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Liver cancer is a major global health concern, ranking among the top causes of

cancer-related deaths worldwide. Despite advances in medical research, the

prognosis for liver cancer remains poor, largely due to the inherent limitations of

current therapies. Traditional treatments like surgery, radiation, and

chemotherapy often fail to provide long-term remission and are associated

with significant side effects. Immunotherapy has emerged as a promising

avenue for cancer treatment, leveraging the body’s immune system to target

and destroy cancer cells. However, its application in liver cancer has been limited.

One of the primary challenges is the liver’s unique immune microenvironment,

which can inhibit the effectiveness of immunotherapeutic agents. This immune

microenvironment creates a barrier, leading to drug resistance and reducing the

overall efficacy of treatment. Recent studies have focused on understanding the

immunological landscape of liver cancer to develop strategies that can

overcome these obstacles. By identifying the specific factors within the liver

that contribute to immune suppression and drug resistance, researchers aim to

enhance the effectiveness of immunotherapy. Prospective strategies include

combining immunotherapy with other treatments, using targeted therapies to

modulate the immune microenvironment, and developing new agents that can

bypass or counteract the inhibitory mechanisms in the liver. These

advancements hold promise for improving outcomes in liver cancer treatment.
KEYWORDS

immunotherapy, liver cancer, cancer microenvironment, combinational therapy,
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1 Introduction

Neoplasms remain the main killer worldwide (1–3). Among which, liver cancer,

predominantly hepatocellular carcinoma (HCC), stands as one of the leading causes of

cancer-related deaths worldwide (4–9). Despite advances in oncological therapies, the

prognosis for liver cancer patients remains dire, especially in cases diagnosed at advanced

stages (10). Traditional treatments, such as resection, transplantation, and systemic

chemotherapy, offer limited efficacy and often come with significant side effects (11).
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This backdrop underscores the urgent need for innovative

therapeutic approaches, among which immunotherapy has

emerged as a promising candidate (12).

Immunotherapy, which harnesses the body’s immune system to

fight cancer, has significantly transformed the treatment of various

malignancies (13–16), marking a shift from traditional therapies by

focusing on the interactions between cancer cells and the immune

system (17). Applying immunotherapy in liver cancer, however,

poses distinct challenges, primarily due to the liver’s unique

immunological characteristics (18). The liver is not only a crucial

metabolic organ but also plays a significant role in immunology

(19). Its specialized microenvironment, inherently inclined towards

tolerance for normal functioning, paradoxically provides a

protective environment for tumor cells, complicating the

effectiveness of immunotherapy in liver cancer (20).

The tolerogenic nature of the liver is characterized by a distinct

array of immune cells and regulatory pathways (21). This

environment is adept at maintaining immune homeostasis and

preventing overactive responses to the myriad of antigens

constantly presented to it, primarily from the gut via the portal

circulation (22). In the context of HCC, this immunological

landscape facilitates immune evasion, allowing cancer cells to thrive

and proliferate under the radar of immune surveillance (23, 24).

Addressing these challenges requires a deep understanding of

the liver’s immune milieu and the complex interplay between tumor

biology and host immunity (25). This review aims to dissect the

intricacies of the liver’s immune environment and explore how

current and emerging immunotherapeutic strategies are being

tailored to overcome these barriers (26). We delve into the latest

research underscoring the potential of immunotherapy in liver

cancer (27). This review not only highlights the progress in

immunotherapy but also delves into the multifaceted nature of

tumor drug resistance, exploring genetic alterations, immune

evasion, and the influence of the tumor microenvironment.
2 Immunological landscape of
liver cancer

The tumor microenvironment (TME) is a complex network

comprising cancer cells, immune cells, fibroblasts, endothelial cells,

and the extracellular matrix, actively influencing cancer progression

and response to therapies like immunotherapy (28–31). The TME

supports tumor growth through angiogenesis, immune evasion, and

modifying drug responses, playing a critical role in immunotherapy

tolerance by mechanisms such as cytokine secretion (e.g., TGF-b,
IL-10) that suppress immune responses, and the expression of

checkpoint molecules like PD-L1 that help tumors evade immune

detection (32). Additionally, direct interactions between tumors and

immune cells can deactivate effector immune cells, contributing to

the TME’s immune-suppressive nature (33). Understanding and

manipulating the TME is essential for developing effective cancer

therapies, combining tumor-targeting strategies with approaches to

alter the TME, aiming for improved therapeutic outcomes.
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The liver’s immune system is uniquely adapted to its exposure to

food antigens and gut-derived microbial products via the portal vein

(34, 35). This exposure necessitates a predominantly tolerogenic

environment to avoid an overactive immune response, which could

lead to tissue damage and impaired liver function (36). The liver

achieves this through a complex network of cells and signals that

promote tolerance rather than immunity (37) (Figure 1).
2.1 The antigenicity of HCC

The antigenic landscape of HCC is characterized by the

presence of tumor-specific antigens (TSAs) and neoantigens,

essential for the immune system’s recognition and attack on

cancer cells (38). While TSAs, including alpha-fetoprotein (AFP),

glypican-3 (GPC3), and melanoma-associated gene 1 (MAGE-1) in

HCC, are predominantly cancer-centric, their presence, albeit in

lower quantities, is not exclusive to cancer cells (39). The immune

system, adept at identifying abnormalities, flags these antigens,

especially when overexpressed or coupled with other tumor-

associated signals (40). In contrast, neoantigens, borne out of

tumor-specific genetic alterations such as point mutations and

chromosomal rearrangements, are exclusive to cancer cells,

rendering them precise targets for immune attacks (41).

Central to immune surveillance, TSAs and neoantigens

underpin various immunotherapeutic strategies for HCC,

including the deployment of cancer vaccines, the transfer of

adoptive T cells, and the application of checkpoint blockade

therapies (42, 43). However, targeting these antigens is fraught

with challenges, given the liver’s natural inclination towards

immune tolerance, the heterogeneous expression of antigens

across tumors, and the cancer cells’ adeptness at evading immune

detection (44, 45). Moreover, the liver’s altered immune landscape,

often a consequence of underlying conditions like hepatitis or

cirrhosis, can significantly impact the efficacy of antigen-targeted

therapies (46). Thus, delving deep into the antigenic profile of HCC,

through meticulous identification and functional analysis of TSAs

and neoantigens, is imperative for refining immunotherapeutic

approaches and enhancing treatment precision and effectiveness

against liver cancer (47).
2.2 Specialized immune cell populations

The liver’s immune environment is intricately composed of

various specialized cell types that play pivotal roles in maintaining

immune homeostasis and regulating immune responses (48). In the

context of liver cancer, particularly hepatocellular carcinoma

(HCC), these cells contribute to a tolerogenic milieu that can

impede effective immunotherapeutic interventions (49).

