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immune microenvironment of
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insights from single-cell,
spatial transcriptomics, and
bulk RNA sequencing
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Chang Fu1, Tianfu Wei2,3* and Kai Liu1*
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Jilin University, Changchun, China, 2Department of Oncology, The First Affiliated Hospital of Dalian
Medical University, Dalian, China, 3Clinical Laboratory of Integrative Medicine, First Affiliated Hospital
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Background: Hepatocellular carcinoma (HCC) is a prevalent and heterogeneous

tumor with limited treatment options and unfavorable prognosis. The crucial role

of a disintegrin and metalloprotease (ADAM) gene family in the tumor

microenvironment of HCC remains unclear.

Methods: This study employed a novel multi-omics integration strategy to

investigate the potential roles of ADAM family signals in HCC. A series of

single-cell and spatial omics algorithms were utilized to uncover the molecular

characteristics of ADAM family genes within HCC. The GSVA package was utilized

to compute the scores for ADAM family signals, subsequently stratified into three

categories: high, medium, and low ADAM signal levels through unsupervised

clustering. Furthermore, we developed and rigorously validated an innovative

and robust clinical prognosis assessment model by employing 99 mainstream

machine learning algorithms in conjunction with co-expression feature spectra

of ADAM family genes. To validate our findings, we conducted PCR and IHC

experiments to confirm differential expression patterns within the ADAM

family genes.

Results: Gene signals from the ADAM family were notably abundant in

endothelial cells, liver cells, and monocyte macrophages. Single-cell

sequencing and spatial transcriptomics analyses have both revealed the

molecular heterogeneity of the ADAM gene family, further emphasizing its

significant impact on the development and progression of HCC. In HCC

tissues, the expression levels of ADAM9, ADAM10, ADAM15, and ADAM17 were
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markedly elevated. Elevated ADAM family signal scores were linked to adverse

clinical outcomes and disruptions in the immune microenvironment and

metabolic reprogramming. An ADAM prognosis signal, developed through the

utilization of 99 machine learning algorithms, could accurately forecast the

survival duration of HCC, achieving an AUC value of approximately 0.9.

Conclusions: This study represented the inaugural report on the deleterious

impact and prognostic significance of ADAM family signals within the tumor

microenvironment of HCC.
KEYWORDS
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Introduction

Hepatocellular carcinoma (HCC) is a common and

heterogeneous tumor with increasing incidence worldwide (1, 2). It

is associated with various risk factors, and although there are

treatment options available, the prognosis for patients remains

unfavorable (3, 4). In China, HCC is particularly prevalent and is

the second most common malignancy, with most patients being

diagnosed in intermediate or advanced stage (5). And as a result, the

patients miss out on the chance for radical surgery. Although surgical

resection, percutaneous approaches and liver transplantation are

potential treatment options, postoperative recurrence and

metastasis pose significant challenges (6). For the past few years,

targeted therapy and immune checkpoint inhibitors have shown

promise but also have limited efficacy for some patients (7, 8).

Therefore, novel and reliable screening methods are urgently

needed to improve diagnosis and treatment, and new targets must

be explored to enhance therapeutic efficacy for HCC patients.

A disintegrin and metalloprotease (ADAM) family genes are a

group of genes that encode proteases that can affect many

physiological and pathological processes, including the occurrence

and development of tumors (9). There are about 30 members of the

ADAM family, whose functions and expressions vary in different

types of tumors. They have a distinct structure that includes adhesion

and protease domains. The specific ADAMproteins encoded by these

genes are devoted in the occurrence and development of tumors by

modulating the TNF-alpha, E-cadherin, receptor-II, CD44, L-

selectin, Notch, Erb4/HER4 and so on. All of these proteins play

important roles in cancer cell proliferation, migration and invasion.

An ADAM member known as ADAM10 has been specifically

identified as an oncogene that contributes to the progression of

HCC. Knocking down ADAM10 has been shown to significantly

inhibit the proliferation, migration, and invasion of HepG2 cells,

highlighting its critical role in HCC development (10). In addition,
02
the ADAM10 can impair the recognition of cancer cells by T or NK

cells by shedding the “stress-induced” molecules MICA, MICB, and

ULBPs expressed on the cancer cell surface, which are responsible for

inducing an immune response against cancer cells upon binding to

NKG2D receptors expressed on natural killer (NK) cells and most

cytotoxic T lymphocytes (11–14). In addition to the ADAM10 gene,

ADAM9 and ADAM17 are the other frequently reported genes in

liver cancer, playing a crucial regulatory role in chemotherapy

resistance and malignant tumor progression (15, 16). The small

molecule drug CCL347, which targets ADAM9, can enhance the

tumor-killing ability of NK cells, making it a promising new

treatment for HCC (17). The small molecule inhibitor ZLDI-8,

which targets ADAM17, can inhibit HCC metastasis and enhance

the therapeutic sensitivity to sorafenib (18, 19). In summary, most

previous studies have focused on the mechanistic research and drug

development of individual ADAM gene. There is still a lack of a

comprehensive understanding of the role of the ADAM gene family

in HCC. Additionally, with the rapid advancement of omics

technologies, their multi-omics characteristics remain to be explored.

In our research, the fusion of single-cell sequencing and spatial

transcriptomics technologies has, for the first time, offered a

comprehensive glimpse into the single-cell states and spatial

distribution of ADAM family genes. This enabled the simulation of

ADAM family signal intensity. Patients with HCC were subsequently

categorized into three groups: high ADAM,mediumADAM, and low

ADAM signal levels, facilitating a comparison of prognosis and the

tumor microenvironment across these groups. PCR and IHC

validation was employed to confirm the abnormal expression

patterns of ADAM family genes in HCC. After evaluating 99

traditional machine learning algorithms, a novel prognostic model

was established. In essence, this study has illuminated the molecular

attributes of ADAM in HCC, offering a comprehensive perspective

through single-cell and spatial genomics, and introducing a precise

prognostic model for the first time.
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Methods

Single-cell sequencing analysis of ADAM
family genes in HCC

In March 2023, we collected cancer tissue and adjacent tissue

samples from three pairs of hepatocellular carcinoma for single-cell

sequencing. These samples were all obtained from the First Hospital

of Jilin University(ID: AF-IRB-032-06). All patients provided

informed consent for donating their samples for scientific

research before surgery, and the study was approved by the ethics

committee of the First Hospital of Jilin University. Additionally, we

also collected two publicly available single-cell sequencing samples

of hepatocellular carcinoma for validation, namely GSM5076749

and GSM5076750 (20).

