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Background: Tryptophan Metabolism-associated Genes (TMGs), such as ECHS1
and ALDHZ2, are crucial in cancer progression through immunosuppressive
mechanisms, particularly in Gastric Cancer (GC). This study explores their
effects on the Tumor Microenvironment (TME). Additionally, it examines their
potential as novel immunotherapy targets.

Methods: We utilized single-cell and bulk transcriptomic technologies to analyze
the heterogeneity of GC. Non-negative Matrix Factorization (NMF) clustering
identified key TMGs, and extensive RNA-seq analyses were performed to
pinpoint prognostic genes and potential immunotherapy targets. Furthermore,
through PCR analyses we found that ECHS1 and ALDHZ2 gene expression plays a
regulatory role in the migration, invasion and inflammatory factor in AGS and
SNU-1 cell lines. The interference effect of si-ECHS1 and ad-ALDH2 was
validated using cell scratch assay in AGS and SNU-1 cell line.

Results: We observed a statistically significant correlation between ECHS1 and
ALDH?2 expression and increased TME heterogeneity. Our findings also revealed
that ECHS1 down-regulation and ALDH2 up-regulation contribute to reduced
TME heterogeneity, decreased inflammation, and inhibited AGS and SNU-1
tumor cells migration and proliferation. GSVA enrichment analysis highlighted
the NF-kappa B(NF-xB) signaling pathway as specifically regulated by TMGs.
Furthermore ECHS1 and ALDH2 modulated CD8+ and CD4+ T cell activities,
impacting GC progression. In vitro experiments further solidified our conclusions
by showcasing the inhibitory effects of Si-ECHS1 and ad-ALDH2 on the invasive
and proliferative capabilities of AGS and SNU-1 cells. Moreover, Si-ECHS1 and
ad-ALDH2 gene expression effectively reduced the expression of inflammatory
factors IL-10,IL-7,CXCL8 and IL-6, leading to a remarkable alleviation of chronic
inflammation and the heterogeneous nature of the TME.
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Conclusion: This research highlights the importance of ECHS1 and ALDH2 in GC
progression and immune modulation, suggesting that targeted therapies
focusing on these genes offer promising avenues for personalized
immunotherapy in GC. These findings hold potential for improving patient
survival and quality of life. Future studies on the NF-kB signaling pathway's role
in this context are warranted to further elucidate the mechanisms underlying
TMG-mediated immune modulation in GC.

KEYWORDS

gastric cancer (GC), tryptophan metabolism-associated genes (TMGs), tumor
microenvironment (TME), ALDH2, ECHS1

1 Introduction

GC is widely recognized as a major type of cancer that
contributes to cancer-related deaths globally, with an increasing
incidence each year (1-3). It ranks second in morbidity and
mortality rates, trailing only behind lung cancer. Alarmingly, over
80% of patients are diagnosed with an advanced GC during initial
treatment (4). Recent research underscores the critical role of
understanding the TME in advancing immunotherapy for GC.
Additionally, disruptions in the TME have been linked to
alterations in immune responses and tryptophan metabolism (5).
However, an abnormality in tryptophan metabolism leads to
accelerated progression of GC and decreased patient survival (6-
9). Hence, elucidating the interplay between tryptophan
metabolism and the TME in GC is imperative. Studies published
recently have shown that tumor cells can sustain cell proliferation
and progression by adapting to the regulation of metabolic patterns
to obtain essential nutrients from a nutrient-deficient environment.
Furthermore, these cells can modify the tumor immune
microenvironment (TIME) (10-13).