Cytotoxic T Cells (CTLs) are essential for the direct killing of

cancer cells. In healthy immune responses, these cells recognize and

destroy cells expressing specific antigens, including tumor cells.

However, in HCC, the activity of CTLs is often suppressed due to
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1460282
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1460282
the immunosuppressive signals within the liver (50). Factors such as

the upregulation of PD-L1 on tumor cells and the secretion of

immunosuppressive cytokines like IL-10 and TGF-beta inhibit CTL

activation and proliferation (51). Moreover, the presence of

regulatory elements such as Tregs and myeloid-derived

suppressor cells (MDSCs) further dampens the CTL response,

allowing tumor cells to evade immune detection (52).

Regulatory T Cells (Tregs) play a critical role in maintaining

immune tolerance by suppressing autoimmunity and excessive

immune responses that could damage host tissues. In liver cancer,

Tregs are recruited and expanded within the tumor

microenvironment, where they inhibit the function of CTLs and

NK cells through the secretion of suppressive cytokines like TGF-

beta and IL-10 (53). This suppression helps the tumor evade

immune surveillance. The enrichment of Tregs in the liver is also

facilitated by the liver’s exposure to antigens from the gut, which

promotes a generally tolerogenic environment (54).

As the liver’s resident macrophages, Kupffer cells are involved in

clearing pathogens and cellular debris. However, in HCC, their role

shifts towards promoting tumor growth and survival. They achieve

this by secreting pro-tumorigenic cytokines and growth factors that

enhance tumor cell proliferation, angiogenesis, and metastasis (55).

Kupffer cells also contribute to the immunosuppressive environment

by producing IL-10 and TGF-beta, which inhibit the functions of
Frontiers in Immunology 03
dendritic cells and CTLs. Additionally, they engage in crosstalk with

hepatic stellate cells and cancer-associated fibroblasts to remodel the

extracellular matrix, further facilitating tumor progression (56).

Dendritic Cells (DCs) are crucial for antigen presentation and the

activation of T cells. However, in the liver tumor microenvironment,

the function of DCs is often compromised. They are either numerically

decreased or functionally impaired, which hampers their ability to

present tumor antigens effectively and initiate a robust anti-tumor

immune response (57). The impaired functionality of DCs in HCC is

partly due to the suppressive cytokines produced by other immune cells

and the tumor cells themselves.

Natural Killer (NK) and NKT Cells are important for their roles

in immune surveillance and the early response to tumor formation.

These cells can recognize and kill transformed cells without the need

for prior sensitization to specific antigens. In liver cancer, however,

their cytotoxic activity is often inhibited by the immunosuppressive

cytokines in the microenvironment and by direct interactions with

tumor cells that express inhibitory molecules (58).

Each of these cell populations plays a significant role in

the immunological landscape of liver cancer, contributing to

the complexity and chal lenge of developing effective

immunotherapeutic strategies. Understanding and manipulating

the functions and interactions of these cells is key to enhancing

the immune response against liver cancer (Figure 2).
FIGURE 1

Protumor immune responses is dominant in liver cancer. In the immune microenvironment of liver cancer, the protumor immune response is
superior to the anti-tumor immune response. By secreting cytokines, TAM and NK cells promote angiogenesis, CAF promotes epithelial
mesenchymal transformation; Treg cells, immature DC cells, MDSCs and tumor cells suppresses the effect of CD8+T cells on tumors. And the killing
effect on tumor by macrophages, NK cells and CD8+T cells is inhibited.
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2.3 Key cytokines in immune suppression

Among the cytokines that play critical roles in the liver’s

immune landscape, TGF-beta and IL-10 stand out due to their

potent immunosuppressive effects. TGF-beta is a multifunctional

cytokine that primarily facilitates an immunosuppressive

environment conducive to tumor growth and metastasis in the

context of liver cancer. It acts by inhibiting the proliferation and

activation of T cells and by promoting the conversion of effector T

cells into regulatory T cells, thus enhancing immune tolerance (59).

IL-10, another immunosuppressive cytokine, further

contributes to the complexity of the immune landscape in liver

cancer by inhibiting the synthesis of pro-inflammatory cytokines,

thus reducing the effectiveness of the immune response against

tumor cells. It also promotes the differentiation of Tregs and

hampers the antigen-presenting capabilities of dendritic cells,

reducing the overall immune surveillance in HCC (60).
2.4 Impact of liver microenvironment on
immune surveillance

The liver’s unique immunological landscape, pivotal for

metabolism and detoxification, significantly shapes liver cancer

immunotherapy (61). Tasked with tolerance induction, the liver,

constantly exposed to gut antigens via the portal vein, distinguishes

between harmful and benign substances (62). This mechanism,
Frontiers in Immunology 04
however, may inadvertently extend tolerance to tumor cells,

complicating immunotherapy (63).

Immunoregulatory cells such as the liver sinusoidal endothelial

cells, the Kupffer cells, and the hepatic stellate cells, integral to the

liver’s immune tolerance, can suppress the immune response

against HCC cells (64). This suppression leads to reduced antigen

presentation and compromises T cell effectiveness in targeting

cancer cells (65). Additionally, the liver harbors unique immune

cells like NK, NKT, and gd T cells, each with specific roles in

immune surveillance, offering avenues for immunotherapy (66).

