8a,CD8a/
4-1BB.CD3z

r/r B-ALL

ELIANA
(NCT02435849)

ENSIGN
(NCT02228096)

Aug. 30th, 2017 (118)

Axicabtagene
ciloleucel

Yescarta® CD19
CD28,CD28/
CD28.CD3z

r/r LBCL
ZUMA-1

(NCT02348216)
Oct. 18th, 2017 (119)

Brexucabtagene
autoleucel

Tecartus® CD19
CD28,CD28/
CD28.CD3z

r/r Mantle
Cell Lymphoma

ZUMA-2
NCT02601313

Jul. 24th, 2020 (120)

Lisocabtagene
maraleucel

Breyanzi® CD19
IgG4,CD28/
4-1BB.CD3z

r/r LBCL
TRANSCEND-

NHL-001
(NCT02631044)

Feb. 5th, 2021 (121)

Idecabtagene
vicleucel

Abecma® BCMA
CD8a,CD8a/
4-1BB.CD3z

r/r MM
KarMMa

(NCT03361748)
Mar. 26th, 2021 (122)

Ciltacabtagene
autoleucel

Carvykti® BCMA
CD8a,CD8a/
4-1BB.CD3z

r/r MM
CARTITUDE-1
(NCT03548207)

Feb. 28th, 2022 (123)
ALL, acute lymphocytic leukemia; BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; LBCL, large B-cell lymphoma; MM, multiple myeloma; r/r, relapsed or refractory;
TM, transmembrane.
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CD19/CD20 CAR-T cells in 21 adult patients diagnosed with B-cell

NHL or CLL. By day 28, the ORR was 82%, the CR rate was 64%,

and the PR rate was 18% (145). In a Phase I clinical trial

(NCT04007029) published in March 2023, Larson et al. assessed

the safety of bispecific anti-CD19/CD20 CAR-T cells in 10 patients

with r/r NHL. Nine of the patients exhibited an objective response,

giving an ORR of 90% and a CR rate of 70%. There was one case of

relapse after 18 months with a CR; although this patient

subsequently achieved full remission after receiving a second dose

of anti-CD19/CD20 CAR-T cells. The median PFS time was 18

months, and the median overall survival (OS) time had not been

reached by the end of the analysis (a median follow-up period of 17

months) (146).

Additional antigen targets are currently under investigation in

both preclinical and clinical studies; for example, receptor tyrosine

kinase-like orphan receptor 1 is currently undergoing clinical

evaluation (NCT02194374, NCT05588440, NCT05694364 and

NCT02706392) (147, 148), and also CD123 (149–152).

4.1.2 T cell lymphoblastic leukemia/lymphoma
CAR-T cell therapy faces significant challenges when applied to

the treatment of T cell malignancies. This difficulty arises from the

co-expression of many targets on both normal and malignant T

cells (153). CD7 is acknowledged to be a pivotal antigen in the

treatment of T cell acute lymphoblastic leukemia (T-ALL) and T-

lymphoma, primarily because of its widespread distribution on

tumor cells (154). However, CD7 is also expressed on normal T

lymphocytes, NK cells, and in early-stage of lymphocyte

differentiation (155). Consequently, the infusion of anti-CD7

CAR-T cells into patients may unintentionally deplete T and NK

cells and thereby increase the risk of opportunistic infections.

Furthermore, the uninhibited expression of CD7 by anti-CD7

CAR-T cells might lead to a fratricidal phenomenon. In order to

mitigate the latter possibility, researchers are using gene editing

techniques to effectively KO the CD7 gene in genetically modified T

cells (156).

In a Phase I clinical trial conducted by Pan et al., 20 patients

diagnosed with r/r T-ALL were treated with donor-derived anti-

CD7 CAR-T cells. The results were highly promising, with a

remarkable CR rate of 90%. Even after a median follow-up period

of 6.3 months, 15 of the 18 (83%) patients who achieved a CR

remained in remission, and only one patient experienced a relapse

(characterized by the absence of CD7 expression). Despite being

allogeneic, the aforementioned CAR-T cells displayed robust

proliferation in all patients and persisted in patients without the

need for subsequent HSCT (157). In an open-label Phase I clinical

trial (NCT04004637), Zhang et al. administered autologous

nanobody-derived fratricide-resistant anti-CD7 CAR-T cells to

patients with r/r CD7-positive T- ALL/T-LBL. Three months after

the CAR-T cell infusion, the CR rate was 87.5% (7 out of 8).

Notably, one patient with leukemia showed a CR with no minimal

residual disease (MRD), while another patient with lymphoma

maintained a CR for over 12 months (158).

Lu et al. introduced an innovative therapy for generating

naturally selected anti-CD7 CAR-T cells from bulk T cells; the
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fratricidal problem was mitigated by minimizing the availability of

CD7 epitopes. In the initial Phase I clinical trial (NCT04572308), 20

patients diagnosed with r/r T-ALL (n = 14) or T-LBL (n = 6) were

treated. Nineteen patients achieved a CR with no MRD in the BM

by day 28, while five showed an extramedullary CR. With a median

follow-up duration of 142.5 days after the CAR-T infusion, 14

patients subsequently underwent allogeneic HSCT; no relapses were

observed up to this point. Of the six patients who did not undergo

HSCT, 4 remained with a CR after a median duration of 54 days

(159). To date, 45 ClinicalTrials.gov-registered trials have used anti-

CD7 CAR-T cell therapy in r/r T-ALL or T-LBL. Ten of these are

Phase II clinical trials: NCT05059912, NCT06064903,

NCT05454241 NCT05909527, NCT04762485, NCT04033302,

NCT04689659, NCT05827835, NCT04984356, and NCT05885464.