The single-cell sequencing process based on 10x Genomics

proceeds as follows: Using the Chromium™ Single Cell 3’Solution

microfluidic platform, gel beads containing barcodes and primers are

encapsulated with individual cells in droplets, forming Gel Bead in

Emulsion (GEM). Prepared cell suspension, 10X barcode gel beads,

and droplets are separately introduced into different channels of

Chromium Chip B, creating a single-cell reaction system through the

microfluidic “double-cross” system. The gel beads inside the GEM

dissolve, leading to cell lysis and mRNA release, followed by reverse

transcription to generate barcoded cDNA for sequencing. After

breaking the liquid oil layer, cDNA amplification is performed,

followed by purification, quality control, library construction, and

library sequencing once it passes the quality check.

We applied consistent quality control and analysis strategies to

both self-generated data and publicly available data. The specific

process is as follows: Leveraging the provided 10x Genomics

sequencing data files, which include barcodes, features, and

matrix files, we imported the single-cell data through the

utilization of the Read10X and CreateSeuratObject functions

within the R package Seurat. We established specific criteria for

data filtration, which encompassed the following conditions:

min.cells = 3, min.features = 200, nCount_RNA >= 1000,

nFeature_RNA >= 200, nFeature_RNA <= 10000, percent.mt <=

20, percent.rb <= 20.

We utilized the VlnPlot function to create violin plots that

visually represented the following metrics: “nFeature_RNA,”

“nCount_RNA,” “percent.mt,” and “percent.rb.” Additionally, we

employed the FeatureScatter function to assess the correlations

between these metrics. For data standardization, we applied the

NormalizeData function with the normalization method set to

“LogNormalize”. Furthermore, the FindVariableFeatures function

was used to identify the top 2000 highly variable genes for

subsequent principal component analysis (PCA) dimensionality

reduction. Before conducting PCA dimensionality reduction, we

performed data normalization using the ScaleData function, a

crucial preprocessing step. Subsequently, we executed PCA

dimensionality reduction. To mitigate potential batch effects

stemming from different sample sources, we applied the well-

established RunHarmony function to harmonize the single-cell

data. The determination of the number of principal components to

use was based on results obtained from the JackStraw and
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ScoreJackStraw functions. To establish neighborhood relationships

and evaluate clustering outcomes at various resolutions, we made use

of the FindNeighbors function. Additionally, we employed the

clustree function to pinpoint the optimal resolution parameter

while taking measures to mitigate batch effects between samples.

Following the completion of dimensionality reduction and

clustering at the single-cell level, we employed the FindAllMarkers

function to pinpoint specific expression markers for each cell

subtype. These identified markers were subsequently utilized for

cell annotation analysis. In this research, we harnessed the well-

established SingleR function for automated cell subtype annotation.

SingleR’s operational principle is grounded in the similarity of gene

expression patterns. It leverages gene expression data from

established reference datasets containing information about cell

types or phenotypes to predict the cell type of individual cells.

This approach proves exceptionally valuable for the identification

and categorization of distinct cell populations within single-cell RNA

sequencing data, providing researchers with insights into the

distribution and characteristics of various cell types within their

samples. The reference dataset employed in this study is defined as

follows: refdata = celldex::HumanPrimaryCellAtlasData(). In

addition, copykat algorithm was utilized to predict the benign and

malignant nature of each cell.

We conducted a comprehensive evaluation of ADAM family signal

scores for each cell using six well-established single-cell gene set scoring

algorithms: Add, AUCell, UCell, singscore, ssgsea, and total scoring

(21–23). The specific calculation process is as follows: 1) The

AddModuleScore function was employed to assist in the assessment

of ADAM family signal scores under the Add mode. 2) The

AUCell_buildRankings and AUCell_calcAUC functions were utilized

to compute ADAM family signal scores under the AUCell mode. 3)

The irGSEA.score function was applied to calculate ADAM family

signal scores under both the UCell and singscore modes. 4) The gsva

function was utilized to evaluate ADAM family signal scores under the

ssgsea mode. 5) Finally, the results obtained from the five calculations

mentioned above were summed to derive the total scoring value.
Spatial transcriptome sequencing analysis
of ADAM family genes in HCC

The spatial transcriptomic data for HCC patients were sourced

from the GSE238264 dataset, which encompasses spatial

transcriptomic data from 7 eligible HCC cases specifically

denoted as GSM7661255, GSM7661256, GSM7661257,

GSM7661258, GSM7661259, GSM7661260, and GSM7661261

(24). We employed the Read10X function to ingest cell expression

data from the spatial transcriptomics, and the Read10X_Image

function was utilized to extract spatial cell location information.

In parallel with the preceding methodologies employed in

single-cell sequencing analysis, we conducted a comprehensive

assessment of ADAM signals within the spatial context of HCC

utilizing six established gene set scoring algorithms. These six

algorithms encompass Add, AUCell, UCell, singscore, ssgsea, and

total scoring. The specific calculation process closely paralleled the

previously outlined procedures (22).
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Pan-cancer analysis overview of the ADAM
family genes

Following a methodology akin to previous studies (25–27), we

compiled and meticulously curated comprehensive pan-cancer genetic

and transcriptomic datasets from the TCGA database. These datasets

encompassed SNV (Single Nucleotide Variation) data, CNV (Copy

Number Variation) data, methylation data, and RNA sequencing data.

