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Braunschweig, Germany
Myeloid-derived suppressor cells (MDSC) are considered an aberrant population of

immature myeloid cells that have attracted considerable attention in recent years

due to their potent immunosuppressive activity. These cells are typically absent or

present in very low numbers in healthy individuals but become abundant under

pathological conditions such as chronic infection, chronic inflammation and cancer.

The immunosuppressive activity of MDSC helps to control excessive immune

responses that might otherwise lead to tissue damage. This same

immunosuppressive activity can be detrimental, particularly in cancer and chronic

infection. In the cancer setting, tumors can secrete factors that promote the

expansion and recruitment of MDSC, thereby creating a local environment that

favors tumor progression by inhibiting the effective immune responses against

cancer cells. This has made MDSC a target of interest in cancer therapy, with

researchers exploring strategies to inhibit their function or reduce their numbers to

improve the efficacy of cancer immunotherapies. In the context of chronic

infections, MDSC can lead to persistent infections by suppressing protective

immune responses thereby preventing the clearance of pathogens. Therefore,

targeting MDSC may provide a novel approach to improve pathogen clearance

during chronic infections. Ongoing research on MDSC aims to elucidate the exact

processes behind their expansion, recruitment, activation and suppressive

mechanisms. In this context, it is becoming increasingly clear that the metabolism

of MDSC is closely linked to their immunosuppressive function. For example, MDSC

exhibit high rates of glycolysis, which not only provides energy but also generates

metabolites that facilitate their immunosuppressive activity. In addition, fatty acid

metabolic pathways, such as fatty acid oxidation (FAO), have been implicated in the

regulation of MDSC suppressive activity. Furthermore, amino acid metabolism,

particularly arginine metabolism mediated by enzymes such as arginase-1,

plays a critical role in MDSC-mediated immunosuppression. In this review, we

discuss the metabolic signature of MDSC and highlight the therapeutic

implications of targeting MDSC metabolism as a novel approach to modulate

their immunosuppressive functions.
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1 Origin and phenotype of MDSC

Myeloid cells comprise a diverse array of cell types with

specialized functions that play critical roles in the innate immune

response to pathogens, maintaining tissue homeostasis, and

orchestrating inflammatory responses (1). However, under

pathological conditions such as cancer, autoimmunity, or chronic

infection, immature myeloid cells expand rapidly, remain in an

undifferentiated state, and acquire immunosuppressive properties

(2, 3). Based on their phenotype and suppressive activity, this

aberrant myeloid cell population has been termed myeloid-

derived suppressor cells (MDSC) (4). MDSC have been classified

into two major subsets based on their lineage: monocytic MDSC

(M-MDSC) and granulocytic or polymorphonuclear MDSC (PMN-

MDSC) (3, 5, 6). The M-MDSC subset shares phenotypic and

functional similarities with monocytes, whereas the PMN-MDSC

subset exhibits characteristics reminiscent of neutrophils. M-MDSC

and G-MDSC subsets are commonly identified using the following

phenotypic markers: HLA-DR-/loCD33+CD11b+CD14+CD15- (M-

MDSC) and CD11b+CD15+HLA-DRlowCD66b+ (G-MDSC) in

humans and CD11b+Ly6G −Ly6Ch i (M-MDSC) and

CD11b+Ly6G+Ly6Clo (G-MDSC) in mice (3). However, within

these broad categories, there is further diversity in terms of

surface marker expression and gene expression profiles (7–9).

Due to their potent suppressive effect on T cell responses, MDSC

represent a significant obstacle in both natural anti-tumor immunity

and cancer immunotherapy. Thus, MDSC interfere with the ability of

the immune system tomount an effective anti-tumor response (10–12).

Immunotherapy has emerged as a revolutionary approach to cancer

treatment (13, 14). Unlike traditional treatments such as chemotherapy

or radiation therapy, which target cancer cells directly, immunotherapy

harnesses the power of the immune system to fight cancer (13, 14). Due

to their immunosuppressive activity, MDSC play an important role in

dampening the efficacy of immunotherapy in cancer (15–18).

Therefore, targeting MDSC or neutralizing their immunosuppressive

effects represents a promising strategy to improve the efficacy of

immunotherapy in cancer (15, 16).

There is a growing body of evidence highlighting the important role

ofMDSC in regulating immune responses to various pathogens (19, 20).