Tryptophan metabolism plays a crucial role in tumor cell
activities and significantly regulates protein synthesis during cell
proliferation. Emerging evidence supports that cancer,
neurodegenerative disease, inflammatory bowel disease, and
cardiovascular disease are significantly associated with the
regulation of tryptophan metabolism (14-17). Recent research has
shown that tryptophan metabolism, as an important nutrient in
vivo, plays a significant role in the development of cancer due to its
disorder. This is especially evident in cases of abnormal energy
metabolism and nutrient provision (18). In breast cancer, we found
that disordered tryptophan metabolism increases the tumor
immune microenvironment (19). Additionally, tryptophan
metabolism is primarily regulated by three rate-limiting enzymes:
kynurenine monooxygenase (KMO), indoleamine 2,3-dioxygenase
(IDO), and tryptophan 2,3-dioxygenase (TDO). These key
regulatory enzymes offer therapeutic targets for several diseases,
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including tumors, shedding new light on disease treatment
strategies. The metabolism of tryptophan also involves the
kynuridine, 5-hydroxytryptamine, and indole pathways (20). This
indicates that tryptophan metabolism pathways could potentially be
key to inhibiting tumor growth. Studies have highlighted the
significant role of tryptophan metabolism-related gene IDO2 in
tumor progression and the immune response against tumors by
influencing crucial metabolic pathways. However, the specific
regulatory role of tryptophan metabolism in GC has not been
thoroughly documented, and its role in the development of GC
has not been reported.

As the bioinformatics technology constantly updated, it is a new
breakthrough to explore the regulatory mechanism of TME in GC.
RNA sequencing and single-cell transcriptome technology can well
reveal the complex relationship between TME and GC, especially the
discovery of cell communication and the regulation of transcription
factors. For example, we also found the expression and function of
ECHSI1 and ALDH2 genes by bioinformatics technology.

The ECHS1 and ALDH2 genes are key members of the
tryptophan metabolism family. In most cancers, the expression of
ECHSI is upregulated, including in non-small cell lung cancer,
pancreatic cancer, and colon cancer (21-23). The expression of
ECHSI1 is correlated with lipid metabolism and metastasis.
Additionally, we found that decreased expression of ALDH2 plays
an important role in the activation of hepatocellular carcinoma
carcinogenic pathways (24-26). It is particularly interesting that we
have identified a crucial protein, ECHS1 and ALDH?2, involved in
regulating these genes, which is abnormally expressed in epithelial
cells of GC, thereby accelerating epithelial carcinogenesis. However,
there is still limited research on the role of TMGs in GC. The
regulation of tryptophan metabolism could impact the progression
of GC. Our study indicates that TMGs contribute to increasing
heterogeneity in the TME of GC and enhance cell proliferation and
invasion abilities. Moving forward, our research will focus on
treating tryptophan metabolism as a strategy to mitigate the
influence of the TME in GC.
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2 Methods

2.1 Analysis of GEO and TCGA
database progression

In our study, we targeted GC patients and healthy individuals as
research subjects, utilizing data from the TCGA databases (https://
www.cancer.gov/ccg/research/genome-sequencing/tcga) and GEO
databases (https://www.ncbi.nlm.nih.gov/gds/). Specifically, we
have focused on datasets of TCGA-STAD, GSE79973, GSE62254,
GSE54129, GSE34942 and GSE5118986 for GC.

2.2 scRNA-seq data processing

For single-cell RNA sequencing (scRNA-seq) analysis, we obtained
the 10x scRNA-seq dataset GSE163558 from the GEO database. We
utilized “Seurat4.0” R package to integrate all samples. Quality control
(QC) filters were applied using the following parameters, similar to
what has been reported:(1) cells with <200 genes were excluded; and (2)
cells with >30% mitochondrial RNA reads were excluded. Following
normalization using the “LogNormalize” method, we conducted
principal component analysis (PCA) on the top 2500 genes and
applied uniform manifold approximation and projection (UMAP)
for visualizing cell distribution (27, 28). Cell type identification was
performed using specific gene markers. Subsequently, we used the
“CellChat”R package for cell-cell communication analysis and network
visualization. Subsequently, we identified markers to classify GC cell
subsets for future analysis.

2.3 NMF classification of GC patients
cluster in scRNA-seq

Non-negative matrix factorization (NMF) was carried to divide
patients into different subtypes according to the following steps: 1)
the univariate Cox regression analysis was performed to identify
potential prognostic EDGs (P<0.05, logFC>1); 2) Performing sample
clustering using the SNMF/R method was suitable for sparse data in
scRNA-seq. This can be achieved using the “NMF” package.

2.4 Survival analysis
The effect of ECHSI expression on the prognosis of GC patients
was analyzed. This was conducted using the Kaplan-Meier plotter, a

tool for the meta-analysis-based validation and discovery of
biomarkers correlated with survival.