The SNV data were sourced from the following website: https://

gdc.cancer.gov/about-data/publications/pancanatlas. Our SNV

analysis was executed using the maftools package, and the results

were visually presented using the oncoplot and ggplot functions.

For CNV analysis, we obtained data from the XENA website

u s ing the da ta s e t ID : TCGA.PANCAN.sampleMap/

Gistic2_CopyNumber_Gistic2_all_data_by_genes. We set

thresholds for CNV amplification and deletion at 5%, and

similarly, the visualization of CNV results was accomplished

using the ggplot function.

The visualization analysis of methylation data was also

conducted utilizing the ggplot function. In the methylation

heatmap, particular attention was paid to the size and color of the

dots, with larger dots signifying greater statistical significance.

Yellowish dots indicated a proclivity toward higher methylation

levels, while bluish dots suggested a tendency toward lower

methylation levels.

Differential expression analysis was undertaken through the

utilization of the limma package. The expression heatmap

highlighted both the size and color of the dots, with larger dots

denoting higher statistical significance. Reddish dots indicated an

inclination toward upregulation, whereas greenish dots signified a

tendency toward downregulation of genes.
Bulk RNA sequencing analysis of ADAM
family genes in HCC

Molecular clustering analysis was conducted using the

transcriptomic data from the TCGA-HCC dataset. This dataset

comprises 343 HCC samples with well-defined prognostic

information and 50 matched adjacent non-cancerous tissue

samples. Due to significant variations in ADAM gene expression

and variation levels identified in the pan-cancer analysis, we

developed a classification model to account for these disparities in

ADAM expression levels among different HCC samples. Our

approach involved employing ssGSEA analysis to assess ADAM

family scores for each patient. To delve into the variance, we utilized

the “gplots” package in R and generated heatmaps based on cluster

analysis results using the “pheatmap” package (28). We then

categorized all samples into three distinct clusters based on the

mRNA expression levels of ADAM-related genes, classifying them

as ADAM-high, ADAM-medium, or ADAM-low. To effectively

visualize the correlation between gene expression levels within these

three clusters, we turned to the “ggpubr” package, which allowed us

to create a violin plot showcasing the enrichment scores for each

cluster. Lastly, we delved into disparities in patient outcomes among
Frontiers in Immunology 04
these three clusters using the “survival” package and the “surminer”

package within R Studio (29).

To delve into the tumor microenvironment within the three

clusters, we employed a range of algorithms, including TIMER,

QUANTISEQ, MCPCOUNTER, XCELL, EPIC, and CIBERSORT,

for further analysis. Furthermore, we compared the expression

levels of common immune checkpoint genes across the three

clusters using the Kruskal-Wallis test. Using ssGSEA, we

estimated the immune response and proceeded to explore the

correlations between ADAM family gene expression and the

infiltration of immune cells, visualizing the results in a heatmap.

Additionally, we investigated the correlations between ADAM

scores and the infiltration of immune cells.

In addition to the TCGA-HCC dataset, we also gathered data from

the GSE116174 (30), GSE144269 (31), GSE76427 (32), and Meta

datasets to develop a robust prognosis model based on ADAM co-

expression networks. The Meta dataset is a compilation of HCC

samples from the first four datasets, and its significance lies in

providing a more objective assessment of the authenticity and

applicability of our developed model. Similar to previous research

methodologies, for transcriptomic data originating from different

dataset sources, we also employed the sva package to mitigate batch

effects as comprehensively as possible. Additionally, we performed LOG

transformation based on the data’s range of variation. Our approach

began with identifying complex networks of co-expressed genes among

the ADAM family genes using Spearman’s test. The genes that were

identified as having prognostic values in at least four cohorts through

univariate Cox regression analysis were retained for subsequent model

construction. Subsequently, the genes within these networks were

curated and employed in the subsequent model construction analysis.

In order to create a robust consensus model that achieves high

accuracy and stability, we combined 10 machine learning

algorithms (i.e. RSF, Enet, Lasso, Ridge, stepwise Cox, CoxBoost,

plsRcox, SuperPC, GBM, survival-SVM) and explored 99 different

algorithm combinations. The signature generation procedure was as

follows: (a) Univariate Cox regression analysis was conducted to

identify variables associated with HCC prognosis; (b) Variables that

demonstrated prognostic value in at least four HCC datasets were

retained for modeling;(c) We conducted 99 algorithm combinations

on the prognostic features to develop prediction models using the

leave-one-out cross-validation framework within the TCGA-HCC

cohort; (d) Patients in four validation datasets (GSE116174,

GSE144269, GSE76247, and the Meta dataset) were categorized

into high-score and low-score groups according to the median

value. KM survival analysis and ROC curves were carried out to

validate the predictive performance of our model.

Considering the limited number of liver cancer samples in the

TCGA cohort, we further validated the expression level of

ADAM10 using additional liver cancer transcriptome datasets.

The BEST website (https://rookieutopia.com/app_direct/BEST/

#PageHomeAnalysisModuleSelection), which provides a curated

database and innovative analytical pipelines for exploring cancer

biomarkers at high resolution, was utilized in our study.

Subsequently, we analyzed the transcriptomic features of

ADAM10 in E_TABM_36, GSE144269, GSE14520, and
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GSE54236 datasets on the BEST platform. Furthermore, the BEST

platform also provided comprehensive clinical information of

multiple liver cancer cohorts, including TCGA, E_TABM_36,

GSE144269, GSE14520, GSE10141, GSE104580, and GSE109211.