CD5 is expressed at high levels in many T cell malignancies

(and especially in T-ALL and peripheral T cell lymphomas) and is

therefore an attractive target in CAR-T cell therapy. In a Phase I

clinical trial (NCT04594135), the safety and efficacy of CD5-IL-15/

IL-15sushi CAR-T cells were assessed in a patient suffering from r/r

T-LBL with central nervous system (CNS) infiltration. The novelty

of these anti-CD5 T cells lies in their ability to produce IL-15 plus

sIL-15Ra-sushi. The genetically modified T cells rapidly eliminated

CNS lymphoblasts and led to remission of the patient’s lymphoma.

The lymphoblast count became undetectable four weeks after the

CAR-T cell infusion. Even though normal T cells also possess CD5,

the patient’s T cell aplasia was short and transient (43). Other

clinical trials (e.g. NCT06316856, NCT05596266, NCT05032599,

NCT05487495, NCT03081910, and NCT04767308) are currently

assessing the efficacy and safety of other anti-CD5 CAR-T cells for

the treatment of T cell malignancies.

Other targets are being investigated in preclinical and clinical

trials : CD4 (160, 161) (NCT04162340, NCT04973527,

NCT04219319, NCT03829540, and NCT04712864), CD30 (162,

163) (NCT04083495 , NCT04526834 , NCT03049449 ,

NCT04008394 , NCT05208853 , NCT04653649 , and

NCT03602157), T cell receptor beta constant 1 (164, 165)

(NCT03590574 and NCT04828174) , and CD1a (166)

(NCT05745181 and NCT05679895).

4.1.3 Acute myeloid leukemia
AML exhibits significant heterogeneity due to the variable

presence of distinct chromosomal abnormalities, gene mutations,

and gene fusions. Although researchers now have a better

understanding of the immunopathological mechanisms

underlying this hematological cancer, a single, highly-specific

therapeutic target has proven to be an elusive (167). Several

surface proteins (such as CD33, CD123, C-type lectin-like

molecule-1 (CLL-1), CD7, CD70, immunoglobulin-like transcript

3 (ILT3), NKG2DL, CD38 and FLT3) are potential targets and have

entered clinical trials (168). However, there is a notable degree of

concern regarding on-target/off-tumor toxicity and thus the risk of

SAE; in fact, most of the surface antigens found on AML blasts are

also expressed by mature myeloid cells and HSCs (169).

CD33 is typically present on cancer cells in more than 90% of

cases of AML (170). A Phase I clinical trial (NCT03126864) with
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CD33-targeted CAR-T cells enrolled 10 adults with r/r AML but the

anti-CD33 CAR-T cells could be infused to only three of them. The

patients exhibited leukopenia and two of them had circulating

blasts. Two patients experienced CRS, none achieved the clinical

endpoints, and all three succumbed to disease progression (171).

Other clinical trials are now assessing the efficacy and safety of

CAR-T cells targeting CD33 alone (NCT06326021, NCT05445765,

NCT02958397, NCT05473221, NCT05672147, NCT03126864,

NCT02799680, NCT04835519, NCT01864902, NCT05984199,

NCT03927261, NCT03971799, NCT05105152, and NCT05945849)

or in combination with other targets, such as CLL-1 (NCT05467254,

NCT05943314, NCT05248685, NCT04010877, NCT05016063, and

NCT03795779), CD123 (NCT04156256, NCT03222674,

NCT05995041). Moreover, the clinical trial NCT03222674 is

distinguished by the evaluation of the combination of different

targets such CD38, CD123, CD56, MucI, and CLL-1. CD123

expression is reportedly correlated with a greater risk of treatment

failure (172). However, CD123 is emerging as a very promising

therapeutic target because of its robust presence in AML and its

relatively weak expression by HSCs (172). Anti-CD123 CAR-T cells

reduced leukemia in vivo while inflicting minimal damage on normal

HSCs (173). In January 2020, a clinical trial (NCT04230265) tested

UniCAR-T-CD123 cells in r/r AML patients with ≥20% CD123+

blasts. The treatment combined UniCAR-T cells and the recombinant

antibody derivative called CD123 target module (TM123), with TM123

given daily for 25 days and UniCAR-T cells on day 1. Out of eight

patients, two were excluded and two died before treatment. Of the three

who completed it, one had a PR, and two achieved CRi. One CRi

patient relapsed after a month, leading to a second TM123

treatment (174).