Their potent ability to suppress effector immune cells can inhibit the

efficacy of the immune system to effectively control infections (19, 20).

This phenomenon is particularly relevant in the context of chronic

infections, where prolonged MDSC-mediated immunosuppression can

create a favorable environment for pathogen persistence and immune

evasion (21, 22). Thus, inhibition of MDSC function may potentially

enhance the efficacy of the immune system against infectious agents.

MDSC expansion and differentiation are influenced by a variety

of factors, including tumor-derived factors such as granulocyte-

macrophage colony-stimulating factor (GM-CSF) and granulocyte

colony-stimulating factor (G-CSF), and the signaling pathways

triggered by these molecules, such as STAT3 (23, 24).

Inflammatory mediators, including IL-1b, IL-6, and S1008/9 have

been shown to induce MDSC accumulation in tumors (25–29).

Emergency and/or extramedullary myelopoiesis may also be an

important source of MDSC during pathological conditions (6, 7).
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Myelopoiesis occurs under steady-state conditions within the bone

marrow microenvironment, ensuring the production of sufficient

neutrophils, monocytes, and other myeloid cells to maintain

immune surveillance (30). However, acute insults during

pathological conditions such as cancer or infection can trigger

emergency myelopoiesis, a rapid response mechanism aimed at

replenishing myeloid cells to combat the insult (31). In some cases,

when the capacity of the bone marrow is overwhelmed,

extramedullary myelopoiesis occurs, where hematopoietic activity

takes place outside the bone marrow, typically in the liver and

spleen (32). Both emergency and extramedullary hematopoiesis

have been shown to contribute to the expansion of MDSC observed

during chronic Staphylococcus aureus infection in mice (7), as well

as in other pathological conditions such as sepsis (33).

The reason why MDSC are arrested at an immature stage and

do not continue to mature is still a matter of debate. However, it

appears that metabolism may play a key role in the arrest of

maturation. In this regard, we have reported that an important

factor limiting MDSC maturation in infected tissue is nutrient

limitation in the microenvironment (7). Immature myeloid cells

require a significant amount of energy to mature into functional

immune cells. This high energy demand is necessary to support

various cellular processes such as cell division, protein synthesis,

and the development of specialized functions such as phagocytosis

and cytokines production (34). High consumption of nutrients such

as glucose can lead to its rapid depletion in the cellular

microenvironment. In this regard, we have recently reported an

association between high glucose consumption and disruption of

MDSC maturation processes (7).
2 Glucose metabolism fuels the
suppressive activity of MDSC

Every cell requires a constant supply of ATP and the synthesis of

macromolecules for essential cellular activities. To meet these energy

demands, cells rely on a network of interconnected pathways, including

glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative

phosphorylation (OXPHOS). Essentially, these metabolic pathways

form the backbone of cellular energy production and molecular

synthesis, ensuring the cell survival and functionality. In the case of

myeloid cells, different subsets exhibit distinct metabolic preferences to

support their diverse functions in the immune system (35). For example,

M1 macrophages, also known as classically activated macrophages,

typically rely on glycolysis as their primary metabolic pathway for

energy generation and exhibit low levels of OXPHOS and fatty acid

oxidation (FAO) (36). This preference for glycolysis is associated with

their proinflammatory functions, such as phagocytosis and the

production of proinflammatory cytokines such as interleukin-1b (IL-

1b), tumor necrosis factor-alpha (TNF-a), and interleukin-6 (IL-6). In

contrast, M2 macrophages, also known as alternatively activated

macrophages, are more dependent on FAO and OXPHOS for energy

production (36, 37). This metabolic preference is associated with their

anti-inflammatory and tissue repair functions, as well as their role in

resolving inflammation and promoting tissue homeostasis (36).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1461455
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Goldmann and Medina 10.3389/fimmu.2024.1461455
Neutrophils utilize a variety of metabolic pathways including the TCA,

OXPHOS, FAO, and pentose phosphate pathway (PPP), to meet their

energetic and functional requirements (38, 39). These pathways provide

the necessary energy, biosynthetic precursors, and production of

reactive oxygen species (ROS) essential for neutrophil activities such

as phagocytosis, respiratory burst, and chemotaxis (40).