Therefore, we investigated the tight correlation between the

expression level of ADAM10 and various clinical parameters of

liver cancer, including HBV status, liver cirrhosis status, tissue

grading, AFP level, satellite lesion, transcatheter arterial

chemoembolization, and Sorafenib treatment sensitivity.
Cell culture and real-time quantitative
polymerase chain reaction

Firstly, we predicted the expression patterns of ADAM family

genes between HCC tumor tissues and adjacent non-cancerous

tissues using the GEPIA2 platform (33). Subsequently, we validated

the differentially expressed ADAM family genes through three HCC

cell lines (HepG2, HuH7, and Hep3B2.1-7) and one normal liver

cell line (L-02). HuH7 cells were cultured in DMEM high glucose

medium, HepG2 and Hep3B2.1-7 cells were cultured in MEM

medium, and the L-02 cell line was cultured in RPMI-1640

medium. All culture media were supplemented with 10% fetal

bovine serum and 1% penicillin-streptomycin solution. Cells were

maintained in a cell incubator at 37°C with a 5% CO2 atmosphere.

In the four cell lines, total RNA was extracted using the

conventional Trizol method, and cDNA was synthesized using a

reverse transcription kit. Subsequently, we assessed the expression

levels of the target gene using a SYBR Green I fluorescent dye-based

assay, with b-actin serving as the internal reference gene. The RNA

levels were analyzed and quantified utilizing the 2^-DDCt method.
HCC tissue microarray and
immunohistochemistry experiments

We purchased human HCC TMA from Zhuoli Biotechnology

Co. in Shanghai, China. The tissue sections were initially subjected

to antigen retrieval using EDTA after dewaxing. Subsequently, the

sections were treated with primary antibodies, followed by

incubation with secondary antibodies. Diaminobenzidine staining

was then performed, and hematoxylin was used for counterstaining.

This process allowed us to complete the immunohistochemistry

(IHC) assessment for 48 HCC samples and 48 normal samples. Two

independent pathologists assessed the H-scores of ADAM10

protein, taking into account the staining intensity and the

percentage of positively stained cells.
Results

Our self-sequencing single-cell data for
ADAM family genes in HCC

The pathology imaging of 3 paired HCC patients were

summarized in Figure 1A. Our self-sequencing HCC single-cell
Frontiers in Immunology 05
data encompassed a total of 63,998 cells. Following the application

of filters using criteria such as nCount_RNA, nFeature_RNA,

percent.mt, and percent.rb metrics, 47299 cells met the criteria

and were retained for further single-cell analysis. The quality

control results of the single-cell data were depicted in

Supplementary Figures 1A, 1B. The data processing steps using

the Harmony algorithm were illustrated in Supplementary

Figures 1C, 1D. Supplementary Figure 1C represents the

clustering plot before batch correction with Harmony, while

Supplementary Figure 1D shows the clustering plot after batch

correction using Harmony.

According to Figure 1B, it was evident that setting the

resolution to 1.5 might yield an optimal clustering result. Results

from the SingleR automatic annotation indicated the presence of

primarily 8 cell types within the HCC microenvironment, including

T cell, NK cell, neutrophils, B cell, hepatocyte, smooth muscle cell,

monocyte-macrophage, and endothelial cells (Figures 1C, D).

The cellular composition of HCC tumor tissue differed

significantly from its adjacent non-cancerous tissue (Figure 1E). B

cells and endothelial cells exhibited notably active ADAM signals

(Figure 2A). Importantly, various cell types within the tumor tissue

displayed abnormal ADAM signals when compared to the non-

cancerous tissue, suggesting a potential role of ADAM signaling in

the process of HCC development (Figure 2B). To visualize the

ADAM signal of each cell more clearly, we subsequently projected

the ADAM signal scores onto the previous t-SNE clustering plot.

The results indicated that endothelial cells within the tumor tissue

were the primary source of abnormally active ADAM signals

(Figures 2C-H).

Furthermore, we found that endothelial cells, monocyte-derived

macrophages, and smooth muscle cells primarily resided in the G1

phase, while other cell types showed a more even distribution in the

G1/S/G2M phases (Figure 3A). Hepatocytes, endothelial cells, and

smooth muscle cells were the major constituents of malignant cells

in HCC patients (Figure 3B). The cell cycle distribution and

malignancy assessment results for each tumor sample were

depicted in Figure 3C. Once again, the results consistently

demonstrated that malignant cells exhibited more active ADAM

signals, especially in endothelial cells and hepatocytes, compared to

benign cells (Figure 3D).

Regardless of the predictive algorithm used, there was a clear

statistical difference in ADAM signals between benign and

malignant cells, with malignant cells exhibiting higher G1 phase

signals and benign cells showing higher S phase and G2M phase

signals (Figure 3E).
Public single-cell sequencing and spatial
transcriptome sequencing analysis for
ADAM family genes in HCC

The public single-cell sequencing results of HCC yielded a total

of 10,729 qualified cells remained for subsequent single-cell analysis

(Supplementary Figures 2A, B). To mitigate batch effects in the

samples, harmony analysis was applied to modify the single-cell

data to some extent. The cell distribution results before and after
frontiersin.org
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harmony analysis were shown in Supplementary Figures 2C, 2D,

indicating that harmony analysis partially reduced the batch effects

in the samples, leading to a more uniform cell distribution among

the samples.

Highly variable gene selection and Elbowplot results indicated

that pc=10 was the clear inflection point, where most of the true

signals are captured by the first 10 principal components

(Supplementary Figure 2E). Under a resolution of 1.5, the 10,729

qualified cells were divided into 22 clusters (Supplementary

Figure 2F). High-variance genes were identified for each cluster,
Frontiers in Immunology 06
and cell annotation analysis was conducted, resulting in the

identification of 6 cell types: monocytes/macrophages (CD68,

CD74, C1QA, C1QB, C1QC, SPP1), T cells (CD2, CD3D, CD3E,

CD3G, NKG7, GZMA), B cells (CD79A, IGLC2, IGLC3),

hepatocytes (KRT18, KRT19, SPINK1, TSPAN8), smooth muscle

cells (RGS5, NDUFA4L2, TAGLN, ACTA2), and endothelial cells

(HSPG2, PLVAP, STC1, AQP1, VMF) (Supplementary Figure 3A).