CLL-1 has also been identified as a valuable target, since it is

found on 92% of AML cells but is absent on granulocyte-

macrophage progenitors. Importantly, CLL-1 is also present on

leukemic stem cells (175). Zhang et al. designed fourth-generation

anti-CLL-1 CAR-T cells and administered them to a 10-year-old

pa t i en t w i th secondary AML (NCT00846703) a f t e r

lymphodepleting chemotherapy. The patient achieved a CR with

no MRD; however, the CLL-1+ cells were not entirely eradicated

until six months after the infusion of CAR-T cells. Nevertheless, a

single dose of anti-CLL-1 CAR-T cells led to 10 months of

remission in this patient (176). Four children diagnosed with r/r

AML were included in a Phase I/II clinical trial (NCT03222674, also

conducted by Zhang et al.) of anti-CLL1 CAR-T cell therapy. Three

of these patients attained a CR with no MRD. The fourth patient

survived for a period of 5 months. Importantly, all of these

individuals encountered only mild, controllable adverse events

during the course of treatment (177). Three other recent clinical

trials (ChiCTR2000041054, NCT04884984, and NCT03222674)

have yielded favorable outcomes - suggesting that CLL-1-specific

CAR-T cells hold promise in AML therapy (178–180).

4.1.4 Hodgkin lymphoma
The development of the anti-CD30 antibody-drug conjugate

brentuximab vedotin created an opportunity to consider CD30 as a

target for CAR-Therapy for r/r HL. Advantageously, CD30 is highly
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prevalent on Hodgkin and Reed-Sternberg cancer cells but not on

other cells and tissues, which reduces the risk of adverse events.

Wang et al. pioneered the demonstration of the feasibility and safety

of anti-CD30 CAR-T cell treatment for r/r HL in a Phase I trial

(NCT02259556) involving 18 patients, most of whom had a

significant treatment history or multiple tumors (181). The

infusion of anti-CD30 CAR-T cells was well tolerated, and only

two of the 18 patients experienced SAE (grade ≥3). Of the 18

patients, seven achieved a PR and six showed SD (ORR: 39%) (181).

Ramos et al. conducted another Phase I trial (NCT01316146) in

nine patients with r/r HL or anaplastic large cell lymphoma, the

results of which further underscored the direct impact and safety of

anti-CD30 CAR-T cells. A secondary analysis of the endpoints

showed an ORR of 33%, including long-lasting responses. Of the

seven patients with r/r HL, one achieved a CR that lasted over 2.5

years following a second infusion of anti-CD30 CAR-T cells,

another maintained a continuous CR for nearly 2 years, and three

experienced temporary SD (182).

Ramos et al. simultaneously conducted two Phase I/II trials

(NCT02690545 and NCT02917083), each at a different medical

center. The trials involved individuals with r/r HL and the

administration of anti-CD30 CAR-T cells after lymphodepletion.

The studies’ primary focus was safety, and it is noteworthy that no

dose-limiting toxicity was observed - even at the highest treatment

dose. CRS was limited to grade 1 and did not require medical

intervention. Regarding the treatment’s efficacy, the ORR among

the 32 patients with active disease was 72%, and the CR rate was

59%. Among patients with measurable disease, the one-year PFS

rate was 41% for individuals having undergone fludarabine

lymphodepletion and 61% for individuals with an initial CR

(183). These findings prompted the initiation of a pivotal,

multicenter Phase II trial (NCT04268706) of the use of anti-

CD30 CAR-T cells in patients with r/r HL; the trial is ongoing.

Grover et al. sought to enhance the effectiveness of anti-CD30

CAR-T cells in HL and CD30+ cutaneous T cell lymphoma by

promoting migration to the TME through the expression of CC

chemokine receptor 4. In a Phase I clinical trial (NCT03602157), all

eight of the patients with HL and who underwent a disease assessment

showed a response (six CRs and two PRs). Grover et al. indicated that

five patients remained in remission, including one patient who still had

a CR 2.5 years after treatment. With a median follow-up period of 12.7

months, the median PFS time for all 10 assessable patients was 5.2

months, while the median PFS time for HL patients only has not been

determined (184). In a more recent clinical trial (NCT02690545),

Voorhees et al. provided evidence of the remarkable efficacy of anti-

CD30 CAR-T cells in 27 patients with r/r HL. Although a large

proportion of the patients experienced a positive clinical response, a

subset faced relapse and disease progression. After a median follow-up

period of 9.5 months, 17 patients (63%) experienced disease

progression (median PFS time: 352 days), and two (7%) succumbed

to the disease (median OS time: not reached) (185).

4.1.5 Multiple myeloma
In the KarMMa pivotal Phase II study, the use of idecabtagene

vicleucel anti-BCMA CAR-T cell therapy led to frequent, good
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responses in patients with r/r MM and who had already been

exposed to three lines of treatment. The ORR was 73%, and the CR

rate was 33%. At a dose level of 450 × 106 cells, the responses were

more frequent and stronger: the ORR was 81%, and the CR rate was

39% (122).

Despite the observation of promising results for anti-BCMA

CAR-T cell therapy in r/r MM, the long-term effectiveness was

poor; a significant proportion of patients encountered disease

relapse or progression (186, 187). The mechanisms of resistance

are intricately linked to the interplay between anti-BCMA CAR-T

cells, cancer cells, and the complex TME, which includes antigen

evasion and the exhaustion of CAR-T cells (188). Fewer than 10% of

adult patients with a recent diagnosis of MM will meet the FDA’s

current eligibility criteria for fourth-line CAR-T cell therapy.