The roles of specific immune cells such as macrophages,

neutrophils, and regulatory T cells (Tregs) are critical in

mediating immunotherapy resistance, particularly to immune

checkpoint inhibitors (ICIs). Within the liver TME, macrophages

contribute significantly to ICI resistance. Their interaction with

tumor cells often results in the secretion of various chemokines and

cytokines that not only protect the tumor from immune attack but

also enhance the recruitment of other immunosuppressive cell

types. This activity establishes a feedback loop that sustains and

amplifies immune suppression, diminishing the therapeutic efficacy

of ICIs (67). The role of neutrophils extends beyond traditional

pathogen defense to influencing the balance of the immune

response in the TME. They support a suppressive environment by

interacting with other immune cells and modulating their activity

towards tolerance rather than immunity. Their presence in the

TME correlates with poorer outcomes in immunotherapy,

suggesting their potential as therapeutic targets to enhance ICI
FIGURE 2

Formation of liver immunosuppressive tumor microenvironment. The formation of immunosuppressive microenvironment of liver cancer promotes
the immune escape. The reduced antigen presentation by immunoregulatory cells leads to the impaired T cell effects. The heterogeneity of TME and
chronic liver diseases lead to the suppression of immune function and immune response. Liver is exposed to intestinal antigens and obtains
immune tolerance.
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response (68). Tregs directly impact the effectiveness of ICIs by

maintaining a high threshold for T cell activation. They utilize

various mechanisms to suppress effector T cell function, crucially

dampening the immune response against the tumor. Manipulating

Treg activity or selectively reducing their numbers within the TME

could potentially restore immune activity and improve responses to

immunotherapies (69).

The liver tumor microenvironment’s heterogeneity, influenced by

individual patient factors, affects immunotherapy’s effectiveness (70).

Chronic liver diseases, often precursors to liver cancer, alter the

immune landscape, impacting immune cell function and response (71).

The challenge in liver cancer immunotherapy lies in effectively

activating an anti-tumor immune response without disrupting the

liver’s essential tolerance mechanisms (72). Understanding the

intricate balance of liver immunity is crucial for designing

effective immunotherapeutic strategies (73). This involves

identifying targets within the liver’s immune milieu that can be

modulated to enhance the immune response against HCC cells

while preserving the liver’s vital functions (74).

In conclusion, the liver’s immunological microenvironment, with its

unique cellular composition and tolerance-promoting mechanisms, presents

both a challenge and an opportunity for the development of effective

immunotherapies for liver cancer (75). Strategies that can navigate and

modulate this complex environment hold the key to successful

immunotherapeutic interventions in HCC (76).
3 Current immunotherapeutic
approaches for liver cancer

3.1 Genetic and molecular landscape of
liver cancer

Liver cancer, particularly HCC, is characterized by distinct genetic

mutations that influence both tumor behavior and interaction with the

immune system. Key mutations often involve genes like TP53, known

for its role in cell cycle regulation and apoptosis, and CTNNB1, which

affects the Wnt/beta-catenin signaling pathway (77). These genetic

abnormalities are not only pivotal for cancer progression but also

modulate the tumor microenvironment to favor immune evasion and

resistance to therapy.

TP53, the most commonly mutated gene in human cancers,

plays a crucial role in DNA repair, cell cycle regulation, and

apoptosis. Mutations in TP53 are associated with poor prognosis

in liver cancer and can lead to an accumulation of genomic

instability, making tumors more aggressive and resistant to

conventional therapies (78).

Mutations in CTNNB1, which encodes beta-catenin, are prevalent

in liver cancer. Thesemutations lead to the activation of theWnt/beta-

catenin signaling pathway, promoting cell proliferation and survival.

Importantly, beta-catenin activation is linked to immune evasion

mechanisms, such as the suppression of cytokine production and

inhibition of T cell infiltration into the tumor microenvironment (79).
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The genetic makeup of HCC significantly influences the

effectiveness of immunotherapeutic approaches. Tumors with

extensive mutational burdens may present a higher number of

neoantigens, potentially enhancing their visibility to the immune

system. However, the same mutations often enhance the expression

of immune checkpoints like PD-L1, contributing to an

immunosuppressive tumor milieu (80).
3.2 Checkpoint inhibitors

The use of drugs targeting immune checkpoints like PD-L1,

PD-1, and CTLA-4, has been a significant development in the

treatment of liver cancer, particularly hepatocellular carcinoma

(HCC) (81). These immune checkpoint inhibitors (ICIs) are

designated to inhibit cancer cells’ mechanisms to evade the

immune system (82).

Nivolumab was among the first PD-1 inhibitors being utilized in

HCC (83). Clinical trials have shown it effective in patients with

advanced HCC, particularly in those who had previous treatment

with the standard treatment sorafenib (84). The response rates in

these trials varied but showed promising results, with some patients

experiencing significant tumor reduction and prolonged survival (85).

Pembrolizumab has also been tested in HCC patients, especially

those who did not respond to first-line therapies like sorafenib (86).

Clinical trials reported moderate response rates, with a certain subset

of patients achieving durable responses (87). Unfortunately, the

overall effectiveness and best patient selection criteria for

pembrolizumab in HCC are still areas of active research (88).

Atezolizumab has been studied in combination with

bevacizumab, an anti-angiogenic agent. This combination has

shown enhanced effectiveness compared to atezolizumab alone or

other standard therapies in HCC (89). This combination has shown

a promising response rate and satisfying survival rate in patients,

leading to changes in first-line treatment recommendations for

some HCC patients (90).

Ipilimumab, a CTLA4 monoclonal antibody, often used in

combination with nivolumab, has shown effectiveness in HCC,

particularly in patients who failed to respond to previous

treatments. The combination of nivolumab and ipilimumab

appears to have significant synergistic effect, leading to higher

response rates compared to either drug alone (91).

While the response rates for ICIs in HCC vary, a significant

number of patients have shown partial or complete responses.

These drugs have also been associated with improved overall

survival rates in certain patient groups (92). Importantly, ICIs

tend to have a lasting effect for those who do respond, leading to

longer periods of disease control (93).

Various clinical trials are focused on optimizing the utilization

of ICIs in liver cancer, including determining the best combinations

of drugs, the ideal sequencing of therapies, and identifying

biomarkers to predict the most likely group of patients to benefit

from these treatments (94).
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3.3 Adoptive cell therapy

CAR-T cell therapy, a form of immunotherapy that genetically

engineers the patients’ T cells to express a Chimeric Antigen

Receptor (CAR) to be more capable of recognizing and killing

cancer cells, is becoming a potential candidate as a treatment option

for liver cancer, including hepatocellular carcinoma (HCC) (95).