Transcription factors JUNB and JUND exhibit higher expression

levels in monocytes/macrophages, T cells, smooth muscle cells, and

endothelial cells (Supplementary Figure 3A). The t-SNE and UMAP
FIGURE 1

Single-cell overview of HCC in our self-generated cohort. (A) Pathology imaging of HCC patients (B) Determination of appropriate resolution.
(C) Cell type annotation. (D) Overview of t-SNE dimensionality reduction. (E) t-SNE dimensionality reduction features of normal tissue and
tumor tissue.
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dimensionality reduction results for these 6 cell types were shown in

Supplementary Figures 3B, 3C, indicating that each cell type was well-

separated from others, demonstrating a good annotation outcome.

Using the AUCell, UCell, Add, singscore, ssgsea, and scoring

algorithms, we predicted the distribution of the ADAM family

signals at single-cell resolution across different cell types

(Supplementary Figure 4A). The strongest ADAM signals were

observed in endothelial cells and monocytes/macrophages, followed

by hepatocytes, while the weakest ADAM signals were found in T cells,

B cells, and smoothmuscle cells (Supplementary Figure 4B). The t-SNE
Frontiers in Immunology 07
plot further confirmed that the ADAM signals in subpopulations of

endothelial cells and monocytes/macrophages were much stronger

compared to other cell types (Supplementary Figure 4C).

The copykat results indicated that nearly all liver cells in these

two HCC patients were malignant cells, while immune cells and

smooth muscle cells were benign cells. This aligns with our

common understanding, demonstrating the accuracy of copykat’s

predictions (Supplementary Figure 5A). Cell cycle analysis results

showed that malignant liver cells consisted of cells in the G1, S, and

G2M phases, with a predominant population in the G1 phase
FIGURE 2

Single-cell distribution of ADAM family signals in our self-generated cohort. (A) Bubble chart displays the ADAM signals for each type of cell. (B)
Violin plot displays the ADAM signals based on six algorithms. (C–H) t-SNE dimensionality reduction displays the single-cell distribution of ADAM
signals. Six algorithms used for assessing ADAM signals involve AUCell, UCell, Add, singscore, ssgsea, and Scoring. (*:p<0.05,**:p<0.01,***:p<0.001,
****:p<0.0001; p value was calculated by wilcox.test).
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(Supplementary Figure 5B). In contrast, smooth muscle cells,

endothelial cells, T cells, and B cells were primarily in the G1

phase, with rare occurrences of cells in the G2M and S phases

(Supplementary Figure 5B). The distribution of cells in the G1, S,

and G2M phases was relatively uniform within the two HCC
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samples (Supplementary Figure 5C). The copykat predictions for

samples GSM5076749 and GSM5076750 were depicted in

Supplementary Figure 5D.

The spatial distributions of ADAM family signals in malignant

and benign cells under six different algorithms, AUCell, UCell, Add,
FIGURE 3

Copykat results and cell cycle analysis of single-cell data in our self-generated cohort. (A) t-SNE dimensionality reduction of copykat results. (B) t-
SNE dimensionality reduction of cell cycle analysis. (C) The proportion of G1, S, and G2M in HCC, and proportion of aneuploid and diploid in HCC.
(D) Single-cell distribution of ADAM signals in aneuploid and diploid. (E) The violin plot displays the discrepancies in ADAM signals between
aneuploid and diploid. (F) The violin plot displays the discrepancies in expression of ADAM9, ADAM10, ADAM15, and ADAM17 between aneuploid and
diploid. (****:p<0.0001; p value was calculated by wilcox.test).
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singscore, ssgsea, and scoring, were shown in Supplementary

Figure 5E. Quantitative analysis revealed significant differences in

ADAM family signals between malignant and benign cells,

emphasizing the crucial role of the ADAM family in the

pathophysiology of HCC (Supplementary Figure 5F). Spatial

transcriptomics provided the first spatial resolution imaging map

of ADAM family signals across seven liver cancer tissues (Figure 4;

Supplementary Figures 6A-C).
Genomics and transcriptomics analysis of
ADAM family members in multiple
human cancers

Pan-cancer SNV analysis revealed relatively high mutation

frequencies in ADAM29, ADAM7, and ADAM18 (Figure 5A), with

mutations predominantly observed in SKCM and UCEC (Figure 5B).

Importantly, it’s worth noting that there are hardly any mutations of

ADAM in HCC (Figure 5B). In addition to SNV analysis, CNV

analysis were also conducted, with the results showing that

ADAM15 and ADAM22 had relatively high CNV amplication

(Figure 5C). The results of the DEGs analysis indicated a noteworthy

pattern (Figure 5D). Specifically, ADAM8 and ADAM12 consistently
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exhibited a significant upregulation trend in most cancer types. In

contrast, ADAM33 consistently displayed a significant downregulation

trend across various cancers. Lastly, the methylation analysis revealed

that ADAM11, ADAM32, and ADAM33 exhibited higher levels of

methylation in tumor tissues compared to normal tissues. Conversely,

ADAM7 and ADAM21 displayed lower levels of methylation in tumor

tissues compared to normal tissues (Figure 5E).
Molecular classifier of HCC based on
ADAM family signals

In the TCGA-HCC cohort, a molecular classifier was developed

based on the strength of ADAM family signals, successfully dividing

TCGA-HCC patients into three subgroups (Figure 6A). HCC

patients with varying ADAM signals displayed distinct clinical

outcomes (Figure 6B). Among these subgroups, C1 exhibited the

strongest ADAM family signals, followed by C3, and C2 showed the

weakest signals (Figure 6C). Surprisingly, it was discovered that

the stronger the ADAM family signals, the worse the prognosis for

HCC patients, and vice versa. This further underscores the significant

role of ADAM in the pathogenesis of HCC. Furthermore, it was

observed that HCC patients with distinct ADAM signals were
FIGURE 4

Spatial transcriptomics overview of 4 HCC samples.
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accompanied by varied metabolism and immune status (Figures 6D,

E). As an illustration, individuals belonging to the C1 subgroup

exhibited a marked reduction in beta-alanine metabolism and an

increased activity in sphingolipid metabolism.

