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Background: Metabolic dysfunction-associated steatohepatitis (MASH) is a

highly prevalent liver disease globally, with a significant risk of progressing to

cirrhosis and even liver cancer. Efferocytosis, a process implicated in a broad

spectrum of chronic inflammatory disorders, has been reported to be associated

with the pathogenesis of MASH; however, its precise role remains obscure. Thus,

we aimed to identify and validate efferocytosis linked signatures for detection

of MASH.

Methods: We retrieved gene expression patterns of MASH from the GEO

database and then focused on assessing the differential expression of

efferocytosis-related genes (EFRGs) between MASH and control groups. This

analysis was followed by a series of in-depth investigations, including protein–

protein interaction (PPI), correlation analysis, and functional enrichment analysis,

to uncover the molecular interactions and pathways at play. To screen for

biomarkers for diagnosis, we applied machine learning algorithm to identify

hub genes and constructed a clinical predictive model. Additionally, we

conducted immune infiltration and single-cell transcriptome analyses in both

MASH and control samples, providing insights into the immune cell landscape

and cellular heterogeneity in these conditions.

Results: This research pinpointed 39 genes exhibiting a robust correlation with

efferocytosis in MASH. Among these, five potential diagnostic biomarkers—

TREM2, TIMD4, STAB1, C1QC, and DYNLT1—were screened using two distinct

machine learning models. Subsequent external validation and animal

experimentation validated the upregulation of TREM2 and downregulation of

TIMD4 in MASH samples. Notably, both TREM2 and TIMD4 demonstrated area

under the curve (AUC) values exceeding 0.9, underscoring their significant

potential in facilitating the diagnosis of MASH.
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Conclusion: Our study comprehensively elucidated the relationship between

MASH and efferocytosis, constructing a favorable diagnostic model.

Furthermore, we identified potential therapeutic targets for MASH treatment

and offered novel insights into unraveling the underlying mechanisms of

this disease.
KEYWORDS
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Introduction

Metabolic dysfunction-associated fatty liver disease (MASLD),

formerly termed as non-alcoholic fatty liver disease (NAFLD), is the

most prevalent chronic liver ailment, with a global incidence rate of

approximately 30% (1, 2). MASLD encompasses two main subtypes:

simple fat infiltration, commonly known as metabolic dysfunction-

associated steatotic liver (MASL), and metabolic dysfunction-

associated steatohepatitis (MASH) (3). The latter subtype, MASH,

replaces the preceding term non-alcoholic steatohepatitis (NASH),

representing an inflammatory variant of MASLD. The prominent

pathological features of MASH are excessive accumulation of fat in

hepatocytes, accompanied with steatosis, ballooning, and lobular

inflammation, with or without perisinusoidal fibrosis (4, 5).

Although simple steatosis poses a relatively low risk of developing

cirrhosis, its transition to MASH significantly elevates this risk (6, 7).

The clinical symptoms of MASH patients are often subtle, and liver

biopsy serves as the primary diagnostic criterion. However, liver

aspiration being an invasive procedure, requiring expert medical

personnel, renders it unsuitable for widespread screening.

Consequently, the identification of novel and effective MASH

biomarkers holds paramount importance for the prompt diagnosis

and treatment of this condition.

Efferocytosis, representing the ultimate mechanism for

eliminating dead cells, is pivotal in maintaining bodily

homeostasis under physiological circumstances and fostering

tissue restoration in pathological states (8). The phagocytes

involved in this process can be broadly classified into two groups:

professional phagocytes, such as macrophages and dendritic cells

(9), and non-professional phagocytes, including vascular smooth

muscle cells (VSMCs) and endothelial cells (ECs), etc., which

exhibit efferocytic capabilities under specific conditions (10, 11).

Current research categorizes efferocytosis into three distinct phases:

‘find me’, ‘eat me’ and ‘digest me’ (12). In the initial ‘find me’ phase,

apoptotic cel ls release signaling molecules l ike ATP,

lysophosphatidylcholine (LPC), and sphingosine 1-phosphate

(S1P) to notify and attract phagocytes (13–16). Subsequently, in

the ‘eat me’ phase, phagocytes distinguish living cells from dying

cells by recognizing phosphatidylserine (PS) exposed on the surface

of apoptotic cells (17, 18). The PS-recognizing receptors on
02
phagocyte membranes can be grouped into two categories. The

first category consists of receptors that directly bind to PS, such as

the brain-specific angiogenesis inhibitor 1 (BAI1) (19), Stabilin1/2

(20, 21), and T cell immunoglobulin mucin receptors TIM1/4 (22,

23). The second category comprises receptors that require bridge

molecules to indirectly recognize PS, including growth arrest-

specific protein 6 (GAS6)/protein S for the TAM receptor family

(24) and milk fat globule-EGF factor 8 (MFG-E8) for the avb3/5
integrins (25, 26). Finally, in the ‘digest me’ phase, the phagocytes

degrade the internalized apoptotic cell and then secrete cytokines

like IL-10 and transforming growth factor-b (TGFb) to exert anti-

inflammatory effects and promote damaged tissue repair (27, 28).

Over the past decades, research has illuminated the significance

of efferocytosis in multiple diseases, including cardiovascular

diseases, metabolic disorders, and cancer, etc. The malfunction of

efferocytosis often exacerbates disease progression, whereas

enhancing efferocytosis can make improvements. However, our

comprehension of efferocytosis’s role in MASH remains limited.