The current application of CAR-T cell therapy in liver cancer is

primarily in the research and clinical trial phases (96). Various

studies are focused on identifying suitable targets specific to liver

carcinoma cells and engineering CAR-T cells to recognize these

targets (97). These targets might include, for instance, GPC3

(glypican-3), which is often overexpressed in HCC (98). While

still in the early stages, initial results from clinical trials suggest

potential for CAR-T cell therapy in treating liver cancer. The field of

CAR-T cell therapy for liver cancer is rapidly evolving, and future

findings from ongoing basic and clinical research and trials are

expected to provide more insights to the effectiveness and practical

application of this therapy in liver cancer treatment.
3.4 Vaccine-based therapies

Therapeutic vaccines for liver cancer are an emerging area of

research, focusing on stimulating the immune system itself to

generate potent inhibition of cancer. These vaccines differ from

traditional vaccines; instead of preventing disease, they are designed

to treat existing cancer (42, 99).

Oncolytic virus vaccines attracted great attention of researchers

and clinicians. The development of these vaccines involves

genetically modifying viruses that selectively infect the cancer

cells and kill them (100). Once the virus infects the tumor cells, it

triggers an immune response not only against the virus but also

against the tumor cells. This dual action helps in directly destroying

the cancer cells and also in priming the immune system to recognize

the cancer cells and induce cell death in the tumor (101).

Peptide-based vaccines serve as another strategy to treat cancer.

These vaccines use specific peptides (short chains of amino acids)

that are found on the outer membrane of cancer cells. After

injecting these peptides, the immune system is trained to

recognize and kill cells displaying these peptides, which, in most

cases, are typically tumor cells in HCC (102).

The primary function of therapeutic vaccines in liver cancer is

to boost the immune system’s capacity to identify and destroy

cancer cells. They work by either introducing specific antigens

associated with liver cancer into the body or by modifying

existing immune cells to be more effective against cancer cells (42,

103). The general idea is to trigger specifically targeted immune

response that leads to the destruction of cancer cells while sparing

normal tissue. These therapeutic vaccines stand for a promising

area of research in the treatment of liver cancer, offering potential

benefits such as targeted therapy with fewer side effects compared to

traditional treatments. However, most of these vaccines are still in

clinical trials, and more research is needed for us to better

understand their efficacy and safety in treating liver cancer.
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3.5 Clinical trials

Several significant clinical trials have been conducted focusing

on novel immunotherapeutic approaches for liver cancer,

particularly hepatocellular carcinoma (HCC). Here’s an overview

of some key trials and their preliminary results:

CheckMate 040 and 459 evaluated the efficacy of nivolumab, a

PD-1 inhibitor, in advanced HCC patients. CheckMate 040

reported encouraging results in terms of overall response rate

(ORR) and survival benefits in HCC patients, including those

previously treated with sorafenib. CheckMate 459 compared first-

line use of nivolumab with sorafenib. Although it failed to meet the

pre-set primary endpoint of improved overall survival, nivolumab

demonstrated a favorable safety profile (104, 105).

KEYNOTE-224, -240, and -394 focused on pembrolizumab in

HCC. KEYNOTE-224 trial demonstrated encouraging results for

pembrolizumab in sorafenib-treated patients. KEYNOTE-240 and

KEYNOTE-394 trials aimed to confirm these findings in a larger

cohort. The results demonstrated a better overall survival (OS)

and progression-free survival (PFS), although the statistical

significance varied (106–108).

The IMbrave150 trial, a pivotal phase III study, demonstrated

significant advancements in treating advanced hepatocellular

carcinoma (HCC) by combining atezolizumab, an anti-PD-L1

antibody, with bevacizumab, an anti-VEGF antibody, showcasing

superior overall survival and progression-free survival compared to

the standard treatment with sorafenib. This combination leverages

dual mechanisms to modulate the tumor microenvironment,

enhancing immune cell infi ltration and activity while

simultaneously inhibiting angiogenesis crucial for tumor growth.

Despite its effectiveness, challenges such as therapy resistance—

mediated by alternative immune pathways or adaptive resistance

mechanisms within the tumor—persist, highlighting the need for

predictive biomarkers to identify likely responders and optimize

treatment regimens. Future directions include exploring synergies

with other therapies and tailoring approaches based on

comprehensive molecular profiling to overcome immunotolerance

and improve outcomes in liver cancer treatment (109, 110).

Various ongoing trials have been exploring CAR-T cell therapy

targeting specific antigens in liver cancer, such as GPC3 (111, 112).

These trials are still in early phases, and results are awaited to

understand the efficacy and, importantly, safety of CAR-T cells

in HCC.

Trials are ongoing for vaccines targeting tumor antigens in liver

cancer, such as AFP. Early-phase trials have shown some promise,

but more intensive exploration is needed to establish their

foundation in HCC treatment (103).

In addition, recent clinical trial updates from prominent oncology

conferences, such as ASCO and ESMO, showed that the field of

immunotherapy in liver cancer is rapidly advancing. The EMERALD-

1 trial, combining durvalumab with bevacizumab and TACE, has

shown encouraging results, significantly elongating PFS compared to

TACE monotherapy (113). This underscores the potential of

combining ICIs with locoregional therapies to enhance therapeutic

outcomes. Furthermore, the LEAP-002 study highlights the
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effectiveness of combining lenvatinib with pembrolizumab, marking a

step forward in dual-therapy regimens (114). Additionally, the

innovative approach of the REVERT LIVER CANCER Phase 2

trial, exploring, a STAT3 inhibitor, as monotherapy and in

combination, opens new avenues in targeting the liver’s

immunosuppressive environment (115, 116). These developments

reflect a growing exploration of the liver’s immune tolerance

mechanisms and the potential of tailored combination therapies to

overcome these barriers, offering new hope for patients battling

liver cancer.

The most recent 2024 ASCO annual meeting reported

updates on important clinical trials, such as KEYNOTE-224

and EMERALD-1, showing encouraging survival data (117,

118). CAR-T cell therapies showed promising efficacy,

especially in heavily treated advanced HCC cases (119).

Additionally, the oncolytic virus VG161 reported substantial

disease control rates in refractory HCC (120). These studies

emphasize the ongoing shift towards precision medicine,

leveraging advanced genomic profiling and novel therapeutic

combinations to improve outcomes for HCC patients. There are

currently more than 70 ongoing clinical trials regarding

immunotherapy in liver cancer (Table 1).
4 Strategies to overcome the
tolerogenic microenvironment

4.1 Combination therapies

The rationale for combining other therapies with

immunotherapy in liver cancer treatment stems from several key

factors. Firstly, immunotherapies alone might not be fully effective
Frontiers in Immunology 07
due to the liver’s immune-tolerant nature and the complex tumor

microenvironment in conditions like hepatocellular carcinoma

(HCC) (121). Combining these therapies can enhance overall

efficacy and overcome the resistance that often develops against

single-treatment modalities. Moreover, liver cancer involves various

biological pathways, and a combination approach allows for a more

comprehensive targeting of the disease. Such combinations can also

produce synergistic effects; for instance, certain chemotherapy

induces immunogenic cell death, potentially enhancing the

immune system’s recognition and attack on tumor cells (122).