In addition to the immune pathways, we conducted an in-depth

analysis of immune cell infiltration and immune checkpoint

expression. Utilizing seven different immune deconvolution

algorithms, we consistently observed that HCC patients with

active ADAM signaling often exhibited a substantial influx of

immune cells into the tumor microenvironment (Supplementary

Figure 7A). Simultaneously, there was a notable abnormal

activation of immune checkpoints (Supplementary Figure 7B).

Excessive activation of immune checkpoints may favor the

formation of an immune-suppressive microenvironment. Under

such conditions, the body may trigger more compensatory

responses, leading to the recruitment of an increasing number of

immune cells into the tumor microenvironment, with the hope of

controlling disease progression.

Considering the intricate regulatory interplay between ADAM

signaling and the HCC immune microenvironment, we

subsequently conducted more targeted immune-related analyses.

Initially, utilizing the ssgsea algorithm and Spearman correlation

test, we examined the associations between individual ADAM genes
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and classical immune-related pathways. The results highlighted that

ADAM8, ADAM33, ADAM28, ADAM23, and ADAM19 were

primarily positively correlated with immune pathways, while

ADAM30 and ADAM11 exhibited predominantly negative

correlations with immune pathways (Supplementary Figure 8A).

Furthermore, the ADAM family signals displayed a predominantly

positive correlation with immune pathways, particularly with

pathways related to CCR, Treg, parainflammation, and

macrophages (Supplementary Figures 8B, C).
Machine learning-assisted development of
a prognosis model based on ADAM
family signals

We utilized a diverse array of machine learning algorithms to

search for the optimal prognosis model related to ADAM family

signals. Given the limited number of ADAM family signal

members, creating a precise and efficient molecular model based

solely on ADAM family genes posed a significant challenge.

Consequently, we conducted a comprehensive analysis by

collecting and curating molecules that displayed significant

interactions with ADAM family members, utilizing Spearman
FIGURE 5

Pan-cancer overview of ADAM family members. (A, B) SNV characteristics of ADAM family members in multiple human cancers. (C) CNV
characteristics of ADAM family members in multiple human cancers. (D) mRNA expression characteristics of ADAM family members in multiple
human cancers. (E) Methylation characteristics of ADAM family members in multiple human cancers.
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correlation analysis (|cor| > 0.3, p < 0.001). This effort yielded a total

of 6,910 candidate molecules. Among these candidates, only 14

genes demonstrated prognostic significance across at least four liver

cancer datasets. The Random Survival Forest (RSF) algorithm

emerged as the most suitable approach for constructing the

prognosis model, achieving the highest average C-index,

approximately 0.706 (Figure 7A). Survival analysis results

illustrate that this model effectively stratifies HCC patients into
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distinct risk groups, demonstrating its applicability in both the

TCGA and Meta cohorts (Figure 7B). The ROC curve underscores

its remarkable accuracy in prognostic assessment, with an AUC

value of approximately 0.9 (Figure 7C). Lastly, we validated the

expression levels of four key ADAM family genes. The results

confirmed that ADAM9, ADAM10, ADAM15, and ADAM17

exhibited an upregulation trend in at least one liver cancer cell

line, consistent with our earlier predictions (Figure 7D). Both our
FIGURE 6

Identification of molecular characteristics of ADAM signals in HCC. (A) Cluster analysis for HCC patients based on ADAM signals. (B) Survival analysis
of three clusters. (C) The violin plot displays the discrepancies in ADAM signals between three clusters. (D) The heatmap displays the discrepancies in
metabolism traits between three clusters. (E) The heatmap displays the discrepancies in immune traits between three clusters. (*:p<0.05,**:p<0.01,
***:p<0.001,****:p<0.0001; p value was calculated by kruskal.test).
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self-sequencing data and public single-cell data indicated that

expression of ADAM9, ADAM10, ADAM15, and ADAM17

differed significantly between benign cells and malignant cells

(Figure 3F; Supplementary Figure 5G).
Clinical relevance analysis and expression
validation of ADAM10

In addition to the TCGA dataset, nearly all liver cancer datasets

indicate that the transcription levels of ADAM10 in liver cancer

tissues were significantly higher than their corresponding adjacent
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tissues or normal liver tissue samples (Supplementary Figure 9A).

The progression from hepatitis B infection to cirrhosis and

eventually to liver cancer is a classic tumorigenic process, so we

also investigated the expression profiles of ADAM10 in hepatitis B

and cirrhosis patients. The results showed that liver cancer patients

with concomitant HBV infection had higher levels of ADAM10

expression when compared to HBV-negative liver cancer patients

(Supplementary Figure 9B). However, the presence of cirrhosis in

liver cancer patients had no impact on the expression of ADAM10

(Supplementary Figure 9B). Furthermore, we also observed that

higher ADAM10 expression was often found in liver cancer patients

with the following characteristics: age equal to or less than 65 years
FIGURE 7

Machine learning determination of a robust prognostic signature associated with ADAM family members. (A) Find out the best prognostic model
based on multiple machine learning algorithms. (B) Survival analysis of prognostic model. (C) ROC curves of prognostic model. (D) Expression traits
of ADAM9, ADAM10, ADAM15, and ADAM17 based on GEPIA2 platform. qPCR experiments validated the expression of ADAM9, ADAM10, ADAM15,
and ADAM17. (*:p<0.05, ***:p<0.001).
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(Supplementary Figure 9C), larger tumors (Supplementary

Figure 9D), G3 and G4 stage patients (Supplementary Figure 9E),

higher AFP levels (Supplementary Figure 9F), microsatellite lesions

(Supplementary Figure 9G), TACE sensitivity (Supplementary

Figure 9H), and sorafenib resistance (Supplementary Figure 9I).