Further exploration of efferocytosis in MASH could potentially

uncover novel diagnostic biomarkers and therapeutic strategies.

In this study, differential gene analysis of liver transcriptome data

from 16 MASH patients and 14 healthy controls in the GSE126848

dataset of the GEO database revealed 39 genes related to MASH and

efferocytosis. Among these, five hub genes—TREM2, TIMD4, STAB1,

C1QC, and DYNLT1—were identified using two robust machine

learning methods. Subsequent immune infiltration and single-cell

transcriptome analyses confirmed the altered expression level of these

hub genes in immune cells. To strengthen our findings, validation

was performed using external datasets (GSE246221) as well as animal

experiment. Our research is anticipated to offer novel targets for the

diagnosis and therapeutic intervention of MASH.
Methods and materials

Data preparation

By searching the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/), we identified GSE126848 as

our primary test dataset, featuring liver transcriptome profiles of 14
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healthy controls and 16 MASH patients (29). For validation, we

selected GSE246221, which comprises liver microarray data from 4

healthy controls and 28 MASLD patients (30). Based on the

MASLD activity score, 22 samples were diagnosed with MASH

(31). Therefore, subsequent gene expression validation and

diagnostic capability verification will utilize 4 healthy controls

and 22 MASH samples from this dataset. Additionally, we

incorporated GSE128334, a single-cell RNA sequencing (scRNA-

seq) dataset fromMASH mice model, to assess hub gene expression

specifically in immune cells (32). To gather efferocytosis related

genes (EFRGs), we queried the Gene Cards database (https://

www.genecards.org/) and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database (https://www.genome.jp/kegg/),

focusing on the keyword “efferocytosis”. This thorough search

yielded a total of 272 EFRGs, as detailed in Supplementary Table S1.
Differentially expressed genes analysis

First, the raw counts of GSE126848 were normalized using the

Trimmed Mean of M-values (TMM) method from edgeR package

version 4.0.16 within the R software version 4.3.3. Subsequently, the

data distribution was examined, and a PCA cluster plot was

generated to visualize the patterns. Second, to identify

differentially expressed genes (DEGs) between MASH patients

and healthy controls in the training dataset, we employed the

DESeq2 package version 1.42.1. Twenty percent of the genes with

very low expression levels were filtered out, and subsequently, those

with p-adj < 0.05 and |log2 FC| ≥ 1 were identified as DEGs. To

visualize the DEGs, volcano plots were generated. Following the

intersection of DEGs with the EFRGs, the differentially expressed

EFRGs in MASH was determined. Finally, the Venn Diagram

package version 1.7.3 and ggplot2 package version 3.5.0 were

utilized to visualize the results in a Venn diagram and heat map.
Functional enrichment analysis

After identifying differentially expressed EFRGs, we conducted

a series of enrichment analyses utilizing the clusterProfiler package,

version 4.10.1. This process encompassed Gene Ontology (GO)

enrichment analysis, specifically targeting Biological Process (BP)

and Molecular Function (MF) categories. Additionally, we

performed Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis and Disease Ontology (DO)

enrichment analysis. Finally, we filtered and visualized the top-

ranking results with a p-value < 0.05.
Machine learning

As artificial intelligence technology advances, it is increasingly

applied to screening novel diagnostic biomarker for disease. In this

research, we employed two machine learning methods, Least

Absolute Shrinkage and Selection Operator (LASSO) and Support

Vector Machine Recursive Feature Elimination (SVM-RFE), to
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further refine the selection of hub genes for the diagnosis of MASH

(33, 34). Based on the previously identified 39 EFRGs related to

MASH, 7 and 13 hub genes were filtered out by LASSO and SVM-

RFE respectively, ultimately yielding 5 hub genes through the

intersection of the two lists. For LAASO regression, the model was

specified with the binomial parameter. The optimal lambda value was

chosen based on lambda.min, and the model was validated using 10-

fold cross-validation. For SVM-RFE, five-fold cross-validation was

utilized for model evaluation. For more detailed information on the

machine learning approach, please refer to the GitHub repository:

https://github.com/chenghui3595/MASH-Efferocytosis-ML.
Construction of ROC and
nomogram model

To assess the diagnostic value of hub genes, we constructed the

Receiver Operating Characteristic (ROC) curves, which were conducted

by using the “pROC” package version 1.18.5. ROC curves demonstrated

the Area Under the Curve (AUC), along with specificity and sensitivity.

To reinforce the validity of marker genes, an external dataset,

GSE246221, was employed to verify the diagnostic capability.