MDSC have different metabolic profiles than mature myeloid

cells. In general, MDSC rely on glycolysis to meet their energy

needs. In this regard, the metabolic activity of MDSC has been

reported to be similar to that of cancer cells. Cancer cells rely on

glycolysis rather than OXPHOS for energy production, even in the

presence of oxygen, a phenomenon known as the “Warburg effect”

(41, 42). This metabolic adaptation allows cancer cells to generate

ATP and metabolic intermediates necessary for cell growth and

proliferation, while also providing building blocks for biosynthesis

(41, 42). In the presence of oxygen, glucose is metabolized by

enzymatic reactions in the cell cytoplasm to pyruvate. Pyruvate is

then transported to the mitochondria and enters the TCA cycle,

where it is oxidized to produce NADH and ATP. However, in

aerobic glycolysis, a significant proportion of the pyruvate that is

not transported to the mitochondria to enter the TCA cycle is

converted to lactate in the cytosol by the enzyme lactate

dehydrogenase (LDH) (43). The advantages of aerobic glycolysis

include the rapid generation of ATP and the production of

metabolic intermediates (43). In addition, lactate produced by

cancer cells induces acidification of the tumor microenvironment

and contributes to the ability of tumors to evade the immune system

and promote tumor progression (44).

Like cancer cells, MDSC rely heavily on aerobic glycolysis to

meet their energy needs and support their rapid proliferation (7,

45). MDSC also induce an immunosuppressive environment that

inhibits protective immune responses against tumor cells in the

context of cancer (45) and against pathogens in the context of

infection (7). Recently, our group has reported that MDSC

generated during chronic S. aureus infection can undergo aerobic

glycolysis, leading to the production of high levels of lactate (7).

This creates a lactate-rich microenvironment that can inhibit the

function of nearby immune cells, including CD4+ T cells, which

play a critical role in orchestrating the immune response against S.

aureus (46). Upon activation, CD4+ T cells must undergo specific

metabolic reprogramming to meet the energy demands associated

with proliferation and effector functions. Activated CD4+ T cells

switch their metabolism from OXPHOS to aerobic glycolysis,

similar to what cancer cells and MDSC do. This metabolic switch

allows CD4+ T cells to rapidly generate ATP and biosynthetic

intermediates required for cell proliferation, cytokine production,

and other effector functions (47–50). The lactate molecules

generated during aerobic glycolysis must be exported from

activated CD4+ T cells to maintain the redox balance and ensure

the continuation of glycolysis. Monocarboxylate transporters

(MCTs) are responsible for the export of lactate across the plasma

membrane. These transporter proteins facilitate the movement of

lactate together with protons (H+) across the membrane, driven by

their concentration gradients (51, 52). High concentrations of

extracellular lactate can interfere with CD4+ T cell activation by

reversing the lactate flux. We have provided evidence
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demonstrating that MDSC, which accumulate in high numbers

during chronic S. aureus infection, release elevated levels of lactate

into the tissue microenvironment, leading to the accumulation of

intracellular lactate in activated CD4+ T cells (46). When the

intracellular concentration of lactate in activated CD4+ T cells is

high, the lactate dehydrogenase catalyzes the reversible conversion

of lactate back to pyruvate. This process results in a redox shift from

NAD+ to NADH (53). As NAD+ is essential for maintaining the

activity of several enzymes involved in glycolysis, low levels of NAD

+ lead to a slowing or stoppage of the glycolytic process (53). This

results in inhibition of CD4+ T cell activation, proliferation, and

cytokine production, thereby suppressing their ability to control S.

aureus (46) (Figure 1).
3 Hypoxic conditions affect
MDSC metabolism

The metabolic phenotype of MDSC can change depending on

factors such as oxygen levels, nutrient availability, and the presence

of inflammatory mediators. Indeed, metabolic plasticity stands out

as a crucial aspect of MDSC. For example, MDSC often encounter

hypoxia (low oxygen levels) in tumor microenvironment and must

adapt their metabolic activity to these hypoxic conditions (54–56).