The immunohistochemical profiles of ADAM10 in 48 pairs of liver

cancer tissues were shown in Figure 8A. At the protein level, most

cancer tissue samples exhibited a downregulation trend (Figure 8B);

however, there were also some patients’ cancer tissue samples that

showed the opposite trend (Figure 8C). The immunohistochemical

scores for these 48 pairs of liver cancer patients were displayed in

Figure 8D, indicating a potential downregulation trend in the

protein levels of ADAM10 in liver cancer tissues compared to

adjacent tissues.
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Discussion

HCC is the most common type of primary liver cancer (34).

Tumor invasion, metastasis, recurrence, and drug resistance have

been identified as the main reasons for poor clinical outcomes in

HCC patients. Therefore, finding new therapeutic targets for HCC

has become an urgent priority. Members of the ADAM family genes

are classified as classic transmembrane proteins and are widely

recognized for their significant relevance to the prognosis of

numerous chronic inflammatory diseases and cancers (35). Prior

research (36) has documented a noteworthy upregulation of ADAM

family members, particularly ADAM9, ADAM10, and ADAM17, in

liver cancer, indicating a close link with tumor advancement. Our

study corroborates these findings, as we identified abnormal
FIGURE 8

Immunohistochemical experiments on HCC tissue microarray of ADAM10. (A) Immunohistochemical profiles of 48 pairs of liver cancer patients. (B)
Examples of low expression of ADAM10 in cancer tissue. (C) Examples of high expression of ADAM10 in cancer tissue. (D) Statistical quantitative
analysis of ADAM10 protein levels by immunohistochemistry.
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overexpression of ADAM9, ADAM10, ADAM15, and ADAM17 in

liver cancer tissues through both GEPIA website analysis and PCR

experiments. Additionally, this trend was consistently observed in

at least one liver cancer cell line.

This study employed a novel multi-omics integration approach to

investigate the crucial role of ADAM signaling in HCC. Single-cell

sequencing analysis revealed that ADAM signaling was predominantly

activated in monocyte macrophages, endothelial cells, and hepatocytes,

with significant differences observed in ADAM signaling between

benign and malignant cells. Furthermore, this research provided the

first spatially resolved characteristics of ADAM signaling. Cluster

analysis based on ADAM signaling underscored once again that

enhanced ADAM signaling could potentially lead to shortened

patient survival, with tumor metabolic reprogramming and

disruptions in the immune microenvironment being potential

underlying causes of poor prognosis.

The mRNA levels of ADAM9 within HCC tissues serve as a

prognostic indicator for reduced recurrence-free survival in cases of

hepatitis B virus-related HCC (37). In cohorts of individuals with

chronic hepatitis C, elevated sMICA levels, functioned as the

ADAM9 substrate, following viral clearance were associated with

HCC progression as a means to evade NK-mediated immune

surveillance (38, 39). Combining agents that target ADAM9

activity with conventional multi-kinase inhibitors presents a

promising future therapeutic approach to enhance the

effectiveness of cancer management and treatment.

In addition to ADAM9, we have identified and validated the

elevated expression of ADAM15 and ADAM17 in HCC. These

findings are consistent with prior literature, which has reported that

overexpression of ADAM15 is linked to a dismal prognosis in HCC

and serves as an independent prognostic risk factor. Notably, the

downregulation of ADAM15 promotes apoptosis in liver cancer

cells and hampers tumor cell proliferation, migration, and invasion

(40). The ADAM17 mRNA expression levels displayed variability

across distinct pathological subtypes of HCC (41). ADAM17

enhances cell migration and invasion in hepatocellular carcinoma

by modulating the integrin b1 pathway (42). In hepatocellular

carcinoma cells, ADAM17 plays a role in hypoxia-induced drug

resistance by activating the EGFR/PI3K/Akt pathway (43). A novel

inhibitor of ADAM-17, ZLDI-8, suppresses hepatocellular

carcinoma metastasis both in vitro and in vivo by reversing the

process of epithelial-mesenchymal transition (19). In addition,

ZLDI-8 augments the therapeutic impact of Sorafenib on

hepatocellular carcinoma cells both in vitro and in vivo (18).

According to the research reported, the expression level of

ADAM10 is elevated in pan-cancer, including lung cancer,

pancreatic cancer, colon cancer, and breast cancer and so on (44–

46). ADAM10 has been observed to be excessively expressed in HCC

tissues (47), significantly correlating with tumor progression and

reduced survival rates. In a cohort of 333 HCC patients, those

carrying the ADAM10 rs514049 (AC + CC) variant were found to

have a heightened susceptibility to develop lymph node metastasis,

while individuals with the ADAM10 rs653765 variant were more

prone to developing distant metastasis (47). After knocking down
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ADAM10, the proliferation, invasion, and migration of the HepG2

liver cancer cell line were significantly inhibited. Additionally, in vivo

experiments confirmed the inhibition of tumor growth (10). This is

consistent with the trends observed in our study, where we discovered

and further confirmed the abnormally high expression of ADAM10.

Furthermore, our analysis revealed a clear association between the

levels of ADAM10 expression and tumor size as well as histological

grade. Larger tumors and higher grade were often accompanied by

elevated levels of ADAM10 expression. Zhang and his colleagues’

research have shown that the inhibition of ADAM10 can augment

the therapeutic efficacy of sorafenib in treating HCC. Our analysis

further corroborates these findings by indicating reduced ADAM10

expression in the sorafenib-responsive group. In summary, the

combination of ADAM10 targeting and sorafenib for cancer

treatment appears to be a promising and viable approach,

necessitating future clinical trials for validation.