Furthermore, a nomogram model was devised utilizing the “rms”

package version 6.8-0 for predicting the onset of MASH. In the

nomogram, each hub gene is assigned a distinct score, and the “total

points” are derived by summing the scores of all contributing predictors.
Individual gene GSEA

The correlation between the five hub genes and other genes was

calculated individually, and a correlation gene set was identified

based on the strength of these correlations. Subsequently, a gene set

enrichment analysis (GSEA) was conducted utilizing the

clusterProfiler package v4.10.1. To gain further insights, we

compared the KEGG pathways between MASH patients and

healthy controls, ultimately visualizing the top five upregulated

and downregulated pathways, respectively.
Assessment of the immune infiltration

CIBERSORT algorithm can assess the relative abundance of 22

distinct immune cell types in both MASH and healthy control

groups, solely based on gene expression profiles (35). This process

was carried out by “CIBERSORT” package version 0.1.0. The

proportion of the immune cell infiltration between MASH and

the healthy control groups was visualized by boxplot. The

correlation between the hub genes and significant infiltrated

immune cell was investigated using Spearman’s correlation analysis.
Analysis of single-cell transcriptome data

The scRNA-seq dataset GSE128334 of mouse liver was

downloaded from the GEO database, encompassing two MASH
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samples and two control samples (32). We initially created Seurat

objects by systematically importing the single-cell data. Following

this, quality control is executed, primarily focusing on the count of

genes expressed per cell and the proportion of mitochondrial genes.

Subsequently, we integrated the four Seurat objects and remove the

batch effect at the same time. Then, this prepared data utilized PCA

to reduce the feature dimensions and t-Distributed Stochastic

Neighbor Embedding (t-SNE) to identify distinct cellular clusters.

Finally, to characterize these clusters, we identified marker genes

and annotated each cluster. The “Seurat” package version 5.1.0 was

employed throughout this process.
PPI and TF-miRNA-mRNA regulatory
network construction

Protein–protein interaction (PPI) network of 39 differentially

expressed EFRGs was generated using the STRING database

(https://cn.string-db.org/). For this PPI analysis, a medium

confidence threshold of 0.25 was set. Additionally, a regulatory

network involving Transcription Factor (TF), microRNA (miRNA),

and mRNA was constructed on the NetworkAnalyst platform

(https://www.networkanalyst.ca/NetworkAnalyst/). In this

research, Transcription factors were derived from the ChEA

database, and miRNA-gene interaction data were collected from

the TarBase v8.0 database. Both results were visualized by

Cytoscape version 3.10.2.
MASH mice model construction

In this study, we employed male C57BL/6J mice aged 6 to 8

weeks and induced the MASH model by subjecting them to a 28-

week regimen of a high-fat diet (HFD) coupled with intraperitoneal

injections of streptozotocin (STZ). Specifically, the mice received

STZ injections at a dose of 40 mg/kg for five consecutive days. The

HFD, sourced from Research Diets, Inc, under the product code

D12450B. The caloric content of the diet was designed as follows:

20% from protein, 20% from carbohydrates, and 60% from fats.
RNA extraction and quantitative real-
time PCR

Total RNA was extracted from MASH and control mouse

tissues utilizing the AG RNAex Pro Reagent (AG21101, China).

This RNA was then converted into cDNA using the Evo M-MLV

Reverse Transcription Kit (AG11706, China). For quantitative

analysis of gene expression, quantitative real-time PCR (qRT-

PCR) was conducted on the CFX Connect system (Bio-Rad, USA)

with SYBR® Green Supermix (Bio-Rad, USA). The expression

levels of hub genes were quantified using the 2^-DDCT method,

with Gapdh serving as a stable internal control for normalization.

The specific primers employed in these qRT-PCR assays are

detailed in Supplementary Table S2.
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Biochemical detection of serum

During the last week of the study, blood samples were collected

from the tail vein of mice after a 4-hour fast to quantify serum

metabolites. These samples were centrifuged at 3000g for 15

minutes at 4°C to isolate the serum, which was subsequently

stored at -80°C. The levels of serum ALT and AST were

measured using commercial assay kits (Elabscience, China) in

accordance with the manufacturers’ protocols.
Histological analysis

For histological analysis, mouse liver tissue was first fixed in 4%

paraformaldehyde (P0099, Beyotime, China) and then embedded in

paraffin. The tissues were subsequently sectioned, and histological

changes were assessed using hematoxylin and eosin (H&E) staining

(Solarbio, China) as well as Oil Red O staining (C1057S,

Beyotime, China).
Glucose tolerance test and insulin
tolerance test

The oral glucose tolerance test (OGTT) and insulin tolerance

test (ITT) were conducted separately. For the OGTT, mice were

fasted overnight before receiving a D-glucose solution at a dosage of

1 g/kg body weight via oral gavage. Blood samples were collected

from the tail vein at 0, 15, 30, 60, 90, and 120 minutes post-gavage to

assess glucose clearance. For the ITT, mice were fasted for 6 hours

and then given an intraperitoneal injection of insulin at a dosage of

0.75 U/kg. Blood samples were collected at 0, 15, 30, 60, 90, and 120

minutes post-injection to evaluate insulin sensitivity. Blood glucose

levels were promptly measured using a glucometer (ACCU-CHEK

Guide Me, China).
Western blotting

Liver tissues from control and MASH model mice were finely

minced and processed for protein extraction using the RIPA lysis

buffer. Polyacrylamide gels (10%) were prepared with the Omni-

Easy™ One-step Color PAGE Gel Rapid Preparation Kit (Cat No:

PG210-214). The 10-180 kDa Prestained Protein Marker from

Thermo (Cat No: 26616) was used for molecular weight

estimation. Electrophoresis and membrane transfer were

performed using the BIO-RAD PowerPac Basic Power Supply.