Additionally, this strategy might allow for lower dosages of each

treatment, potentially reducing side effects while maintaining or

improving efficacy. Finally, certain therapies can modify the tumor’s

immune microenvironment, which becomes more susceptible to an

immune attack, thus support ing the effect iveness of

immunotherapy. This multi-modal approach is central to current

research in liver cancer, aiming to significantly improve

patient outcomes.

Combining Immunotherapy with Chemotherapy leverages the

direct tumor-killing effect of chemotherapy and the immune-

modulating properties of immunotherapy. Chemotherapy can

release cancer antigens, making tumor cells easier to recognize by

the immune system, while immunotherapy can strengthen the

immune response against these exposed antigens.

Another important strategy is to combine immunotherapy and

targeted therapy. Targeted therapies work by acting on specific

molecular targets related to cancer. When combined with

immunotherapy, these therapies can disrupt cancer cell

mechanisms that suppress the antitumor immunity, enhancing the

function of immunotherapeutic agents. Overcoming resistance to

immune checkpoint inhibitors (ICIs) is significantly enhanced by

incorporating anti-angiogenic drugs, which target the vascular
TABLE 1 Ongoing clinical trials of immunotherapy on liver cancer.

NCT Number Study Type Phase Status Sample Size(n) Conditions Outcome Measures

NCT05109052 Interventional I/II Withdrawn 48 HCC Safety and Tolerability

NCT05185505 Interventional IV Recruiting 24 HCC 1 Acute Rejection 2 AE 3 ORR 4
atezolizumab/bevacizumab
therapy 5 liver transplantation 6
necrotic tumors 7 RFS 8 OS 9
Tumor biomarkers 10 Immune
Cell Biomarkers

NCT05609695 Observational NA Not yet
recruiting

100 HCC 1 OS 2 TR 3 PFS

NCT05942560 Interventional NA Not yet
recruiting

160 Depression, Anxiety, HCC, CBT 1 Depression symptoms 2
Anxiety symptoms 3 Quality of
life score 4 Immune variables
5 OS

NCT05873244 Interventional II Recruiting 44 HCC 1 PFS 2 OS 3 radiological
response rate 4 time-to-
progression 5 AE

NCT05443230 Observational NA Enrolling
by invitation

200 HCC, Sarcopenia 1 Short-term results 2 Long-
term results

NCT05717400 Interventional IV Recruiting 15 HCC 1 Overall Response Rate

(Continued)
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1460282
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1460282
TABLE 1 Continued

NCT Number Study Type Phase Status Sample Size(n) Conditions Outcome Measures

NCT05484908 Interventional NA Not yet
recruiting

60 HCC, Liver Failure, Immune-
Mediated Hepatitis

1 Mortality rate 2 Model for
end-stage liver disease (MELD)
score variation

NCT06045286 Interventional I Recruiting 30 Colorectal Liver Metastases 1 ORR 2 PFS 3 OS

NCT06199232 Interventional NA Not yet
recruiting

47 Liver Metastasis Colon Cancer,
Failed From Standard Treatment,
MSS, ctDNA Genotype

1 PFS 2 OS 3 ORR 4 DCR 5 AE

NCT05550090 Observational NA Recruiting 40 Metastatic Breast Cancer in
the Liver

1 Correlation between DCE-MRI
parameters combined with IVIM
parameters and efficacy of
chemotherapy in patients with
liver metastasis of breast cancer

NCT05438420 Interventional I/II Recruiting 120 HCC, Cervical Cancer,
Esophageal Cancer,
Gastric Cancer

1 AE 2 TR 3 Change in the area
under curve (AUC) of Q702 and
its primary metabolites

NCT06047015 Interventional I/II Not yet
recruiting

12 Liver Metastasis Colon Cancer 1 Complications 2 Abscopal
effect 3 Tumor-specific immune
response 4 PFS 5 Quality of
life questionnaire

NCT05677113 Interventional II Recruiting 115 Liver Metastases,
Colorectal Cancer

1 PFS 2 Clearance of ctDNA 3
Side-effect profile of QBECO 4
Quality of recovery 5 Five-year
overall survival

NCT05833126 Interventional II Recruiting 25 Recurrent Liver Cancer After
Liver Transplantation

1 Acute graft rejection rate 2
ORR 3 OS 4 PFS 5 Time to
Progression 6 SAE 7
Graft Rejection

NCT05451043 Interventional II Not
yet recruiting

62 HCC, Biliary Tract Cancer,
Pancreatic
Cancer, Cholangiocarcinoma

1 Investigating and establishing
the efficacy of propranolol in
boosting the effects of
immunotherapy 2 Feasibility of
study therapy 3 Safety/tolerability
4 PFS 5 OS

NCT05039736 Interventional II Withdrawn 0 HCC 1 overall response rate

NCT05893056 Interventional II Recruiting 25 Gastric Cancer Metastatic
to Liver

1 ORR 2 DOR 3 PFS 4 OS 5
DCR 6 Number of participants
with treatment-related adverse
events as assessed by
CTCAE v5.0

NCT05169957 Interventional I Recruiting 18 Liver Metastases, Melanoma,
Cutaneous, Melanoma, Mucosal,
Melanoma, Ocular,
Metastatic Melanoma

1 Percentage of patients who
receive all planned radiotherapy
2 Proportion of patients who
develop grade 3 or higher
toxicity 3 OS 4 PFS 5 Proportion
of patients with local control 6
ORR 7 BOR

NCT06117891 Observational NA Recruiting 300 Unresectable
Hepatocellular Carcinoma