The main molecular mechanism underlying the cellular response to

hypoxia is mediated by the transcription factor hypoxia-inducible

factor 1 (HIF-1) (57, 58). HIF-1 controls the expression of a large

number of genes, including several involved in glucose transport

and metabolism (59). HIF-1 is a heterodimeric transcription factor

consisting of two subunits: HIF-1a and HIF-1b (60). HIF-1b is

constitutively expressed, whereas the stability and activity of HIF-

1a is regulated by oxygen levels (60). Under normoxic conditions

(normal oxygen levels), HIF-1a is hydroxylated by prolyl

hydroxylase enzymes, leading to its degradation via the ubiquitin-

proteasome pathway (61). However, under hypoxic conditions,

HIF-1a is stabilized and translocates to the nucleus, where it

forms a complex with HIF-1b (62). This HIF-1 complex then

binds to hypoxia response elements in the promoter regions of

target genes, activating their transcription and initiating various

adaptive responses to hypoxia (63). In the hypoxic tumor

environment, HIF-1a has been shown to induce upregulation of

the genes encoding arginase 1 and nitric oxide synthase with

concomitant downregulation of the gene encoding NADPH

oxidase 2 (64). These changes induced by HIF-1a in MDSC

enhanced their ability to suppress T cell functions in the tumor

environment (64).

It has also been reported that MDSC are able to display

phenotypic and functional characteristics of both classically

activated (M1-like) and alternatively activated (M2-like)

macrophages in tumor-bearing mice (65). Sirtuin 1 (SIRT1), also

known as NAD-dependent deacetylase sirtuin-1, appears to play a

pivotal role in dictating the fate of MDSC as they differentiate into

M1 or M2 phenotypes (66). SIRT1 plays a critical role in cellular

metabolism and stress response by acting as a metabolic sensor (67).

It regulates gene expression and cellular processes through its

deacetylase activity, which can affect chromatin structure and
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protein function (67). This ability allows SIRT1 to modulate several

physiological functions, including energy metabolism and stress

response (67). SIRT1 regulates MDSC differentiation into M1 or M2

phenotypes by targeting the HIF-1a pathway, thereby inducing

glycolytic reprogramming (66). Glucocorticoid receptor activation

has also been shown to promote MDSC suppressive activity by

inhibiting HIF-1a, thereby disrupting MDSC glycolytic activity and

metabolism (68).

HIF-1a has also been shown to influence MDSC during

Leishmania donovani infection (69). In this context, HIF-1a plays

an important role in promoting the establishment of chronic

infection (69). Monocytes differentiate into MDSC in the

chronically inflamed spleen of mice infected with L. donovani.

HIF-1a activation contributes to the immunosuppressive

environment of the inflamed spleen by enhancing the functions

of MDSC while dampening the ability of Th1 cells to control

Leishmania infection (69).

The mechanisms underlying the influence of hypoxia on

MDSC-mediated immunosuppression are summarized in Figure 2.
4 Interplay between lipid metabolism
and MDSC function

While glycolysis is the main metabolic pathway used by

MDSC to generate energy and precursors for biosynthetic

pathways, they can also utilize other energy pathways such as
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FAO. This pathway, also known as beta-oxidation, is a metabolic

process in which fatty acids are broken down to produce energy

(70, 71). FAO mainly takes place in the mitochondria of cells (70,

71). During this process, fatty acids are first activated in the

cytoplasm before they can be transported into the mitochondria

(72). This activation involves the conversion of a fatty acid into

fatty acyl-CoA by acyl-CoA synthetase (72). However, long-chain

fatty acyl-CoA molecules cannot cross the mitochondrial

membrane directly and must be transported via the carnitine

shuttle (73). In this process, the fatty acyl group is transferred to

carnitine by the enzyme carnitine palmitoyltransferase I located

on the outer mitochondrial membrane, forming fatty acyl-

carnitine (73). This compound is then transported across the

inner mitochondrial membrane by a translocase enzyme (73). On

the inner mitochondrial side, carnitine palmitoyltransferase II

transfers the fatty acyl group back to CoA, forming fatty acyl-

CoA, which undergoes beta-oxidation to produce ATP (73).

MDSC have been reported to upregulate fatty acids uptake and

increase FAO after tumor infiltration (74). This increase in lipid

metabolism appears to be related to the immunosuppressive

activity of MDSC, as inhibition of FAO reduces the inhibitory

effect of MDSC on T cells and suppresses the production of

inhibitory cytokines (74). Tumor-derived factors such as G-CSF

and GM-CSF, together with the resulting signaling cascade,

increase the expression of lipid transport receptors (75). This

increased lipid uptake leads to enhanced oxidative metabolism

and activation of ROS-mediated immunosuppressive mechanisms
FIGURE 1

Glycolysis-mediated immunosuppressive mechanisms of MDSC. LDH, lactate dehydrogenase; NAD+, oxidized nicotinamide adenine dinucleotide;
NADH, reduced nicotinamide adenine dinucleotide; OXPHOS, oxidative phosphorylation; TCA,tricarboxylic acid cycle. Created with BioRender.com.
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(75). Consequently, the immunosuppressive effect of MDSC could

be abrogated by deleting lipid transporters or by inhibiting the

underlying signaling pathways (75).