Blocking was carried out with Beyotime Quick Block™ Western

(Cat No: P0252). Primary antibodies were diluted as follows: b-
tubulin (1:5000, Proteintech, Cat No: 10094-1-AP), TREM2

(1:1000, Abcam, Cat No: ab305103), and TIMD4 (1:1000, Affinity

Biosciences, Cat No: DF13636). Grayscale values of all bands were

quantified using ImageJ, and relative protein expression levels were

normalized to b-tubulin. Statistical analysis and graphical

representation were performed using GraphPad Prism 9.
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Immunohistochemistry

For immunohistochemistry (IHC), paraffin-embedded sections

were dewaxed in xylene, rehydrated through an alcohol gradient, and

subjected to antigen retrieval using EDTA solution in a microwave. To

block nonspecific binding, the sections were incubated with normal

goat serum for 90 minutes. Primary antibodies against TREM2

(Abcam, ab305103, 1:200) and TIMD4 (Affinity Biosciences,

DF13636, 1:200) were applied and incubated overnight at 4°C. The

next day, sections were re-warmed, treated with 3% hydrogen peroxide

for 8 minutes, and rinsed with PBS. After incubation with secondary

antibodies (1:200) for 1 hour at room temperature, the sections were

stained using diaminobenzidine (DAB, Sigma, USA) and

counterstained with hematoxylin. The stained slides were visualized

and captured using a 3D HISTECH digital slide scanner.
Results

Identification of differentially
expressed EFRGs

The data analysis process of this study is outlined in Figure 1. As

Figure 2A demonstrates, a principal component analysis (PCA)

revealed significant differences between the MASH and control

groups. Utilizing the DESeq2 package, we identified a total of 1594

DEGs, with 1027 genes exhibiting upregulation and 567 genes

showing downregulation. The findings of this analysis are visually
Frontiers in Immunology 05
presented in a volcano plot, highlighting the top eight genes with the

most significant fold changes (Figure 2B). Subsequently, we

intersected the list of DEGs with EFRGs and identified 39

differentially expressed EFRGs (Figure 2C). Finally, we created

heatmaps to demonstrate their expression level in MASH patients

and healthy controls (Figure 2D), which shows oversharp distinction.
Functional enrichment analysis of 39
differentially expressed EFRGs

To gain a profound comprehension of the biological implications

of the 39 differentially expressed EFRGs, we conducted a suite of

functional enrichment analyses leveraging Gene Ontology (GO),

Disease Ontology (DO), and Kyoto Encyclopedia of Genes and

Genomes (KEGG). The GO enrichment analysis revealed that,

within the biological process (BP) categories, phagocytosis,

cholesterol efflux, and apoptotic cell clearance pathways were

downregulated, whereas the pathway related to positive regulation of

cytokine production was upregulated (Figure 3A). Among the

molecular function (MF) categories, activities such as low-density

lipoprotein particle receptor binding, apolipoprotein binding, and

scavenger receptor activity were downregulated, whereas S100

protein binding was upregulated (Figure 3B). The DO enrichment

analysis highlighted a significant enrichment in atherosclerosis and

nephritis (Figure 3C). Furthermore, the KEGG pathway enrichment

analysis revealed a significant enrichment in efferocytosis, complement

and coagulation cascades, neutrophil extracellular trap formation,
FIGURE 1

Flowchart illustrating the present study design. 5 hub genes (TREM2, TIMD4, STAB1, C1QC and DYNLT1) were identified by two machine
learning algorithms.
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osteoclast differentiation and cholesterol metabolism pathways

(Figures 3D, E).
Identification of hub genes using
machine learning

To further refine the selection of diagnostic genes capable of

distinguishing MASH patients from healthy controls, we employed

two machine learning algorithms: LASSO regression and SVM-

RFE, based on the previously identified 39 EFRGs. The SVM-RFE

algorithm identified 13 candidate genes (Figures 4A, B), while the

LASSO regression algorithm narrowed down the list to an

additional set of 7 genes (Figures 4C, D). By intersecting the

results of both algorithms, we identified a set of 5 shared

biomarkers: TREM2, TIMD4, C1QC, STAB1, and DYNLT1

(Figure 4E). These genes represent promising diagnostic targets

for further investigation.
GSEA of hub genes

Utilizing the KEGG pathways as a reference, we conducted

individual gene GSEA to decipher the dominant signaling pathways

relevant to our hub genes. Our GSEA of KEGG pathways revealed
Frontiers in Immunology 06
that low expression levels of the five key genes are implicated

in pathways such as Oxidative Phosphorylation, Proteasome,

Protein Export, and Ribosome. Conversely, high expression of

these genes is associated with Amino Acid Metabolism

(Figures 5A–E). Furthermore, we observed that TIMD4

and DYNLT1 exhibit connections with the Complement and

Coagulation Cascades pathway (Figures 5B, E), while TIMD4,

STAB1, and C1QC are linked to the Olfactory Transduction

pathway (Figures 5B–D).
Construction of PPI network and TF-
miRNA-mRNA regulatory network