1 OS 2 Discriptive analysis 3
DOT 4 PFS 5 ORR 6 Treatment
sequences post first-line AB or
other IO combinations

NCT05588297 Interventional II Not
yet recruiting

12 Colorectal Cancer
Liver Metastases

1 R0 recession rate 2
Pathological complete response
rate 3 TRG 4 ORR 5 EFS 6 DFS
7 OS 7 AE 8 Quality of life score

NCT05322187 Interventional II/III Not
yet recruiting

15 HCC, Hepatoblastoma, Pediatric
Cancer, Pediatric Solid Tumor,
Transitional Cell Tumor

1 ORR 2 dynamic a-fetoprotein
response (AFP-R) 3 AE 4 Health
outcomes as assessed by the

(Continued)
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TABLE 1 Continued

NCT Number Study Type Phase Status Sample Size(n) Conditions Outcome Measures

PROMIS® Pediatric Scale v1.0
Global Health 7 + 2 scores
at baseline

NCT05510427 Interventional I Withdrawn 0 HCC, Cholangiocarcinoma 1 AE 2 MTD

NCT05984511 Interventional NA Not
yet recruiting

234 HCC, Tumor Thrombus, Hepatic
Portal Vein Tumor Invasion

1 OS 2 PFS 3 ORR 4 Duration of
portal patency 5 AE

NCT05653531 Interventional NA Withdrawn 0 Liver Biomarkers, ICI, Lung
Cancer, Transaminases

1 basal ALT blood concentration
in lung cancer patients treated
with ICI determined

NCT05233358 Interventional NA Not
yet recruiting

176 HCC 1 PFS 2 OS 3 To Tumor
Untreatable Progression 4 ORR 5
DCR 6 DOR 7 AE

NCT05339581 Interventional NA Not
yet recruiting

78 HCC, Liver Transplant;
Complications, Portal Vein
Thrombosis,
Radiotherapy; Complications

1 PVTT RR/NR 2 Alpha
Fetoprotein Response (AFP-R) 3
PFS 4 ORR 5 TTP 6 DOR

NCT05411133 Interventional I Recruiting 68 HCC, Cholangiocarcinoma,
Colorectal Adenocarcinoma,
Esophageal Adenocarcinoma,
Gastric Cancer, Gastroesophageal
Junction, Gastrointestinal
Cancer, Pancreatic Cancer

1 AE 2 Amount of Cabotamig
(ARB202) in plasma 3
Biochemical and physiological
effects 4 Effect of Cabotamig
(ARB202) on tumour

NCT05937295 Interventional I Recruiting 20 Fibrolamellar
Hepatocellular Carcinoma

1 To assess immunogenicity in
terms of induction of peptide
specific T-cell responses 2 Safety
and Tolerability

NCT05332496 Observational
[Patient
Registry]

NA Recruiting 220 HCC 1 PFS 2 OS 3 ORR 4 DOR 5
DCR 6 AE

NCT05332821 Observational
[Patient
Registry]

NA Recruiting 474 HCC 1 OS 2 PFS 3 ORR 4 DOR 5
DCR 6 AE

NCT05647954 Interventional III Not
yet recruiting

350 Melanoma Neuroendocrine
Tumors Neuroectodermal
Tumors, Neoplasms Germ Cell
and Embryonal Neoplasms by
Histologic Type,
Neoplasms Neoplasms

1 PFS 2 OS 3 ORR 4 DCR 5
DOR 6 PFS 7 OS 8 AE

NCT05810402 Interventional NA Not
yet recruiting

60 HCC, ICI, Liquid Biopsy 1 Percentage of patients with
CTCs-PD-L1+ by CellSearch®

technique 2 OS 3 PFS

NCT06031480 Interventional II Not
yet recruiting

55 HCC 1 ORR

NCT04430452 Interventional II Recruiting 21 HCC 1 ORR 2 AE 3 PFS 4 DOR 5 OS

NCT06040177 Interventional I/II Recruiting 30 HCC Non-resectable, ICI, Portal
Vein Tumor Thrombus

1 ORR 2 PFS 3 DCR 4 DOR
5 OS

NCT06205706 Interventional I/II Recruiting 104 HCC, Non Small Cell Lung
Cancer, Solid Tumors

1 AE 2 SAE 3 Frequency of dose
interruptions and dose
reductions 4 DLT

NCT05278195 Observational NA Recruiting 300 HCC 1 OS 2 Specificity 3 Sensitivity 4
The area under curve (AUC) of
Receiver Operating Characteristic
(ROC) curves of the radiomics
artificial intelligence mode
5 Accuracy

(Continued)
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TABLE 1 Continued

NCT Number Study Type Phase Status Sample Size(n) Conditions Outcome Measures

NCT05406466 Interventional II Recruiting 25 Melanoma 1 ORR 2 DCR 3 DOR 4 TTR 5
PFS 6 OS 7 AE

NCT05070247 Interventional I/II Recruiting 313 HCC, Breast Cancer, Esophageal
Cancer, Gastric Cancer,
Kidney Cancer, Mesothelioma,
Nasopharyngeal Cancer, Non-
small Cell Lung Cancer
(NSCLC), Non-squamous,
Pancreatic Cancer, Squamous
Cell Cancer of Head and
Neck (SCCHN)

1 Dose Escalation 2 Dose
Expansion: Overall Response
Rate (ORR) 3 DCR 4 DOR 5
TTR 6 PFS 7 OS 8 AE

NCT05665348 Interventional II/III Not
yet recruiting

574 HCC, Metastatic Tumor 1 Objective response of
treatment 2 OS 3 PFS 4 OR

NCT05879328 Observational NA Recruiting 12 HCC 1 RFS 2 TR 3 Complication rate
4 OS 5 Patients’ reported
outcomes (PROs) 6 Comparison
with historical series

NCT04777851 Interventional III Recruiting 496 HCC 1 PFS 2 OS 3 ORR 4 Time to
unTACEable Progression
(TTUP) 5 DOR

NCT04965714 Interventional II Withdrawn 0 Resectable HCC 1 AE 2 Rate of pathologic
complete response 3 Necrosis of
tumors 4 TTP 5 RFS 6 OS

NCT06041477 Interventional III Recruiting 540 HCC, Chemotherapeutic
Toxicity, Chemotherapy Effect

1 PFS 2 OS 3 ORR 4 DCR 5
CRR 6 Safety profiles of
all participants

NCT05897268 Interventional II Recruiting 25 HCC 1 ORR 2 PFS 3 OS 4 DOR 5
DCR 6 ORR 7 PFS 8 OS 9 AE

NCT05096715 Interventional I Not
yet recruiting

20 Unresectable HCC 1 Dose Limiting Toxicity Rate 2
PFS 3 OS 4 In-field response rate
5 Change in Child-Pugh Score 6
Out of field response rate