Therefore, CAR-T cell treatment might be more effective if

administered earlier in the course of the disease, when it is easier

to reduce the tumor load (189). At present, a large number of

promising target antigens for non-BCMA CAR-T cell therapies are

being investigated. These include CD38, CD138, CD229, signaling

lymphocytic activation molecule family member 7 (SLAMF7), a

proliferation-inducing ligand, and G protein-coupled receptor, class

C group 5 member D (GPRC5D) (190).

The combination of anti-BCMA CAR-T cell therapy with CD38

targeting has the potential to overcome the limitations observed

with CARs that target the BCMA antigen only. In this context, Tang

et al. developed bispecific CD38 and BCMA CAR-T cells

(ChiCTR1900026286). The treatment gave an ORR of 87.5%, a 1-

year PFS rate of 68.8%, and a manageable CRS incidence of 75%.

However, it is important to note that even though the ORR was

higher, anti-BCMA/CD38 CAR-T cells are not superior to anti-

BCMA CAR-T cells because of the small number of treated patients

and the absence of a head-to-head, randomized, controlled trial

(191). By searching the ClinicalTrials.gov database, we identified six

clinical trials of anti-CD38 CAR-T cells in management of MM

(NCT03767751, NCT03473496, NCT03464916, NCT03271632,

NCT06006741, and NCT05442580).

Concerning CD138, 5 patients with r/r MM have been treated

with anti-CD138 CAR-T cells in a Phase I trial (NCT01886976)

(192). By searching the ClinicalTrials.gov database, we identified

seven clinical trials of anti-CD138 CAR-T cells for the treatment of

MM (NCT03473496 , NCT01886976 , NCT03672318 ,

NCT03271632 , NCT03196414 , NCT06006741 , and

NCT03778346). Another promising non-BCMA target for CAR-T

cell therapy in the context of MM is the transmembrane receptor

GPRC5D (193). An anti-GPRC5D CAR-T cell product has been

studied initially in 18 patients, of whom 12 completed the treatment

and 6 had previously received anti-BCMA CAR-T cells. The initial

level of treatment efficacy was moderate, with two minimal

responses, three PRs, three very good PRs, and two stringent CRs.

Importantly, all patients who had previously received BCMA CAR-

T cells responded to treatment. The expected adverse events were

observed, with most of the patients experiencing grade 1-2 CRS

(193). In a more recent Phase I dose-escalation trial conducted by

Mailankody et al., GPRC5D-targeted CAR-T cell therapy was

administered at four different dose levels to individuals with

heavily pretreated MM. The ORR was 71% for the study
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population as a whole and 58% in patients having received doses

ranging from 25 × 106 to 150 × 106 cells. Notably, some of the

responding individuals had previously undergone anti-BCMA

therapy (194).

It is noteworthy that other clinical trials are actively exploring

alternative targets for CAR-T cell therapies in the context of r/r MM

(190, 195).
4.2 CAR-NK cells in hematological cancers
Since the first clinical trial of CAR-NK cells recorded on

ClinicalTrials.gov (NCT00995137, in 2009), 70 cancer-related

studies of the safety, and efficacy of CAR-NK cells have been

registered. The most recent trial results suggest that CAR-NK-cell

therapies may be as efficacious as CAR-T cell therapies. However, it

should be borne in mind that NK cells lack the long-term survival

capacity of T lymphocytes. This major characteristic of NKs must

be considered when evaluating the therapeutic potential of CAR-

NK cells. Nevertheless, CAR-NK-based therapies have undergone

extensive investigation for the treatment of hematological cancers.

Preclinical studies have consistently demonstrated a significant

advantage (both in vitro and in vivo) of CAR-expressing NK cells,

relative to control NK cells. Research in this field has notably

focused on CD19 - a pivotal area of interest following the FDA’s

approval of anti-CD19 CAR-T cells (Table 2). Overall, a large body

of compelling evidence shows that CAR-NK cells are highly

efficacious in eliminating CD19-positive targets (65, 196, 197).

The clinical trials mentioned below refer to data collected up to

April 30th, 2024.

4.2.1 B-cell lymphoblastic leukemia/lymphoma
Promising results have been obtained in a large number of

preclinical and clinical studies of anti-CD19 CAR-NK cells for the

treatment of B-cell malignancies. In a clinical trial (NCT03056339)

conducted by Liu et al., 11 patients (five with CLL and six with

NHL) were given a single dose of CAR-NK cells between June 2017

and February 2019. After monitoring for a median period of 13.8

months, eight (73%) of the 11 treated patients (four with CLL and

four with NHL) exhibited an OR. Furthermore, 7 (64%) of the 11

patients achieved a CR (20).