Figure 6A demonstrated the PPI network of 39 differentially

expressed EFRGs. From the results of the PPI analysis, we observed

that C1QC, TIMD4, TREM2, and STAB1 are closely associated with

other differentially expressed EFRGs, further confirming their

potential as core genes influencing MASH. Additionally, the

STRING database revealed that these 39 differentially expressed

genes are significantly enriched in the complement and coagulation

cascades pathway, which aligned with our previous functional

enrichment results. This suggested that EFRGs may regulate

MASH by affecting this pathway. Utilizing the Network Analyst

platform, we further predicted potential TFs and miRNAs for five
FIGURE 2

Identification of differentially expressed EFRGs. (A) PCA showed significant differences between the MASH and control liver samples. (B) Volcano plot
showed the DEGs between MASH and control groups, and the top eight genes with the most significant fold changes was pointed. (C) Venn diagram
showed the intersection of genes between DEGs and EFRGs. (D) Heatmaps showed the 39 intersected EFRGs. DEGs, differential expression genes;
EFRGs, efferocytosis-related genes.
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hub genes, leveraging the ChEA database and TarBase v8.0

respectively. Figure 6B depicted potential transcription factors

and miRNAs that modulate the expression of these hub genes. By

ranking the degrees of connectivity, we identified a transcription

factor, MYC, and two miRNAs, miR-34a-5p and miR-27a-3p,

which play crucial roles in regulating the expression of the core

genes. Overall, the roles of these regulatory factors and core genes in

MASH warrant further investigation.
Frontiers in Immunology 07
Immune infiltration analysis and scRNA-seq
dataset validation

MASH is an inflammatory disease marked by the penetration of

immune cells into plaques and hepatic lobule. Efferocytosis has also

been reported to play a regulatory role in the modulation of

inflammation. To elucidate whether efferocytosis contributes to

MASH progression by modulating immune cell infiltration, we
FIGURE 3

Functional enrichment analysis of differentially expressed EFRGs. (A) Butterfly diagram of the GO enrichment analysis of 39 up- and down-regulated
EFRGs, Biological process (BP). (B) Butterfly diagram of the GO enrichment analysis of 39 up- and down-regulated EFRGs, Molecular function (MF).
(C) Bubble diagrams of the DO enrichment analysis of 39 differentially expressed EFRGs. (D) The KEGG enrichment analysis plot displays the
signaling pathways most closely related to the 39 intersecting EFRGs. (E) The KEGG enrichment analysis circular plot depicts a network of gene-
pathway relationships.
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conducted a CIBERSORT analysis. This algorithm allowed us to

assess the disparities in the immune microenvironment between

MASH patients and healthy controls. As depicted in Figure 7A, the

proportions of 22 distinct immune cell types were analyzed,

revealing significant differences in the expression of seven

immune cell subsets. Specifically, we observed a higher abundance

of resting CD4 memory T cells, activated NK cells, resting Dendritic

cells, Macrophages M0, and Macrophages M1 in MASH patients.

Conversely, resting NK cells and M2 macrophages were less

prevalent. Subsequently, we conducted a correlation analysis of

hub genes based on the infiltrating immune cell types (Figure 7B).

This analysis revealed a positive correlation between TREM2 and

DYNLT1 in M0 macrophages, whereas a negative correlation was

observed in M2 macrophages. Beyond that, TIMD4, STAB1, and

C1QC exhibited a positive correlation in M2 macrophages and a

negative correlation in M1 macrophages.

To gain further insights into the distribution of immune cells in

the livers of MASH and control, we performed a scRNA-Seq

analysis on the livers of MASH mice model. As illustrated in

Figure 7C, the proportion of Kupffer cells, representing M2
Frontiers in Immunology 08
macrophages, was reduced in the livers of MASH mice, while

there was an increased infiltration of the mononuclear

macrophage derived from the blood. These findings align with

our CIBERSORT immune infiltration analysis. Figure 7D

underscored the elevated expression levels of TREM2 in various

immune cells, while the expression of TIMD4 is reduced.
Validation of hub genes diagnostic value
and expression

The diagnostic value of hub genes in identifying MASH was

assessed using the GSE246221 dataset, with ROC curve analysis.

Notably, TREM2 (AUC: 0.955) and TIMD4 (AUC: 0.966) emerged

as potent biomarkers, each demonstrating significant diagnostic

value for MASH (Figure 8A). To enhance the predictive prowess of

these hub genes, we then constructed a comprehensive nomogram

model tailored specifically for MASH patients. This model

integrates TREM2, TIMD4, STAB1, C1QC, and DYNLT1,

assigning a unique score to each biomarker (Figure 8B). By
FIGURE 4

Identification of hub genes using machine learning. (A) The accuracy and (B) the error of the feature selection for the SVM-RFE algorithm. 13 genes
were pinpointed. (C, D) 7 genes were identified through the LASSO regression algorithm. (E) The Venn diagram showed the overlap of hub genes
between SVM-RFE and LASSO algorithms.
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summing these scores, the model enables the prediction of MASH

risk, with TREM2, C1QC, and DYNLT1 exhibiting particularly

satisfactory diagnostic performance. In a complementary analysis

utilizing the GSE126848 dataset, we observed TIMD4, STAB1, and

C1QC expression level were downregulated in MASH patients,

whereas TREM2 and DYNLT1 exhibited upregulation

(Figure 8C). These findings were subsequently corroborated in

the GSE246221 dataset (Figure 8D).