NCT05092373 Interventional I Recruiting 36 too much 1 To assess the safety and
tolerability of TTF, including the
maximum tolerated dose (MTD)
2 ORR 3 PFS 4 OS

NCT05578430 Interventional II Not
yet recruiting

54 Resectable HCC 1 MPR 2 RFS 3 ORR 4 AE

NCT05044676 Observational NA Recruiting 120 HCC 1 OS

NCT05516628 Interventional II Not
yet recruiting

30 HCC 1 RFS 2 TTR 3 RFS 4 OS

NCT06218511 Interventional I Recruiting 10 HCC 1 DFS 2 PFS 3 OS 4 AE

NCT05625893 Interventional II Recruiting 63 HCC, Portal Vein Thrombosis 1 PFS 2 AE 3 OS 4 Time-to-
progression 5 ORR 6 DCR 7
Local tumor progression rate

NCT04965454 Interventional II Recruiting 80 HCC Non-resectable 1 ORR 2 DCR

NCT05337137 Interventional I/II Recruiting 162 HCC 1 DLT 2 ORR 3 PFS

NCT06133062 Interventional II Recruiting 45 HCC Non-resectable 1 PFS 2 LC 3 TTP 4 ORR 5 OS
6 AE

NCT05537402 Interventional II Recruiting 204 HCC 1 PFS 2 ORR 3 OS

NCT05717738 Observational NA Recruiting 300 HCC Non-resectable 1 Response Rate measured by
mRECIST criteria 2 Number of
Patients Amendable to Curative
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TABLE 1 Continued

NCT Number Study Type Phase Status Sample Size(n) Conditions Outcome Measures

Surgical Interventions 3 TTP 4
PFS 5 OS 6 Pathological
response 7 DCR 8 Quality of
Life (QoL)

NCT05168163 Interventional II Recruiting 122 HCC 1 OS 2 PFS 3 ORR 4 DOR 5 AE

NCT05620771 Interventional II Recruiting 84 HCC 1 PFS 2 TTP 23 ORR 4 DOR 5
CBR 6 OS 7 AE

NCT05389527 Interventional II Active,
not recruiting

43 HCC 1 MPR 2 PCR 3 Pathologic
complete response (pCR) 4 ORR
5 R0 resection rate 6 DFS 7 OS
8 AE

NCT05488522 Interventional I Recruiting 18 HCC 1 Primary Objective 2 Secondary
Objective 3 OS 4 PFS

NCT05101629 Interventional II Active,
not recruiting

32 HCC 1 ORR 2 OS 3 Safety and toxicity

NCT05199285 Interventional II Recruiting 40 HCC 1 ORR 2 OS 3 PFS 4 Disease
control 5 AE

NCT05822752 Interventional II Recruiting 120 HCC 1 BOR 2 DOR 3 PFS 4 OS

NCT05269381 Interventional I Recruiting 36 too much 1 AE 2 The number and
percentage of participants who
completed the sequencing with
satisfactory data quality
registration and identified at least
10 actionable peptides, meet the
eligibility criteria for registration,
and able to initiate vaccine
production 3
Immunogenicity responders

NCT05327738 Interventional II Withdrawn 0 HCC 1 Proportion of progression-free
participants 2 ORR 3 DCR 4
TTP 5 PFS 6 OS 7 Incidence of
grade >= 3 adverse events

NCT05377034 Interventional II Recruiting 176 Locally Advanced
Hepatocellular Carcinoma

1 BOR 2 DOR 3 TOR 4 PFS
5 OS

NCT05286320 Interventional I/II Not
yet recruiting

27 Unresectable Hepatocellular
Carcinoma, Lenvatinib,
Pembrolizumab, Stereotactic
Body Radiotherapy

1 safety rate 2 ORR 3 PFS 4 OS
5 Immune biomarkers

NCT06024252 Observational NA Not
yet recruiting

200 HCC 1 OS 2 PFS 3 ORR 4 One-year
survival rate 5 Immune-TACE
PFS 6 DCR 7 Treatment pattern

NCT05448677 Interventional II Recruiting 196 HCC 1 PFS 2 ORR

NCT05223816 Interventional II Recruiting 97 HCC,
Intrahepatic Cholangiocarcinoma

1 Safety in Cohort1 2 ORR 3 PFS

NCT05797805 Interventional I/II Recruiting 108 Advanced
Hepatocellular Carcinoma

1 AE 2 DLT 3 Evaluate efficacy
of tegavivint as a single agent

NCT05776875 Interventional II Recruiting 24 HCC 1 AE 2 Response rate 3 Time to
progression 4 Time to TACE
progression (TTTP) 5 Time to
untaceable progression

NCT05908786 Interventional I/II Recruiting 150 HCC 1 MPR 2 PCR 3 Relapse-Free
Survival (RFS) 4 Event-Free
Survival (EFS) 5 OS
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endothelial growth factor (VEGF) pathway (123). These drugs aid in

normalizing the tumor’s abnormal vasculature, which not only

improves blood flow and oxygenation within the tumor, thereby

reducing hypoxia, but also facilitates the infiltration of effector T cells

into the tumor microenvironment (124). This process enhances the

immune system’s capacity to target and destroy tumor cells.

Additionally, anti-angiogenic therapies help reduce the recruitment

of immunosuppressive cells such as regulatory T cells (Tregs) and

myeloid-derived suppressor cells (MDSCs) to the tumor site and alter

immune-related signaling, including the modulation of PD-L1

expression on tumor and immune cells (125). The combination of

the immune checkpoint inhibitor atezolizumab (PD-L1 inhibitor)

with bevacizumab (VEGF inhibitor) has become the recommended

first-line systemic treatment for advanced HCC (109). A case study

reported the successful treatment of brain metastasis in intrahepatic

cholangiocarcinoma with a combination of the PD-1 inhibitor

camrelizumab and a multi-kinase inhibitor lenvatinib. The patient

showed a complete response (CR) and a PFS of 17.5 months without
Frontiers in Immunology 12
serious side effects, suggesting the potential of this combination

therapy (126).

Dual Immune Checkpoint Inhibition is another widely-used

approach. Using two different immune checkpoint inhibitors can

have a synergistic effect. This combination can enhance T-cell

activation and more effectively attack cancer cells than single-

agent therapy (127). In the HIMALAYA study, Tremelimumab

and durvalumab show potential in treating unresectable, advanced

liver cancer, offering a new choice for inflammation-driven

cancer (128).