It has also been reported that activation of STAT5 by GM-CSF

induces high levels of fatty acid transport protein 2 (FATP2)

expression in human PMN-MDSC (76). FATP2 plays a critical

role in lipid metabolism by facilitating the uptake of long-chain

fatty acids, such as arachidonic acid, into the cells. Arachidonic acid

is a polyunsaturated fatty acid that serves as an important precursor

for the biosynthesis of several eicosanoids, including

prostaglandins. Prostaglandin E2, in particular, has been

implicated in the suppressive mechanisms of MDSC in tumors

(27, 77). Upregulation of FATP2 in human PMN-MDSC results in

increased uptake of arachidonic acid and production of

prostaglandin E2. Pharmacological inhibition of FATP2 has been

shown to abolish the suppressive effect of PMN-MDSC and delay

tumor progression in mice (76). This supports the idea that

targeting lipid metabolism in MDSC may enhance the efficacy of

cancer immunotherapy.

Figure 3 outlines the mechanisms by which lipid metabolism

contributes to MDSC-mediated immunosuppression.
5 MDSC function and amino
acid metabolism

An important mechanism used by MDSC to suppress the

activity of effector T cells is to deplete the microenvironment of

amino acids that are essential for T cell functionality (e.g. arginine,
Frontiers in Immunology 05
glutamine and tryptophan). L-arginine is critical for T cell

activation as it supports the synthesis of proteins and polyamines

necessary for cell growth and proliferation (78, 79). MDSC express

high levels of arginase 1 and nitric oxide synthase 2, which can

deplete L-arginine in the tissue and thereby inhibit T cell responses

(80). Arginase 1 catalyzes the conversion of arginine into ornithine

and urea. Therefore, increased arginase 1 activity may lead to

depletion of extracellular arginine. It has also been reported that

L-arginine depletion can cause down-modulation of CD3z (CD3

zeta chain) (81). CD3z (CD3 zeta chain) is a critical component of

the T cell receptor (TCR) complex and plays an essential role in

TCR signal transduction. Down-modulation of CD3z can impair

TCR signaling, thereby affecting T cell function and

immune responses.

MDSC can also promote immunosuppression by upregulating

indoleamine 2, 3-dioxygenase (IDO), which induces the expansion

of regulatory T cells (82–84). IDO is a cytosolic enzyme that

catalyzes the first and rate-limiting step in the breakdown of

tryptophan along the kynurenine degradation pathway (85). IDO

modulates T cell function through the catabolism of tryptophan, an

essential amino acid that must be obtained from the diet (86). The

degradation of tryptophan by IDO leads to local depletion of this

amino acid in the microenvironment. T cells are particularly

sensitive to tryptophan levels and reduced availability inhibits

their proliferation and induces cell cycle arrest in the G1 phase

(87). In addition, kynurenine metabolites generated during

tryptophan catabolism can induce the expression of forkhead box

P3 (FoxP3), which is critical for the differentiation and function of

regulatory T cells (88, 89). Kynurenines also inhibit retinoic acid
FIGURE 2

Immunosuppressive mechanisms of MDSC affected by hypoxia. HIF-1, hypoxia-inducible factor 1; SIRT1, irtuin 1; iNOS, inducible nitric oxide
synthase; ARG1, arginase 1; NO, nitric oxide; ROS, reactive oxygen radicals; HRE, hypoxia-responding elements. Created with BioRender.com.
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receptor-related orphan receptor-gt (RORgt), which promotes the

differentiation of Th17 cells (90).