However, it is important to acknowledge certain limitations in

using the intersection of two machine learning methods to identify

hub genes. To address this, we supplemented our analysis by

validating the genes selected by each method individually. This

includes SLC16A1 and ABCG1 identified by LASSO, as well as

C1QB, CD5L, AXL, DUSP8, CD24, PLG, NRP2, and STAB2 selected

by SVM-RFE. The results of this analysis are presented in

Supplementary Figure S1 of the Supplementary Data. Notably,

supplementary analysis revealed significant differences in CD5L,

DUSP8, CD24, and SLC16A1 expression between MASH and
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control samples, with ROC analysis confirming their strong

predictive potential.
Validation in animal experiments

H&E and Oil Red O staining revealed significant lipid

accumulation in the liver tissues of the MASH group, marked by

the presence of numerous fat droplets (Figure 9A). The

measurements of ALT, AST and fasting blood glucose levels

showed a notable elevation in the MASH group compared to the

control group (Figures 9B–D). Furthermore, the body weight,

OGTT, and ITT results indicated that the MASH group had

higher values than the control group (Supplementary Figures

S2A–E). Collectively, these findings suggest the successful

establishment of the MASH model.

To explore the role of efferocytosis-related genes in MASH, we

evaluated the mRNA and protein levels of key hub genes using RT-
FIGURE 5

GSEA analysis of five marker genes. The KEGG pathway enrichment analysis of (A) TREM2, (B) TIMD4, (C) STAB1, (D) C1QC and (E) DYNLT1 were
conducted by GSEA enrichment method, and the five pathways with the highest and lowest enrichment scores are visualized according to the
arrangement of enrichment scores.
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qPCR, western blotting, and IHC. The analysis revealed a significant

alteration in the expression of Trem2 and Timd4 in the MASH

group compared to the control group (Figures 9E–J). Conversely,

no significant differences were observed in C1qc, Stab1, and Dynlt1

(Supplementary Figures S2F–H). These results underscore the

critical role of TREM2 and TIMD4 in MASH development,

reinforcing their regulatory impact on disease progression.
Discussion

Given the escalating prevalence of obesity and metabolic

syndrome, MASLD has emerged as a prevalent chronic liver

condition globally (36). The onset of MASH, coupled with the

surge in patients progressing to cirrhosis and end-stage liver disease

necessitating liver transplants, has imposed a substantial financial

strain on society (5). Thus, there is a pressing need to discover novel
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and reliable biomarkers for the diagnosis and treatment of MASH.

Efferocytosis, the physiological process whereby phagocytes engulf

and eliminate apoptotic cells, has garnered significant research

attention due to its role in cardiovascular diseases, ischemic

stroke, and cancer (10, 12, 37, 38). However, the mechanisms

underlying efferocytosis in MASH pathogenesis and its

therapeutic strategies as targets remain largely unexplored.

Therefore, our study endeavored to investigate the diagnostic and

prognostic values of EFRGs in MASH pathogenesis, identify

potential hub genes, and explore latent regulatory targets.

In this study, we thoroughly investigated the differential

expression patterns of EFRGs between MASH and control liver

samples from the GEO database. Our analysis identified five EFRGs

—TREM2, TIMD4, STAB1, C1QC, and DYNLT1—as being

significantly associated with MASH. The distinct differences in

the expression of these genes between MASH patients and

healthy controls suggested an important role for EFRGs in MASH
FIGURE 6

PPI and TF-miRNA-mRNA regulatory network. (A) 39 intersected genes of MASH and efferocytosis were explored within the PPI network. (B) TF-
miRNA-mRNA regulatory network of the five hub genes.
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development and progression. However, upon validating these

findings with external datasets and animal models, only TREM2

and TIMD4 showed significant differences. This indicated the

limitations of relying solely on the intersection of two machine

learning methods. To address this, we conducted a supplementary
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analysis on genes identified by each machine learning method

individually. The results revealed that CD5L, DUSP8, CD24, and

SLC16A1 were significantly different between MASH and control

samples and demonstrated strong predictive power for MASH

occurrence (Supplementary Figure S1).
FIGURE 7

Immune Infiltration and scRNA-Seq analysis between MASH and control groups. (A) Boxplots showed immune infiltration differences between MASH
and control samples. 7/22 immune cells significantly differ in MASH and controls. (B) The relationship between varied immune cell infiltration and
five marker genes is depicted, with red indicating positive correlation and blue indicating negative correlation. (C) t-SNE plot showed the 10
identified cell clusters of the scRNA-Seq dataset GSE128334. (D) Violin plot demonstrated the five hub genes expression level in different cell clusters
between MASH and control groups. ns indicates not significant, * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001.
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The BP analysis of GO enrichment demonstrated that

efferocytosis is impaired in MASH, as pathways related to

phagocytosis, cholesterol efflux, and apoptotic cell clearance are

downregulated (Figure 3A) (43). This impairment likely led to the

accumulation of apoptotic cells and lipids in the liver, exacerbating

inflammation and fibrosis—key features of MASH (44). Besides, the

upregulation of pathways involved in the positive regulation of

cytokine production indicated a pro-inflammatory environment,

consistent with the chronic inflammation observed in MASH

patients (Figure 3A) (45). The MF analysis further supported this

(Figure 3B), revealing reduced activities in low-density lipoprotein

particle receptor binding, apolipoprotein binding, and scavenger

receptor activity, all crucial for maintaining lipid homeostasis.