2.5 Identification of genes associated
with TMGs

Two machine learning algorithms, Random Forest (RF) and
Support Vector Machine Recursive Feature Elimination (SVM-RFE),
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were used to identify important biomarkers in tryptophan metabolism.
The “randomForest” R package in R was used to implement the
Random Forest technique. The validation set, used to fully analyze the
utility of the identified biomarkers, was obtained from the GSE79973
dataset. Subsequently, the prediction ability of the algorithms was
evaluated based on Receiver Operating Characteristic (ROC) curve
analysis, and the area under the curve (AUC) was calculated.

2.6 Cell culture

AGS and SNU-1 cells, both sourced from Beijing, China, were
cultured in a medium containing 10% FBS (fetal bovine serum)
from Gibco, USA, at 37°C in a 5% CO2 atmosphere. After, we
performed transfections with si-ECHS1 and ad-ALDH2, dividing
the cells into distinct groups.

2.7 The expression of ALDH2 and ECHS1 by
gRT-PCR in AGS and SNU-1 cells

Total RNA was extracted from AGS and SNU-1 cells using an
RNA extraction kit provided by Aibotek Biotechnology Company,
Wuhan. Subsequently, the mRNA expression levels were
determined using primers. (Species of Human Origin) IL7
Forward Primer: TTGGACTTCCTCCCCTGATCC, reverse
primer TCGATGCTGACCATTATAACACG; (Species of Human
Origin) IL10 Forward Primer: GACTTTAAGGGTTACCTG
GGTTG,Reverse Primer: TCACATGCGCCTTGATGTCTG;
(Species of Human Origin) IL6 Forward Primer: TAGTCCTTC
CTACCCCAATTTCC,Reverse Primer: TTGGTCCTTAGCCACT
CCTTG; (Species of Human Origin) ECHS1 Forward Primer: CT
GTTACTCCAGCAAGTTCT,Reverse Primer: TCACACATCATG
GCAAGCTCA; (Species of Human Origin) CXCL8 Forward
Primer: ACTGAGAGTGATTGAGAGTGGAC, Reverse Primer:
AACCCTCTGCACCCAGTTTTC;(Species of Human Origin)
ALDH2 Forward Primer: GGAATTTCCCGCTCCTGATG,
Reverse Primer: CACATAGAGGGCGGTGAGG For reverse
transcription of RNA into cDNA, we utilized the RNA reverse
transcription kit from TaKaRa, Japan. At last, PCR signals 2-AACE
was used to calculate the expression of genes mRNA levels.

2.8 Tryptophan metabolism
expression level

Tryptophan metabolism detection Assay following steps: 1)
Add a certain dilution of the sample to be tested, 100 p Incubate
at 37°C for 1 hour in the reaction wells already coated; 2) Add fresh
diluted calibration sample (diluted according to the instructions) to
each reaction well for 100% . L. Incubate at 37°C for 0.5-1 hour and
wash three times; 3) Finally, add substrate solution to each reaction
well for color development p L. 37°C for 10-30 minutes. Within 30
minutes, measure cells tryptophan metabolism expression level,
based on the absorbance value at 450nm to calculate the OD value.
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2.9 SiRNA and adRNA transfection

Gene knockdown and overexpression fragment were carried out
using the HiPerFect Transfection kit (Qiagen, Germany). AGS and
SNU-1 cells were transfected with 5 nM si-ECHS1 and ad-ALDH2
following the protocol of manufacturer, and cells transfected with
irrelevant non-targeting siRNA and adRNA, or were treated with
sham transfection were used as negative control. The cells were
cultured for another 24 h after transfection, and gene knockdown
efficiency was measured by qRT-PCR.

2.10 Cell scratch

Seed AGS and SNU-1 cells onto the bottom of a six-well plate
and mark scratch lines to create wounds. Remove the old culture
medium and divide the cells into two groups: si-NC, ad-NC
(negative control) and si-ECHS1 and ad-ALDH2. Place the plate
in a 37°C, 5% CO2 cell culture incubator. At specified time points
such as 0 hours and 48 hours, remove the cells from the plate and
observe the width of the scratch at the same position under a
microscope, taking pictures. Finally, use Image ] software to analyze
the distance of cell migration and the area of the scratch.