Glutaminolysis, a metabolic process in which the amino acid

glutamine is broken down to produce energy and various metabolic

intermediates, has been shown to play a role in the maturation and

immunosuppressive activities of MDSC (91, 92). Thus, by

converting some of the carbon derived from glutamine to lactate,

MDSC are thought to contribute to the acidification of the tumor

microenvironment (91). Targeting glutaminolysis has therefore

been proposed as a way to improve the anti-tumor immune

response (93). Indeed, inhibition of glutamine metabolism in

MDSCs resulted in cell death and conversion to inflammatory

macrophages (93). Furthermore, blocking glutamine metabolism

also inhibited IDO expression, leading to a decrease in kynurenine

levels and inhibition of metastasis (93).

Figure 4 illustrates how amino acid metabolism supports the

immunosuppressive activities of MDSC.
6 Targeting MDSC metabolism to
improve cancer immunotherapy

Immunotherapy has been introduced in recent years as a

treatment for several types of cancer (14, 94). Several modalities

of immunotherapy are currently being investigated, including

monoclonal antibodies targeting tumor-associated antigens,

cancer vaccines, adoptive cell-based immunotherapies, and non-

specific enhancement of the immune system using interferons or
Frontiers in Immunology 06
toll-like receptor ligands (95). The aim of immunotherapy is to

stimulate immune cells to eliminate tumor cells, rather than directly

targeting the tumors themselves. However, many patients

experience limited benefit from immunotherapy and only a small

proportion of treated patients have shown improved survival (96).

One of the reasons for treatment failure is the presence of

immunosuppressive mechanisms in the tumor environment that

dampen the effectiveness of the anti-tumor immune response.

Therefore, a critical issue in improving the efficacy of

immunotherapy in cancer is overcoming the immunosuppression

in the tumor environment (14, 94). In this context, there is

increasing evidence that MDSC play a critical role in promoting

immunosuppression in several types of cancer (97, 98). As many of

the immunosuppressive mechanisms of MDSC are mediated by

their metabolic activity, combining immunotherapy with agents

that target MDSC metabolism could be an effective means of

enhancing the efficacy of cancer immunotherapy. Numerous

studies have been conducted to evaluate the efficacy of these

combined approaches (16). For example, the combination of IDO

inhibitors and immune checkpoint inhibitors holds promise as an

effective and well-tolerated approach to cancer therapy. As

mentioned above, the IDO enzyme plays a role in immune

suppression by catalyzing the breakdown of tryptophan to

kynurenine, which in turn suppresses T cell function and

promotes the development of regulatory T cells (82–84). Immune

checkpoint inhibitors, such as anti-PD-1 (programmed cell death

protein 1) and anti-CTLA-4 (cytotoxic T-lymphocyte-associated

protein 4) antibodies, work by blocking the checkpoints that cancer
FIGURE 3

Lipid metabolism-mediated immunosuppressive mechanisms of MDSC. G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-
macrophage colony-stimulating factor; STAT5, signal transducer and activator of transcription 5; PGE2, prostaglandin E2; FTA2, fatty acid transport
protein 2; CPT1, carnitine palmitoyltransferase I; CPT2, carnitine palmitoyltransferase II. Created with BioRender.com.
frontiersin.org
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cells use to evade immune detection (99). Therefore, combining

IDO inhibitors with immune checkpoint inhibitors may enhance

anti-tumor immunity because IDO inhibitors can prevent

tryptophan depletion in the tumor microenvironment. This can

restore the proliferation and function of T cells, making them more

effective in targeting tumor cells. In preclinical studies, blocking

both IDO1 and an immune checkpoint pathway showed more

effective control of tumor growth than inhibiting the immune

checkpoint alone (100, 101). A recent clinical trial demonstrated

favorable outcomes and improved survival in patients with

metastatic melanoma following treatment with a therapeutic

peptide vaccine targeting IDO and PD-L1 in combination with

nivolumab, a monoclonal antibody that acts as a checkpoint

inhibitor by binding to PD-1 on the surface of effector T cells

(102). An ongoing phase III trial is evaluating the IDO/PD-L1

vaccine in combination with the anti-PD-1 therapy pembrolizumab

in patients with advanced melanoma (NCT05155254). Other

clinical trials are evaluating the combination of IDO inhibitors,

including epacadostat, navoximod and BMS-986205, with immune

checkpoint inhibitors in cancer patients, with early results showing

that these combination therapies are well tolerated and have some

activity (103, 104). In addition, IDO inhibitors are being tested in

combination with radiotherapy, chemotherapy and anti-tumor

vaccines in clinical trials (105). Researchers are also investigating

dual IDO-TDO inhibitors and novel inhibitors of the Trp-Kyn-AhR

pathway, such as Kyn-degrading enzymes, direct AhR antagonists

and tryptophan mimetics (106).