Notably, the upregulation of S100 protein binding, often linked to

inflammation and immune responses, underscored the ongoing

inflammatory processes in MASH (46). DO enrichment analysis

connected the differentially expressed genes to diseases like

atherosclerosis (Figure 3C), which are associated with metabolic

dysfunction and chronic inflammation (47). This suggested that

impaired efferocytosis in MASH may also contribute to systemic

inflammatory diseases. Supporting this, numerous cohort studies

have shown that MASH patients face a significantly increased risk

of cardiovascular morbidity and mortality (48, 49). The KEGG
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pathway enrichment analysis highlighted the significant involvement

of pathways related to efferocytosis, complement and coagulation

cascades, neutrophil extracellular trap formation, osteoclast

differentiation, and cholesterol metabolism (Figures 3D, E). These

pathways are crucial in local and systemic inflammation, tissue

remodeling, and lipid metabolism, emphasizing the multifaceted

role of EFRGs in MASH progression. Specifically, our findings for

the complement and coagulation cascades pathway are supported by

both ssGSEA and PPI analysis, aligning with Sander S.’s research (50),

which linked an activated complement system to MASLD. However,

the exact mechanisms remain unclear. Molecules involved in

efferocytosis, such as TIMD4 and C1QC, may contribute to this

process, but further investigation is needed.

In medical research, machine learning is increasingly utilized

for accurate diagnosis, prognosis, and treatment forecasting (51,

52). In our study, we employed two machine learning models—

LASSO and SVM-REE—to identify genes crucial for MASH

diagnosis, focusing on the expression patterns of 39 differentially

expressed EFRGs. By intersecting the results of both models, we

identified five hub genes: TREM2, TIMD4, C1QC, STAB1, and

DYNLT1 (Figure 4). However, in subsequent validations using

external datasets and animal experiments, only TREM2 and

TIMD4 were consistently validated, pointing to potential
FIGURE 8

Validation of marker gene expression. (A) The ROC results of five marker genes in GSE246221. The AUC value of TREM2, TIMD4, STAB1, C1QC and
DYNLT1 was 0.955, 0.966, 0.489, 0.568, 0,716 respectively. (B) Nomogram for the diagnosis of MASH based on the hub genes. (C) Boxplots
indicating the five differentially expressed EFRGs between MASH and control samples in GSE126848. (D) Boxplots indicating the five differentially
expressed EFRGs between MASH and control samples in GSE246221.
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limitations in using the intersection of two machine learning

methods to identify core genes. To address this, we separately

validated genes identified by each model individually. Beyond

TREM2 and TIMD4, CD5L, DUSP8, CD24, and SLC16A1 also

showed significant differential expression in MASH. Additionally,

ROC analysis showed AUC values above 0.85 for all six genes,

indicating strong predictive value for MASH (Figure 8,

Supplementary Figure S1). Therefore, the strategic application of

machine learning algorithms can significantly aid in identifying key

targets for disease intervention.

TREM2 is an activating receptor highly expressed in tissue

macrophages, responsible for detecting apoptotic cells by

recognizing exposed phospholipids (39). Previous studies have

shown elevated TREM2 expression in the livers of MASH

patients, along with increased circulating levels of soluble TREM2

(53, 54). Our findings further confirmed this at both the

transcriptional and protein levels (Figures 9F–H, J). Additionally,
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our GSEA results revealed TREM2’s involvement in pathways

related to the proteasome, carbohydrate digestion and absorption,

and particularly amino acid metabolism (Figure 5A). While

TREM2’s role in glucose and lipid metabolism and its impact on

disease onset and progression are well-documented (40, 55), its

connection to amino acid metabolism remains unclear. Given the

interplay between different metabolic pathways, we hypothesize

that TREM2 may also influence amino acid metabolism.

Significantly, Y Eugene Chen’s study reported that a synthesized

tripeptide, DT-109 (Gly-Gly-Leu), alleviated MASH in primates,

highlighting a potential link between amino acid metabolism and

MASH (56). Considering our findings, further research into

TREM2’s role in amino acid metabolism and its association with

MASH progression is warranted. TIMD4 is a phosphatidylserine

receptor with a selective expression pattern on antigen-presenting

cells, suggesting its involvement in immune-mediated disorders.

Research has shown that TIMD4 knockout mice exhibit exacerbated
FIGURE 9

Construction of MASH mice model and validation of hub genes. (A) The HE and Oil Red staining in Control and MASH mice. Scale bar, 100 mm. (B, C)
serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) level mice model. (D) Blood glucose levels after 6 h of fasting. (E, F) Relative
mRNA levels of Trem2 and Timd4 in MASH and Control mice, standardized by Gapdh. (G) Immunohistochemical staining of TREM2 and TIMD4 in MASH
and Control mice. (H-J) Relative protein level of TREM2 and TIMD4 in MASH and Control mice, standardized by b-tubulin. ** indicates P<0.01, ***
indicates P<0.001, **** indicates P<0.0001.
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liver inflammation and hepatic steatosis compared to wild-type

counterparts, although the exact mechanism remains unclear. In

our study, TIMD4 expression was found to be reduced in MASH

liver samples compared to control liver tissues, at both the

transcriptional and protein levels. Additionally, our ssGSEA

results suggested that TIMD4 is involved in regulating oxidative

phosphorylation, as well as complement and coagulation cascades

(Figure 5B). This finding is somewhat consistent with the study by

Weiping Zou et al. (57), who revealed that TIMD4+ tumor-

associated macrophages (TAMs) exhibit high oxidative

phosphorylation. Oxidative phosphorylation is often associated

with anti-inflammatory metabolic pathways (41). Previous studies

have also shown that TIMD4 can inhibit the activation of NLRP3

inflammasomes and the release of IL-1b, demonstrating anti-

inflammatory effects (58, 59). Based on our research, we

speculated that the downregulation of TIMD4 in patients with

MASH may lead to increased inflammation due to disturbances

in oxidative phosphorylation. Furthermore, the role of TIMD4 and

the complement pathway in MASH warrants further investigation.