2.11 Statistical analysis

All data processing and statistical analysis were conducted using
R software version 3.6.1 and GraphPad Prism. Student’s t-test and
One-way analysis of variance (ANOVA) were used to determine
differences between groups, and a p-value<0.05 indicated
statistical significance.

3 Results

3.1 The expression of TMGs entirety
landscape in GC

The expression patterns of TMGs have been observed across a
spectrum of cancer types. To delve deeper into the differential
expression of TMGs in GC, we utilized scRNA-seq data from
GSE163558, encompassing 3 GC patients and 1 normal
individual. This analysis facilitated the identification of nine
distinct cell clusters within the TME based on markers. Including
T cells, monocytes, B cells, macrophages, plasma cells, epithelial
cells, fibroblasts, mast cells, and stromal cells (Figures 1A, B). The
transformation of epithelial cells is a pivotal element in the
progression of advanced GC, with a particular emphasis on
tryptophan metabolism. After isolating tumor cells, we performed
comprehensive cell communication analysis and identified a robust
correlation between GC epithelial cells and macrophages. This
observation suggests the presence of extensive cross-talk and
interactions between macrophages and epithelial cells within the
TME (Figure 1C). Subsequently, we conducted a comprehensive
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analysis of the gene expression profiles of TMGs, and observed that
STAT1, ALDH2, and ECHSI were highly expressed in GC epithelial
cells (Figure 1D).

3.2 Heterogeneity of tumor
microenvironment in GC

To enhance our comprehension of the TME in GC, we discovered
that each cell type manifests distinct receptor-ligand interactions, with
epithelial cells notably prominent (Figure 2A). Epithelial cells are
pivotal in dictating the intensity of outgoing interactions and are
influenced by other cell types, which induces a shift from intracellular
to extracellular functions. These interacting cell types encompass T
cells, monocytes, B cells, macrophages, epithelial cells, fibroblasts, mast
cells, and stromal cells (Figure 2B). Our analysis disclosed that HLA-A
ligands, acting as crucial intermediaries, display differential expression
patterns across various cell types within the TME, significantly
impacting the regulation of epithelial cells (Figure 2C). Notably, the
transcription factors FOXF1 and ZNF384 are implicated in the
regulation of epithelial cell carcinogenesis at the protein
transcription and translation levels (Figure 2D). Consequently,
HLA-A ligands, through the modulation by FOXF1 and ZNF384,
may facilitate the increased heterogeneity of the TME in GC.

3.3 ldentification of key TMGs in GC

Our analysis revealed that TMGs are prominently expressed
during the middle and late stages of GC, specifically STATI,
ALDH2, and ECHSI (Figure 3A). We identified two distinct types of
epithelial cells, designated as Epi-1 and Epi-2. Subsequently, a deeper
examination of Epi-2 cells indicated that three genes, STAT1, ALDH2,
and ECHSI, could be discerned through Non-negative Matrix
Factorization (NMF) analysis (Figure 3B). By tSNE visualization of
TMGs-related genes,STAT1, ALDH2, and ECHSI, we found that it
were widely expressed GC epithelial cell (Figure 3C). Furthermore,
KEGG enrichment analysis underscored the NF-kB signaling pathway
as critically important for the progression of GC (the blue color
represents the positive correlation enrichment) (Figure 3D).
Additionally, metabolic analysis observed that the TMGs, STATI,
ALDH2, and ECHSI, were significantly enriched in pathways such
as the TCA cycle, Glyoxylate and dicarboxylate metabolism, Pentose
phosphate pathway, and tryptophan metabolism (red means highly
enriched). This implies that the TMGs, STAT1, ALDH2, and ECHS],
could influence the TCA cycle and contribute to the reprogramming of
energy metabolism via the NF-kB signaling pathways (Figure 3E).