Techniques like radiofrequency ablation (RFA) or transarterial

chemoembolization (TACE) can also be combined with

immunotherapy (129, 130). These local treatments can increase

antigen presentation and inflammation, potentially making

immunotherapy more effective (131).

In addition, therapeutic cancer vaccines can be combined with

immunotherapies to enhance the immune response specifically

against liver cancer cells (132).
TABLE 1 Continued

NCT Number Study Type Phase Status Sample Size(n) Conditions Outcome Measures

NCT05396937 Interventional II Recruiting 42 HCC 1 ORR 2 Duration of Objective
Response (DoR) 3 DCR 4 TTP 5
PFS 6 OS

NCT05903456 Interventional II Not
yet recruiting

20 HCC 1 ORR 2 PFS 3 OS 4 DCR 5
Disease Control Rate 6 DOR
7 AE

NCT06066333 Interventional II Recruiting 12 ACC, Adrenocortical Carcinoma,
Metastatic
Adrenocortical Carcinoma

1 AE
FIGURE 3

Strategies of immunotherapy in liver cancer and their function of modifying the tumor microenvironment.
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These combination therapies aim to capitalize on the strengths

of each treatment modality, aiming for a more robust and targeted

attack on liver cancer cells (12). Clinical trials are still being carried

out to find out the most effective combinations and protocols (42).

Preclinical studies also gave sight to novel strategies to enhance

the effect of immunotherapy. For instance, a recent study reported

that antitumor immunity can be enhanced by targeting cGas/

STING pathway (133). Targeting fibrinogen-like protein 1 can

also enhance immunotherapy in hepatocellular carcinoma (134).
4.2 Personalized medicine by
immune classification

Personalized approaches, including the development of

biomarkers for the prediction of immunotherapy outcome, are

increasingly important in liver cancer treatment, allowing for

more targeted and effective treatments (135).

The immune microenvironment of liver cancer can be classified

based on molecular features and immunogenicity into distinct types,

reflecting the heterogeneity and complexity of tumor immune

interactions (22). Based on the differentiated infiltration of the

cytotoxic immune cells, primary liver cancers are categorized into

inflamed tumors, which are immunologically active, and non-

inflamed tumors, which are immunologically inactive (136). Recent

studies further identified four immune subclasses of liver cancer

according to their immunosuppression mechanisms and genomic

alterations, namely, 1) Tumor-associated macrophage (TAM): This

subclass shows increased levels of extracellular matrix genes, and is

associated with poor survival (137). 2) CTNNB1: characterized by

CTNNB1 mutations (138). 3) Cytolytic activity (CYT): Represents

inflamed tumors with high cytolytic activity (139). 4) Regulatory T

cell (Treg): Also represents inflamed tumors but with increased

presence of Treg cells (140). The TAM and CTNNB1 subclasses

are seen as non-inflamed, while the CYT and Treg subclasses

represent inflamed tumors (141). Further classification based on

immunogenomic features has led to the identification of three

HCC subtypes based on immune characteristics: immunity high

(referred as Immunity_H), medium (Immunity_M), and low

(Immunity_L). This classification is effectively predictive of patient

prognosis, with the Immunity_H subtype indicating a better survival

rate due to higher immune and stromal scores (85, 89).

The classifications of the liver cancer immune microenvironment

based on molecular features and immunogenicity enabled personalized

therapeutic strategies (142). Understanding the specific immune

subclass of a liver tumor allows for selecting patients more likely to

respond to immunotherapies, as well as developing targeted therapies

(143). For instance, patients with inflamed tumors might have a higher

responding rate to Immunotherapies due to the presence of active

immune cells in the tumor (144). Tumors in the TAM subclass might

benefit from therapies targeting TAMs or the extracellular matrix to

reverse immunosuppression and enhance immune activity against the

tumor (145). Moreover, the identification of Immunity subclasses can

serve as predictive biomarkers for patient prognosis. Patients with the

Immunity_H subtype, characterized by higher stromal and immune

scores, have a better survival rate, indicating that these patients might
Frontiers in Immunology 13
respond better to immunotherapies (137, 146). This information is

crucial for clinical decision-making and modifying treatment

approaches based on individual tumor features (99, 147). By

identifying the specific mechanisms of immune resistance in different

liver cancer subclasses, therapies can be tailored to counteract these

mechanisms (148). For instance, if a tumor employs specific

checkpoint pathways to evade immune surveillance, checkpoint

inhibitors targeting those pathways can be used (149).

Strategies based on the immune classification enables a more

precise and personalized approach to liver cancer treatment (150).

By understanding the molecular and immunological landscape of

individual tumors, treatments can be tailored to target specific

pathways and immune cells involved in tumor progression,

leading to more effective and less toxic treatment options (151).
5 Conclusion and future directions

Recent advances in liver cancer immunotherapy, particularly in

HCC, have highlighted several key findings, including the efficacy of

novel ICIs, the potential of combination therapies, and the

importance of personalized approaches based on biomarkers (152).

These developments suggest a future where liver cancer treatments

are more tailored and effective (153). The focus is shifting toward

understanding the liver’s unique immune environment and

developing therapies to overcome its inherent challenges (Figure 3).

The future outlook for liver cancer immunotherapy is promising,

with ongoing research aimed at improving response rates and patient

outcomes through more targeted, personalized treatment. Future

research in immunotherapy for liver cancer should focus on

combination therapies that merge different immunotherapeutic

strategies or pair them with traditional treatments to overcome the

immunosuppressive tumor microenvironment. Personalized

immunotherapies based on genomic profiling, alongside the

development of predictive biomarkers, could tailor treatments to

individual patient profiles for improved efficacy. Targeting regulatory

T cells, exploring new immunotherapeutic targets, and enhancing T

cell responsiveness within the suppressive liver environment are

promising directions. Studies should also address inherent or

acquired resistance mechanisms to optimize therapeutic outcomes.

Innovative clinical trial designs that incorporate dynamic endpoints

and real-time biomarker analysis can expedite the advancement of

effective treatments. An integrative approach combining genomic,

proteomic, and clinical data might offer a comprehensive

understanding of disease mechanisms and therapy interactions,

paving the way for breakthroughs in liver cancer immunotherapy.
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