The inherent heterogeneity of PB-NK cells and UCB-NK cells

complicates the generation of standardized products. Hence,

clinical settings have turned increasingly to homogeneous CAR-

NK cells derived from iPSCs. One such product is FT596, a

multiplexed iPSC-CAR-NK cell therapy engineered to incorporate

a CD19-targeting CAR and IL-15/IL-15Ra fusion protein. This

innovative therapy was evaluated in a Phase I clinical trial

(NCT04245722) in 20 patients with r/r B-cell NHL or CLL and

extensive prior treatments. FT596 was administered as a standalone

therapy (10 patients) or in combination with rituximab (10

patients). Among the 17 patients assessed for efficacy after the

initial FT596 treatment cycle, 5 out of 8 in the standalone treatment

arm and 4 out of 9 in the combination treatment arm achieved a

treatment response. When considering a single-dose level of ≥90

x106 cells, 8 out of the 11 patients evaluated for efficacy achieved an

OR, and 7 of these had a CR. Two of the four patients who had
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previously undergone CAR-T cell therapy and were treated with

≥90 x106 cells achieved a CR (198). Ongoing clinical trials of anti-

CD19 CAR-NK cells for the treatment of B-cell malignancies are

summarized in Table 3.

Dozens of ongoing clinical trials of CAR-NK cells are targeting

various antigens in B-cell lymphoblastic leukemia or lymphoma.

Results have not yet been published for most of the clinical trials

listed. Given the lack of full datasets, a comprehensive analysis and

comparison of these clinical trials is challenging. Nevertheless, it is

noteworthy that the specific characteristics related to the CAR-NK

cells might produce superior outcomes. As mentioned above,

preclinical and clinical data have demonstrated that armoring

CAR-NK cells with IL-15 results in enhanced NK cell activation,

and cytotoxicity. Consequently, clinical trials of CAR-NK cells

engineered to express the IL-15 or IL-15R genes (NCT03056339,

NCT04245722, NCT05020015, and NCT05336409) are expected to

report greater antitumor efficacy and prolonged persistence of

genetically modified NK cells. In fact, as discussed above, Marin

et al. reported highly encouraging findings from their initial phase I/
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II human trial involving UCB CD19 CAR-NK cells expressing sIL-

15, and the inducible caspase-9 safety switch. The study included 37

patients with heavily treated r/r B cell malignancies. Single infusions

of 1x105, 1x106 or 10x106 CAR-NK cells per kg were not associated

with the development of notable adverse events, such as CRS,

neurotoxicity, or GvHD. The 1-year OS and PFS rates were 68%

and 32%, respectively. Patients who achieved an OR had higher

CAR-NK cell counts, and the latter persisted for longer (20, 67).

Moreover, the use of intracellular domains tailored to the NK

cells’ distinctive functions and signaling pathways might yield better

outcomes, relative to CAR-NK cells engineered with T-cell-specific

intracellular domains. The NCT04245722 clinical trial appears to

have given the most promising currently available data. The trial’s

therapeutic cells are derived from iPSCs, which thereby provide an

inexhaustible source of homogeneous NK cells and facilitate the

development of a standardized, readily available treatment. The NK

cells incorporate a cell-specific intracellular domain and have

undergone additional genetic modifications, such as the

expression of IL-15R (as mentioned above) and the high-affinity
TABLE 3 Ongoing clinical trials of anti-CD19 CAR-NK cells for the treatment of B-cell malignancies.

NCT number Phase Source Signaling domain(s) Gene expression Type of cancer

NCT00995137 Phase I NK-92 cells 4-1BB.CD3z N/A r/r B-ALL

NCT02892695 Phase I/II NK-92 cells CD28-4-1BB.CD3z N/A r/r B-cell cancers

NCT01974479 Phase I Haploidentical NK cells 4-1BB.CD3z N/A r/r B-ALL

NCT03056339 Phase I/II UCB CD28.CD3z IL-15 r/r B-cell cancers

NCT03824951 Early Phase I iPSCs N/A N/A r/r B-cell NHL

NCT03690310 Early Phase I N/A N/A N/A r/r B-cell lymphoma

NCT04245722 Phase I iPSCs NKG2D.2B4.CD3z hnCD16 FcR.IL-15R
r/r B-cell lymphoma

or CLL

NCT04639739 Early Phase I N/A N/A N/A r/r B-cell NHL

NCT04796675 Phase I UCB N/A IL-15 r/r B-cell cancers

NCT04887012 Phase I Haploidentical NK cells N/A N/A r/r B-cell NHL

NCT05020678 Phase I Allogeneic NK cells OX40.CD3z IL-15 r/r B-cell cancers

NCT05379647 Phase I Allogeneic NK cells N/A N/A r/r B-ALL

NCT05020015 Phase II UCB CD28.CD3z IL-15 r/r B-cell NHL

NCT05410041 Phase I PBMCs N/A N/A r/r B-cell cancers

NCT05563545 Phase I PBMCs N/A N/A r/r CD19+AML

NCT04796688 Phase I N/A N/A N/A r/r B-cell cancers

NCT05472558 Phase I UCB N/A N/A r/r B-cell NHL

NCT05570188 Phase I/II N/A N/A N/A r/r B-cell cancers

NCT05645601 Phase I Allogeneic NK cells N/A N/A r/r B-cell cancers

NCT05654038 Phase I/II N/A N/A N/A r/r B-cell cancers

NCT05336409 Phase I iPSCs N/A IL-15 r/r B-cell NHL

NCT05739227 Early Phase I Allogeneic NK cells N/A N/A r/r B-cell cancers

NCT05673447 Early Phase I N/A N/A N/A r/r DLBC
ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; DLBC, diffuse large B cell lymphoma; iPSC, induced pluripotent stem cells; PBMC,
peripheral blood mononuclear cells; N/A, not available; NHL, Non-Hodgkin’s lymphoma; NK, natural killer; UCB, umbilical cord blood.
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CD16 Fc receptor which enhances the cells’ ability to mediate

ADCC against tumor targets. FT516 is potentially available for a

larger number of patients, thanks to its off-the-shelf, mass

production availability and facilitated multidose administration.