As for the transcript and protein expression trend of ADAM10

in patients with HCC, the results were same as previous researches

absolutely based on the datasets from the TCGA, GEO, UALCAN

and HPA. All these analysis were showing the science, accuracy and

stability of the results. What’s more, the importance role of

ADAM10 in HCC was depicted. And we found the high

ADAM10 expression level is associated with prognostic risk

factors, including the HBV status, tissue grading and satellite

lesion. These might be the reason why the high expression level

of ADAM10 contributed to the poor prognosis for HCC. And the

expression level of ADAM10 is closely related to the pathological

grade of HCC. We could predict the prognosis and choose suitable

treatment therapy for HCC patients in future. It’s worth noting that

our study revealed that the patients with high expression of

ADAM10 are more sensitive in TACE therapy and more than

more insensitive in sorafenib therapy than that for patients with low

expression of ADAM10 for the first time. These could help clinical

doctors in choosing suitable treatment methods, which can

significantly enhance patient prognosis and hold great value and

importance. Given the important role that ADAM10 plays in both

pan-cancer and HCC, we further analyzed the prognostic value of

ADAM10 in both pan-cancer and HCC by single-factor Cox

regression analysis and log-rank test. As we could see, the

ADAM10 plays well or poor role in the prognosis of different

human tumors. Therefore, further studies are needed to research

the specific role of ADAM10 in each pan-cancer.

There are still some limitations in this study that need to be

addressed. Although the molecular classifiers and prognostic

models derived from the ADAM gene family have been

repeatedly validated using multiple public datasets, extensive real-

world data is still needed for validation before they can be

implemented in clinical practice.
Conclusions

Single-cell sequencing reveals that ADAM signaling is primarily

activated in monocyte- macrophages, endothelial cells, and
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hepatocytes in HCC. Benign and malignant liver cells exhibit

distinct ADAM signaling features. Spatial transcriptomics

sequencing for the first time unveils the spatial activation patterns

of ADAM signaling in the liver. Aberrant activation of the ADAM

family signals is a significant prognostic indicator for poor

outcomes in HCC patients.
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SUPPLEMENTARY FIGURE 1

Quality control of our self-generated single-cell data. (A) Association of
nCount_RNA, nFeature_RNA, and percent.rb. (B) Traits of nCount_RNA,

nFeature_RNA, prevent.mt, and percent.rb. (C) tSNE characteristics before
harmony correction. (D) tSNE characteristics after harmony correction.

SUPPLEMENTARY FIGURE 2

Quality control of public single-cell sequencing data. (A) Association of

nCount_RNA, nFeature_RNA, and percent.rb. (B) Traits of nCount_RNA,
nFeature_RNA, prevent.mt, and percent.rb. (C) tSNE characteristics before

harmony correction. (D) tSNE characteristics after harmony correction. (E)
Selection of highly selection genes and PC numbers. (F) Cluster tree for

selecting the optimal resolution.

SUPPLEMENTARY FIGURE 3

Single-cell overview of HCC based on public sequencing data.
(A) Cell type annotation. (B) t-SNE dimensionality reduction. (C) UMAP

dimensionality reduction.

SUPPLEMENTARY FIGURE 4

Single-cell distribution of ADAM family signals based on public sequencing
data. (A) Bubble chart displays the ADAM signals for each type of cell. (B) Violin
plot displays the ADAM signals based on six algorithms. (C) t-SNE
dimensionality reduction displays the single-cell distribution of ADAM

signals. Six algorithms used for assessing ADAM signals involve AUCell,
UCell, Add, singscore, ssgsea, and Scoring.

SUPPLEMENTARY FIGURE 5

Copykat results and cell cycle analysis of public single-cell sequencing data.

(A) t-SNE dimensionality reduction of copykat results. (B) t-SNE
dimensionality reduction of cell cycle analysis. (C) The proportion of G1, S,

and G2M in HCC. (D) The proportion of aneuploid and diploid in HCC. (E)
Single-cell distribution of ADAM signals in aneuploid and diploid. (F) The violin

plot displays the discrepancies in ADAM signals between aneuploid and

diploid. (G) The violin plot displays the discrepancies in expression of
ADAM9, ADAM10, ADAM15, and ADAM17 between aneuploid and diploid.

(***:p<0.001,****:p<0.0001; p value was calculated by wilcox.test).

SUPPLEMENTARY FIGURE 6

Spatial transcriptomics overview of HCC5, HCC6, and HCC7. (A) Spatial

transcriptomics characteristics of ADAM signals in HCC5. (B) Spatial

transcriptomics characterist ics of ADAM signals in HCC6. (C)
Spatial transcriptomics characteristics of ADAM signals in HCC7. Notable,

HE figures were downloaded from the public website (i.e. GEO). (*:p<0.05,
**:p<0.01,***:p<0.001).

SUPPLEMENTARY FIGURE 7

Immune microenvironment analysis. (A) The discrepancies in the

immunocyte infiltration among three clusters. (B) The discrepancies in the
immune checkpoint expression among three clusters. (*:p<0.05,**:p<0.01,

***:p<0.001; p value was calculated by wilcox.test).
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SUPPLEMENTARY FIGURE 8

Association of ADAM family members with HCC immune. (A) The heatmap
shows the correlation between ADAM family members and immune traits of

HCC. (B) Association of ADAM signals with HCC immune. (C) Scatter plots
show the correlation between ADAM signals with CCR, Treg,
parainflammation, and macrophages. (*:p<0.05,^:p<0.01; p value was

calculated by Spearman.test).

SUPPLEMENTARY FIGURE 9

Correlation between ADAM10 expression level and clinical features of HCC

based on the GEO datasets. (A) The RNA expression level of ADAM10 between
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the normal and tumor tissue in the pan-cancer based on E_TABM_36,
GSE144269, GSE14520, GSE54236 and TCGA LIHC datasets. (B) The

association of ADAM10 expression level with HBV infection and liver

cirrhosis in patients with HCC based on the E_TABM_36, GSE144269 and
GSE14520 datasets. (C-G) The association of ADAM10 expression level with

age (TCGA LIHC), tumor size (GSE14520 dataset), grades (TCGA LIHC), the
expression level of AFP (GSE14520), satellite lesion (GSE10141) the in patients

with HCC, respectively. (H, I) The association of ADAM10 expression level
with the treatment therapy sensitivity of TACE (GSE104580) and

sorafenib (GSE109211).
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