Combination therapy including an anti-CD40 agonist with

celecoxib has been shown to reduce ARG1 expression in MDSC
Frontiers in Immunology 07
and improve survival in GL261 glioma bearing mice compared to

monotherapy alone (107).

As mentioned in previous sections, targeting the fatty acid

metabolism of MDSC has also been shown to inhibit their

immunosuppressive activity (74). In this regard, etomoxir, a

selective inhibitor of carnitine palmitoyltransferase 1, significantly

delayed tumor growth in several murine tumor models in a T cell-

dependent manner (74). The selective FATP2 inhibitor lipofermata,

used alone or in combination with checkpoint inhibitors, inhibited

PMN-MDSC activity and significantly delayed tumor progression

in mouse models (76). The transcription factors liver X receptors

(LXRb and LXRa) are additional targets related to lipid metabolism

in MDSC. As members of the nuclear hormone receptor family,

LXRs play a role in activating the transcription of genes involved in

cholesterol, fatty acid and glucose metabolism. LXR agonists have

the potential to inhibit tumor growth and survival while inducing

significant anti-tumor immune responses (108). In addition, the

combination of RGX-104 with various immunotherapies, such as

CAR-T and anti-PD-1 treatments, produced potent anti-tumor

immune responses in mouse tumor models (109). A multi-center

phase I dose-escalation trial of RGX-104, either alone or in

combination with chemotherapy or immune checkpoint

inhibitors, is currently ongoing in patients with lymphoma or

metastatic solid tumors (NCT02922764).

Adenosine is an important metabolic and immune checkpoint

regulator of tumor immunity (110). Several compounds targeting

different components of the CD39-CD73-A2A/BR axis are

currently in clinical trials as monotherapy or in combination with

immunotherapies, with preliminary data suggesting good
FIGURE 4

Immunosuppressive mechanisms of MDSC supported by amino acids metabolism. IDO, ndolamin-2,3-Dioxygenase; FOX P3, Forkhead box P3;
RORgt, retinoic acid receptor-related orphan receptor-gt; TCR, T cell receptor; CD3z, CD3 zeta chain. Created with BioRender.com.
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tolerability (111). In addition, these blocking agents can be

combined with other therapies such as radiotherapy and

chemotherapy to enhance their efficacy in cancer treatment (112,

113). Other potential strategies currently under investigation

include co-inhibition of CD39 and CD73 (114, 115), dual

inhibitors of A2AR and A2BR, and inhibition of both A2AR and

CD73 (114).

In summary, in the context of cancer, the combination of

s t r a t eg i e s t a rge t ing MDSC metabo l i c ac t i v i t y w i th

immunotherapeutic approaches holds promise for enhancing

anti-tumor immunity.
7 Future prospects and challenges

MDSC are a major obstacle to effective immunity not only

against tumors but also in other pathological conditions such as

chronic infections. As in the case of cancer, targeting these cells may

be a promising approach to enhance effective immunity and

improve the treatment of these diseases. In the context of chronic

infection, targeting MDSC metabolism offers several potential

benefits. For example, by reducing the suppressive capacity of

MDSC, the immune system can mount a more effective response

against persistent pathogens, leading to improved clearance of

infection and reduced disease burden. In addition, metabolic

targeting may also enhance the efficacy of existing treatments,

such as antibiotics and antiviral therapies, by creating a more

favorable immune environment. However, there are challenges in

implementing these strategies. Pathways are often shared by

different cell types, and systemic inhibition could have

unintended effects on other immune cells and tissues. It is

therefore essential to develop targeted delivery systems and

specific inhibitors that minimize off-target effects. For these

reasons, therapeutic targeting of MDSC in chronic infections is

currently less advanced than in cancer. While significant progress

has been made in the development and clinical testing of

therapeutic approaches targeting MDSC in the context of cancer,

similar efforts in chronic infections are still in their infancy. The
Frontiers in Immunology 08
complexity of the interactions between MDSC and the immune

system in the infection settings presents unique challenges.

Strategies such as metabolic modulation, inhibition of pathways

involved in MDSC expansion and function, and combination

therapies are being investigated. However, the translation of these

findings into effective clinical treatments for chronic infections

requires further investigation and development.
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