Further research is required to confirm and extend these findings.

In a Phase I trial in patients with r/r B-cell lymphoma, a

combination of FT516 with rituximab was safe and well tolerated.

Notably, FT516 administration yielded clinical responses (including

some CRs) in heavily pretreated patients. Of the 11 patients treated

with ≥90 x106 FT516 cells, eight (72%) achieved an OR and seven a

CR, including two patients whose disease had progressed after

autologous anti-CD19 CAR-T cell therapy. However, two patients

treated with the lowest dose of 30 x106 FT516 cells experienced

disease progression. Five of the eight responders remained in

remission for between 4.6 and 9.5 months (199).

Other targets for CAR-NK cell therapy in B-cell malignancies

have been tested in clinical trials; these include CD22, either alone

(NCT03692767) or through a CD19/CD22 bispecific

targeting (NCT03824964).
4.2.2 T cell lymphoblastic leukemia/lymphoma
CAR-NK cells have demonstrated their efficacy in targeting

various T cell TAAs, such as CD3, CD5, and CD7. Of the latter,

CD5 has emerged as a primary focus of investigation for the

treatment of T cell malignancies (200–202). Many Phase I and II

clinical trials are presently assessing the safety, effectiveness, and

ideal dose level of CAR-NK cells transduced with anti-CD5

(NCT05110742) or anti-CD7 (NCT02742727 and NCT04033302).

The results of these studies have not yet been published.
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4.2.3 Acute myeloid leukemia
Studies demonstrating the effective internalization of antibodies

binding to CD33 have opened up new perspective for treating

CD33-bearing cancers (203, 204). Tang et al. assessed the safety

(NCT02944162) of anti-CD33 CAR-NK-92 cells as a treatment for

three patients with r/r AML. Although the results of this Phase I

trial did not reveal significant clinical effectiveness, they did show

that the therapy could be safely administered to patients with a high

tumor burden (205). There are five ongoing clinical trials of anti-

CD33 CAR-NK cells in AML, two of which feature cells targeting

both CD33 and CLL-1. Other targets (such as CD70 and CD123)

are also under clinical investigation (Table 4).

4.2.4 Hodgkin lymphoma
To date, CAR-NK cells have not been tested clinically for the

treatment of HL.

4.2.5 Multiple myeloma
As seen with CAR-T cells, BCMA is a promising target for CAR-

NK cell-based therapies for MM. A Phase I trial of the efficacy and

safety of anti-BCMA CAR-NK cells in MM therapy is currently being

conducted by Dhakal et al. None of the nine patients having received

CAR-NK cell infusions (three of whom also received anti-CD38

daratumumab as part of combination therapy) developed CRS or

ICANS. Encouragingly, a patient having received monotherapy with

300x106 anti-BCMA CAR-NK cells achieved a PR, as did two patients

having 100x106 cells of anti-BCMA CAR-NK cells plus daratumumab

(206). At present, these are the only published preliminary data on

CAR-NK cells targeting BCMA, and so it is hard to predict any future
TABLE 4 Ongoing clinical trials of CAR-NK cells in AML.

NCT number Phase CAR Source Signaling domains Gene expression

NCT02944162 Phase I/II CD33 NK-92 cells CD28.4-1BB.CD3z N/A

NCT05008575 Phase I CD33 N/A N/A N/A

NCT05665075 Phase I CD33 iPSCs N/A hnCD16 FcR.IL-15R

NCT05601466 Phase I CD33 iPSCs N/A hnCD16 FcR.IL-15R

NCT05215015 Early Phase I CD33 and CLL-1 N/A N/A N/A

NCT05987696 Phase I CD33/CLL-1 iPSCs N/A N/A

NCT06367673 Phase I CD33 or CLL-1 iPSCs N/A N/A

NCT06325748 Phase I CD33 and/or FLT3 Allogeneic NK cells N/A N/A

NCT06027853 Phase I CLL-1 iPSCs N/A N/A

NCT06307054 Phase I CLL-1 N/A N/A N/A

NCT05092451 Phase I/II CD70 UCB N/A IL-15

NCT06201247 Early Phase I CD123 N/A N/A N/A

NCT05574608 Early Phase I CD123 Allogeneic NK cells N/A N/A

NCT06006403 Phase I/II CD123 N/A N/A N/A

NCT04623944 Phase I NKG2D Allogeneic NK cells N/A N/A
CAR, chimeric antigen receptor; iPSC, induced pluripotent stem cells; N/A, not available; NK, natural killer; NKG2D, natural killer group 2member D; UCB, umbilical cord blood.
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specific outcomes on this basis. Three other clinical trials of anti-