3.4 The differential expression of TMGs in
GC transcriptome

To corroborate our earlier findings, we examined the differential

expression of TMGs ALDH2 and ECHSI in the GC transcriptome,
utilizing datasets from GSE79973 (Figure 4A). A subsequent
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FIGURE 1

ScRNA-seq analysis of GC and normal groups. (A, B) Identification of TME cells type expression in GC including T cells, Monocytes cells, B cells,
Macrophages cells, Plasma cells, Epithelial cells, Fibroblasts cells, Mast cells and Stromal cells in GSE163558. (C) The network diagram illustrates the
interaction of key cell types in the GC. Each point represents a cell cluster, with the size of the point indicating the weight of that cluster in the
network. The thickness of each line corresponds to its strength. (D) The expression of tryptophan metabolism family genes in key cell type of GC.
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correlation analysis between these genes in normal and GC tissues
showed a robust correlation for the ECHSI1 gene in tumor tissues,
which was in stark contrast to the weak correlation observed in
normal tissues. Conversely, the ALDH2 gene exhibited the opposite
pattern (Figure 4B). We utilized the SVM-RFE technique to develop a
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machine learning algorithm model, evaluating its predictive accuracy.
The model exhibited a high degree of accuracy in predicting GC, with
an AUC of 0.950 at a minimum error value of 19 (Figures 4C, D).
Furthermore, the calibration curve provided additional validation of
the model’s precision (Figure 4E).
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significantly enriched in GC, with red indicating high expression levels.
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FIGURE 4

The SVM algorithm model was constructed for the tryptophan metabolism family genes. (A) The various expressions of tryptophan metabolism
family genes in the GC transcriptome were analyzed. Red indicates high expression, blue indicates low expression. (B) The correlation of tryptophan
metabolism family genes. The higher the correlation, the darker the color. (C) The SVM-RFE machine algorithm model was constructed in
GSE79973. (D, E) ROC and calibration curve analysis of machine algorithm model predictive value in GSE79973. *, P<0.05,**, P<0.01, ***, P<0.001.

3.5 The ALDH2 and ECHS1 genes were
promote the progression of GC

Additionally, we discovered that the expression levels of ALDH2
and ECHSI provide a more practical approach for the prognosis and
prediction of outcomes in GC. We employed the Random Forest (RF)
model to identify key genes involved in tryptophan metabolism that
may influence the progression of GC (Figure 5A). Our findings also
indicated that ALDH2 and ECHSI serve as risk factors, with their
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expression being indicative of a poor prognosis for GC patients
(Figures 5B, C). Furthermore, the ALDH2 and ECHS1 genes were
associated with the relative aggregation of inflammatory factors,
suggesting that the activation of tryptophan metabolism is linked to
the release of inflammatory mediators, including IL6, IL7, ILIO,
CXCLS8, TGFB3, TGFB2, IENG, and PDGFA proteins (Figure 5D).
Collectively, the involvement of ALDH2 and ECHSI in tryptophan
metabolism was found to promote the release of inflammatory
factors, thereby contributing to a poorer prognosis.
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FIGURE 5

Transcriptomic analysis of tryptophan metabolic family genes expressed in GC and normal groups. The positive expression of tryptophan
metabolism family genes were screened by svm algorithm. (A) RF model showed the top 10 tryptophan metabolic key genes in terms of importance.
This graph is the MeanDecreaseGini coefficient graph, with MeanDecreaseGini values on the horizontal axis. The larger the MeanDecreaseGini value,
the better the classification of categories. The vertical axis represents the expression of positive genes, arranged in descending order according to
the MeanDecreaseGini coefficient. (B, C) Decision curve analysis (DCA) and nomogram predict the key gene expression in GC patients. (D) The
correlation between the ALDH2 and ECHS1 genes and inflammation. *, P<0.05, **, P<0.01, ***, P<0.001.