MASH is a complex disease with a multifactorial etiology, and

recent studies suggest that the immune system plays a pivotal role in

its pathogenesis (42). In our study, we employed the CIBERSORT

algorithm and scRNA-Seq technology to analyze immune cell

infiltration in MASH. We observed an increased proportion of

CD4 memory T cells, dendritic cells, and M1 macrophages in

MASH liver samples compared to controls (Figure 7A). In

contrast, the proportions of resting NK cells and M2

macrophages were lower in MASH compared to controls.

Macrophages, a heterogeneous population encompassing resting

M0, classically activated M1, and alternatively activated M2

phenotypes, are known to accumulate in the liver during MASH

(60). The increase in pro-inflammatory M1 macrophages and

decrease in anti-inflammatory M2 macrophages aligned with the

chronic inflammatory status reported in MASH (45). Our results

also revealed a strong correlation between TREM2 and various

immune cell types, such as macrophages and dendritic cells

(Figure 7B), consistent with previous studies (39). These findings

underscored the critical role of the immune system in MASH

development and suggest that TREM2 plays a pivotal role in

shaping the immune microenvironment in MASH patients.

Additionally, we found significant correlations between TIMD4

and C1QC with M2 macrophages, which are involved in anti-

inflammatory responses (61). This suggests that TIMD4 and

C1QC may be crucial in resolving inflammation in MASH.

Moreover, our scRNA-Seq analysis revealed distinct expression

profiles of five hub genes within specific immune cell subsets,

such as Kupffer cells, NK cells, and neutrophils (Figures 7C, D).

These findings suggested that these genes may play critical

regulatory roles in hepatic pathological pathways, particularly in

orchestrating inflammation and liver fibrosis through the

modulation of efferocytosis.

Since we have identified the hub efferocytosis-related genes in

MASH, it is essential to pinpoint regulatory factors that modulate

these genes, offering direction for future research. To achieve this,

we constructed a TF-miRNA-mRNA regulatory network, which

highlighted MYC as a key transcription factor and miR-34a-5p and
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miR-27a-3p as important regulators of the hub genes. MYC is an

oncogenic transcription factor, overexpressed in many

malignancies and linked to aggressive tumor progression and

poor survival outcomes (62). Recent studies, however, propose

that MYC functions as a global gene expression amplifier (63).

Research has shown that MYC promotes efferocytosis. Xiancai

Zhong et al. demonstrated that MYC enhanced efferocytosis and

promoted inflammation resolution by driving macrophage M2

polarization (64). Additionally, Ira Tabas and colleagues

introduced the concept of efferocytosis-induced macrophage

proliferation (EIMP), where MYC plays a central role (65, 66).

MYC has also been identified as a promising therapeutic target for

MASLD (67, 68). Therefore, further investigation into how MYC

regulates efferocytosis through the modulation of hub genes and its

impact on MASH is warranted. miRNAs are small, non-coding

RNAs that function as post-transcriptional regulators of protein-

encoding genes (69). The two miRNAs we identified, miR-34a-5p

and miR-27a-3p, have also been recognized as promising targets for

the prevention and treatment of MASLD (70, 71). These miRNAs

are integral components of the complex regulatory network

involving TF-miRNA-mRNA interactions, highlighting the

intricate molecular interplay underlying MASH pathogenesis.

Understanding this regulatory network could offer valuable

insights for therapeutic interventions.

While our study provides valuable insights, it is imperative to

acknowledge its limitations. The disparity between RNA-Seq and

MASH mice model results implies the complex mechanism of

efferocytosis in MASH. Besides, the current work lacks direct

cellular evidence, necessitating functional experiments to validate

the of these genes in MASH progression. Given the time constraints

of this study, we were unable to fully explore the regulatory

mechanisms of efferocytosis in MASH. Therefore, future research

endeavors focused on these central genes are urgently required to

advance our understanding of this complex disease.
Conclusion

Through a comprehensive bioinformatics approach, our study

uncovered key EFRGs associated with MASH. Employing machine

learning model, we further identified five significant EFRGs:

TREM2, TIMD4, STAB1, C1QC, and DYNLT1. Our results

revealed that TREM2 exhibited elevated expression in MASH

patients, whereas TIMD4 demonstrated reduced expression.

Furthermore, diagnostic models leveraging either TREM2 or

TIMD4 as biomarkers made remarkable diagnostic accuracy in

NASH, underscoring their potential clinical utility. In conclusion,

our findings offer new opportunities and promising therapeutic

targets for MASH efferocytosis research.
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