BCMA CAR-NK cells in the treatment of MM are currently underway

(Table 5). Other targets have also shown positive results in preclinical

studies [such as: SLAMF7 (207), CD138 (208), and CD38 (209, 210)]

and might soon move into clinical development.
4.3 Clinical results synthesis

In the clinical aspect of hematological cancers, CD19 CAR-T cells

have been transformative in the treatment of B-cell ALL, NHL, andmost

recently MM (211) (Table 2). Overall, the data have demonstrated that

CD19-targeted CAR-T cells can achieve extended remissions in patients

with B cell malignancies, often with minimal long-term toxicities, and

may even be curative for some. CR rates were observed at 40-54% for

aggressive B cell lymphomas, 67% for mantle cell lymphoma, and 69-

74% for indolent B cell lymphomas (119, 121, 212). These impressive

results marked a major shift in treatment for these patients, leading to

FDA approval for these conditions. Additionally, CD19-targeted CAR-T

cells have achieved CR rates of 71-81% in patients with r/r B-ALL, who

have limited treatment options, also resulting in FDA approvals (118,

213). In more recent developments, CAR-T cells targeting BCMA have

achieved overall response rates of 73-98% in patients with r/r MM,

adding new FDA approvals for this indication as well (214, 215).

However, as this therapeutic strategy is expanded to other

hematological malignancies, new challenges have emerged. For

instance, targeting antigens like CD33 or CD123 for AML and CD5

or CD7 for T-ALL poses the risk of off-target side effects (216, 217). In

addition, despite the therapy’s remarkable efficacy, a major challenge

observed in 30%-70% of patients with recurrent disease is antigen loss or

downregulation (218). In patients with ALL undergoing CAR-T cell

therapy, relapse rates range from 10% to 57%. Those who experience

antigen loss often face more limited treatment options (219, 220). Thus,

tumor escape through antigen loss, particularly with CD19, has

highlighted the need for alternative options. Various strategies are

currently being investigated to address this issue and enhance

treatment efficacy, such as dual-targeted CAR-T cells, innovative

combinatorial approaches involving CAR-T cell therapy and other

immunotherapeutic agents (mainly immune checkpoint inhibitors,

bispecific antibodies, oncolytic viruses, small molecule inhibitors or

antibody-drug conjugates), or logic-gated CAR-T cells (218).

In contrast, CD19 CAR-NK cells offer a different therapeutic

profile. Although newer in clinical trials, they show promise due to
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their inherent ability to kill cancer cells without pre-sensitization,

lower toxicity risk, and the potential for allogeneic use (221). Since

the first clinical trial involving CD33 CAR-NK-92 cells in patients

with r/r AML, the field has rapidly evolved (205). Rezvani’s team

conducted the first clinical trial involving CD19-targeted CAR

UCB-NK cells in 37 patients with r/r CD19-positive malignancies

(NCT03056339). The 1-year OS and PFS rates were 68% and 32%,

respectively (20, 67). Another promising development in this area is

represented by the iPSC-derived off-the-shelf CD19-directed CAR-

NK cell product (FT596) with 8 of the 11 evaluable patients

displaying an OR, 7 of them achieving CR (222). These findings

highlight the potential of CD19 CAR-NK cells as a safer and

potentially more scalable alternative to CAR-T cell therapy,

although the comparison isn’t entirely equitable given the

different stages of clinical trials. As clinical trials continue to

evolve, the roles of CD19 CAR-T and CAR-NK cells are

becoming increasingly defined, with each offering unique benefits

that could complement the other in the quest to improve outcomes

for patients with r/r hematological cancers.

For other tumor antigens, no true comparison can be made due

to the lack of robust clinical data for CAR-NK cell- based trials.
5 Futures directions

CAR-T cell-based immunotherapies have revolutionized the

treatment of hematological cancers over the past decade. CAR-T

cells have shown significant efficiency, achieving strong and durable

responses in clinical trials. CAR-NK cells have provided advantages

such as reduced CRS, and the potential for off-the-shelf allogeneic

therapies. However, they have faced challenges like limited cell

persistence and less efficient tumor targeting. In order to address the

short lifespan of ACT cells, the latter have been engineered to produce

cytokines that enhance their proliferation and persistence in vivo.

Another strategy to improve the persistence of immune cell-based

therapies is the infusion of memory cells with enhanced proliferative

and survival capacities and potent antitumor functions. CAR-T cells

with long-lived memory phenotypes, such as stem cell memory T cells

and central memory T cells, have been well-documented for their

origins from adaptive immune T cells and are correlated with durable

remissions in patients with hematological malignancies (223–225).

However, as the identification of memory NK (mNK) populations is

relatively recent, integrating the characteristics of these populations
TABLE 5 Ongoing clinical trials of anti-BCMA CAR-NK cells in the treatment of MM.