3.6 ALDH2 and ECHS1 immunotherapy and
prognosis by bulk transcriptome analysis
in GC

We conducted an analysis to determine the correlation between
ALDH2 and ECHSI and the levels of various immune cells in GC.
The findings revealed that ALDH2 was associated with disrupted
immune levels, exhibiting a positive correlation with plasma cells,
CD4+T cells, and NK cells, and a negative correlation with T-cells-
CD8, Macrophages-M0, Macrophages-M1, and Macrophages-M2.
In contrast, ECHS1 did not demonstrate any significant alterations
in immune levels (Figure 6A). Furthermore, we employed the MCP
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counter to assess the immune infiltration score, which indicated
that the expression of ALDH2 and ECHSI influenced endothelial
cell and monocyte cell function. Interestingly, these results aligned
with our previous observations (Figure 6B). Subsequent analysis
using bulk transcriptome data suggested that ALDH2 and ECHS1
may act as promoters of GC progression, while STAT1 could
potentially function as a protective factor. Kaplan-Meier survival
curves revealed that patients in the high-expression group of
ECHSI1 had significantly lower overall survival rates (p<0.05)
(Figures 6E, C). Lastly, our findings indicated that the ALDH2
and ECHSI proteins were associated with a better prognosis for GC
when considering immunotherapy (ICB) (Figure 6D).
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FIGURE 6
ALDH2 and ECHS1 ICB immunotherapy restrain the progress of GC. (A, B) Immune infiltration of ALDH2 and ECHS1 gene in GC. (C) To evaluate the
key genes expression survival curves by Kaplan-Meier survival analysis. (D) Evaluation of the prognosis of ICB immunotherapy by TCGA-STAD,
GSE79973, GSE62254, GSE54129, GSE34942 and GSE5118986. (E) bulk transcriptome analysis the expression of ALDH2 and ECHS1 and prognosis by
TCGA-STAD, GSE54129 and GSE26253. *, P<0.05, **, P<0.01, ***, P<0.001.

3.7 TMGs related genes affect the release
of inflammatory cytokines in TME

Chronic inflammation has always been an important factor in
the complex TME.it stimulates vascular damage and epithelial
tissue destruction. Our data demonstrated a decrease in the
release of inflammatory mediators, including IL6, IL7, IL10, and
CXCLS8 (Figure 7).This also implies that inhibition of the expression
of TMGs-related genes,ECHS1 and ALDH2, can regulate the
expression of inflammatory factors and complex TME.
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3.8 The down-regulated expression of
ECHS1 and up-regulated expression
ALDH2 decreased cell proliferation and
migration in GC

Moreover, through the application of interference and
overexpression techniques in the transfection of GC cells, we noted
a reduction in ECHS1 expression following si-ECHSI and an
enhancement in ALDH2 expression via ad-ALDH2. Concurrently,
the metabolism of tryptophan was down-regulated as a result of
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SNU-1 cells. *, P<0.05, **, P<0.01, ***, P<0.001.

transfection with si-ECHS1 and ad-ALDH2 (Figures 8A, B).
Additionally, si-ECHS1 and ad-ALDH2 were inhibited the
proliferation and migration of GC cells (Figure 8B).

4 Discussion

This research highlights the importance of ECHS1 and ALDH2
in GC progression and immune modulation, suggesting that
targeted therapies focusing on these genes offer promising
avenues for personalized immunotherapy in GC. These findings
hold potential for improving patient survival and quality of life.
Future studies on the NF-kB signaling pathway’s role in this context
are warranted to further elucidate the mechanisms underlying
TMG-mediated immune modulation in GC.

Recent studies have indicated that ALDH2 and ECHSI, as
members of the TMGs, play a critical role in modulating immune
responses in LUAD (29). It is worth noting that is famous for its
cancer suppression characteristics of ALDH2 in LUAD and GC
often lack of expression. This downregulation has been associated
with increased cellular heterogeneity, leading to a more rapid tumor
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progression (25, 30). Furthermore, our findings reveal that the
expression of ECHSI is linked to various cancers, including
colorectal cancer (31), hepatocellular carcinoma (32, 33), and
breast cancer (34, 35), through its effects on metabolism and cell
signaling pathways. These studies collectively suggest that the
dysregulated expression of ALDH2 and ECHSI can impair
cellular functions, potentially contributing to the progression and
worsening of gastric cancer.

In our current study, we have explored the correlation between
TMGs (ALDH2 and ECHS1) and the progression of GC. Among
these metabolites, ALDH2 and ECHS1 have been identified as
particularly potent in preventing epithelial carcinogenesis. We
observed an upregulation of ECHS1 and a downregulation of
ALDH?2 in GC cases. Notably, ALDH2 and ECHS], derived from
the clustering results in specific epithelial cells, were found to be
significantly associated with molecular subtypes in tryptophan
metabolism. Further analysis of various signaling pathways and
immune-related attributes highlighted ALDH2 and ECHSI as
pivotal players in tryptophan metabolism, suggesting that the
modulation of these genes could substantially influence the
pathway’s regulation. Additionally, we developed a prognostic
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model that integrates both tryptophan metabolism and immune-
related genes. Our data revealed that the expression of ECHS1 can
lead to a poor prognosis in GC due to the impairment of CD8+ T
cell and CD4+ T cell function. Moreover, ALDH2 and ECHS1 were
found to regulate inflammation, including the expression of IL6,
IL7, IL10, and CXCL8 proteins, and enhance TME heterogeneity
through transcription factors ZNF384 and FOXFI, which is one of
the significant causes of epithelial cell carcinogenesis in GC.
Therefore, our data suggest that it can effectively predict the
prognosis and immune therapy response of GC and guide
personalized tryptophan metabolite-related targeted therapy.
Current research reports indicate that the NF-xB signaling
pathways are pivotal in regulating both physiological and
pathological processes. These pathways are implicated in
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responses to stimuli related to inflammation, immune response,
and the heterogeneity of the TME (36). Several studies have
demonstrated that the regulation of inflammation and natural
aging is mediated by the NF-xB signaling pathways. Interestingly,
our GSVA enrichment analysis revealed that the NF-xB signaling
pathways specifically regulate TMGs, including IL6, IL7, IL10, and
CXCLS proteins (37, 38). Furthermore, we also discovered that the
NF-xB signaling pathways are primarily involved in regulating and
maintaining T cell function (39-41).

Our data indicate that the downregulated expression of ALDH2
contributes to a stronger immune invasion of CD8+ T cells and
CD4+ T cells through the stimulation of NF-kB signaling pathways.
However, ECHS1 did not exhibit changes in immune levels.
Therefore, understanding the NF-xB signaling pathways is
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particularly crucial for immune therapy and maintaining T cell
function. Nevertheless, there remains significant scope for
additional research to fully comprehend the complexities
involved. The potential of immune therapy in treating various
diseases has garnered increasing interest, particularly for its
capacity to target cancerous or aberrant cells by enhancing the
body’s autoimmunity. Specifically, the study of ALDH2 and ECHS1
in immune therapy plays a crucial role in regulating GC.
Additionally, the expression of ALDH2 and ECHSI has a higher
therapeutic value and can lead to improved survival outcomes
through immune therapy. This can be achieved by utilizing
samples from the TCGA and GEO databases. However, STAT1
appears to lack this therapeutic potential. In summary, ALDH2 and
ECHSI1, which are integral to tryptophan metabolism, serve as
markers for prognostic prediction and viable targets for
immunotherapy in GC patients.

10.3389/fimmu.2024.1460308

It has been reported that chronic inflammation promotes the
development of epithelial cancer, and the expression of ECHSI and
ALDH2 enhances the release of inflammatory factors, leading to a
more robust TME. The release of inflammatory factors is likely
associated with the NF-xB pathway. These findings suggest a
dynamic cycle of chronic injury and repair, in which tryptophan
metabolism plays a role. Importantly, interventions such as si-
ECHSI and ad-ALDH?2 have been shown to significantly disrupt
this dynamic cycle.

5 Conclusion

In conclusion, our study offers a new perspective for understanding
the progression of the GC process (Figure 9). The TMGs- related genes
ALDH2 and ECHSI can contribute to TME heterogeneity and
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FIGURE 9
A global landscape of tryptophan metabolism analysis

Frontiers in Immunology

The predictive value of
ALDH2 and ECHS1

Survival prognosis

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1460308
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

inflammation through the NF-kB signaling pathway. In addition,
ALDH2 and ECHS1 may serve as novel tumor markers, providing a
foundational basis for inhibiting GC progression. This study not only
enhances our understanding of GC dynamics but also opens avenues
for developing more effective therapeutic strategies.
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