NCT number Phase CAR Source Signaling domains Gene expression

NCT05652530 Early Phase I BCMA N/A N/A N/A

NCT05008536 Early Phase I BCMA UCB N/A N/A

NCT03940833 Phase I/II BCMA NK-92 cells N/A N/A

NCT05182073 Phase I BCMA iPSCs N/A hnCD16 FcR.IL-15R

NCT06045091 Early Phase I BCMA N/A N/A N/A

NCT06242249 Phase I/II BCMA N/A N/A N/A
BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; iPSC, induced pluripotent stem cells; N/A, not available; NK, natural killer; UCB, umbilical cord blood.
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represents a novel approach to enhancing the persistence of CAR-NK

therapies. Recent studies have shown that cytokine-induced memory-

like (CIML) CAR-NK cells exhibit superior anti-tumor activity

compared to conventional CAR-NK cells. This improvement is

attributed to the memory-like properties conferred by prior exposure

to specific cytokines (notably IL-12, IL-15, and IL-18), which enhance

the CAR-NK cells’ survival, proliferation, and cytotoxicity in vivo

(226–228).

For instance, CIML CAR-NK cells targeting CD19 in B-cell

malignancies have shown prolonged survival and reduced tumor

progression in preclinical models, highlighting the potential of this

approach to improve outcomes for patients with refractory cancers.

Additionally, the ability of CIML CAR-NK cells to maintain high levels

of IFN-g production and ADCC further supports their utility in

combination therapies with monoclonal antibodies (196, 227, 229).

In this respect, it is important to highlight the promising clinical

applications of FceRIg-deficient NK cells (referred to as g-NK cells),

which represent a cutting-edge advancement in NK cell-based

immunotherapy. This newly discovered subset of human NK cells,

characterized by the absence of the FceRIg adapter protein, has

demonstrated a multi-fold increase in ADCC activity following

CD16 crosslinking (230). A first-in-human Phase I clinical trial is

currently underway to evaluate the safety and efficacy of g-NK cells in

patients with r/r NHL andMM. This trial is particularly significant as it

explores the potential of g-NK cells, in combination with rituximab for

NHL and daratumumab for MM, to address the limitations of current

NK cell therapies, such as limited durability and potency

(NCT05012345). Furthermore, the versatility of g-NK cells suggests

potential applications beyond hematological cancers. Their ability to be

combined with a wide range of therapeutic antibodies opens up

possibilities for treating solid tumors.

Advances in nanocarriers/LNP platforms, CRISPR-Cas9, and

transposon-based technologies are enhancing the safety, cost-

effectiveness, and precision of these therapies. Research continues

to refine these approaches to improve the generation and efficacy of

both CAR-T and CAR-NK cells.

AlthoughCAR-engineered immunecellshold considerablepromise

for treating hematological cancers, applying this approach to solid

tumors presents several challenges (231, 232). Over the past decades,

numerous target antigens for solid tumors have been identified, with

some demonstrating safety and feasibility in preclinical and clinical

studies. Despite ongoing research, no CAR-T cell therapies have been

approved forclinicaluseyet (233), but thefirstTCRgene therapy,named

Tecelra, has just been approved by the FDA (August 2, 2024). This

innovative treatment utilizes the patient’s own T cells, which are

modified to express a TCR targeting melanoma-associated antigen A4

(MAGE-A4), a protein present on synovial sarcoma cells (234).

In light of the limited success of CAR-T cell therapies for solid

tumors, recent research has turned to CAR-NK cells as a potential

alternative and has explored their efficacy against various solid

tumor antigens, including HER-2 (235) and CD73 (236) in lung

cancer, EGFRvIII in glioblastoma (237), EGFR in triple-negative

breast cancer (238), mesothelin in gastric cancer (239), c−MET in

liver cancer (240), PSMA in prostate cancer (241), EpCAM in

colorectal cancer (242), and GPC3 in HCC (33). These studies

yielded promising results.
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These non-exhaustive preclinical studies underlined the

importance of CAR-NK cells in the elimination of solid tumors,

and paved the way for the development of clinical trials. Currently,

more than twenty Phase I clinical trials are underway, exploring

various CAR-NK strategies across multiple types of solid cancers

(ClinicalTrials.gov). The expected results from these trials will allow

for a more thorough evaluation of the efficacy of CAR-NK cells in

treating solid tumors.

Novel concepts are constantly being developed to enhance

therapeutic efficacy of ACT. In this regard, comparing CARs and

TCRs is complex due to the diversity in CAR structures and ligands.

However, the HLA-independent TCR (HIT) engineering designed

by Michel Sadelain shows promising results since even both CARs

and HIT receptors effectively kill target cells, HIT receptors have

been shown to be more sensitive, especially when target antigens are

fewer. In vitro experiments suggest that HIT receptors are at least

ten times more sensitive than CARs, which may explain their

superior ability to eliminate tumors compared to CAR-T cells (243).

In summary, ACT is becoming a clinical reality and might

revolutionize precision immunotherapy. This approach should bring

new hope to patients with difficult-to-treat cancers, including solid

tumors. CAR-T cells and CAR-NK cells are promising therapeutics

and are taking clinicians into a future in which cancer treatment is

always personalized. The results of the many ongoing clinical trials are

likely to provide comprehensive insights into the safety and efficacy of

CAR-T cells and CAR-NK cells.
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