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Application of graft-derived
cell-free DNA for solid
organ transplantation
Wenqiang Zhang, Bin Liu, Dan Jia, Ruiyu Wang,
Hongliang Cao, Hao Wu, Zihao Ye and Baoshan Gao*

Department of Urology II, The First Hospital of Jilin University, Changchun, China
Monitoring the status of grafts and the occurrence of postoperative

complications, such as rejection, is crucial for ensuring the success and long-

term survival of organ transplants. Traditional histopathological examination,

though effective, is an invasive procedure and poses risks of complications,

making frequent use impractical. In recent years, graft-derived cell-free DNA

(gd-cfDNA) has emerged as a promising non-invasive biomarker. It not only

provides early warnings of rejection and other types of graft injury but also offers

important information about the effectiveness of immunosuppressive therapy

and prognosis. gd-cfDNA shows potential in the monitoring of organ transplants.

The early, real-time information on graft injury provided by gd-cfDNA facilitates

timely individualized treatment and improves patient outcomes. However, the

progress of research on gd-cfDNA varies across different organs. Therefore, this

article will comprehensively review the application and findings of gd-cfDNA in

monitoring various solid organs, discussing the advantages, limitations, and some

future research directions to aid in its clinical application.
KEYWORDS

graft-derived cell-free DNA, gd-cfDNA, organ transplantation, graft injury, rejection,
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1 Introduction

Solid organ transplantation is a crucial treatment for end-stage organ failure. However,

post-transplantation, there is a risk of occurrence of transplant-related complications (such

as rejection) and graft function decline, which may lead to graft loss and reduced patient

survival rates (1). Therefore, monitoring the status of transplanted organs is vital for the

long-term survival of recipients. Only more comprehensive monitoring of the grafts can

reduce the happening of adverse outcomes and improve patient survival rates. The current

gold standard for assessing graft health remains histopathological biopsy. However, due to

its invasive nature, high cost, and associated risk of complications, its clinical application is

limited, making it unsuitable for frequent routine monitoring (2, 3). Other indicators for

monitoring organ function, such as serum creatinine for kidneys and transaminases for the

liver, have low sensitivity to graft injury and exhibit a lag in response (4). Thus, there is
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currently a lack of reliable, low-risk, and suitable methods for

repeated monitoring. In recent years, graft-derived cell-free DNA

(gd-cfDNA), released by damaged graft cells, has emerged as a novel

non-invasive biomarker for monitoring post-transplantation

rejection and other types of graft injury, providing a new option

for continuous, minimally invasive monitoring of organ transplants

(5). However, the application of gd-cfDNA is still in the early

exploratory stages and has not yet reached a consensus. This article

will comprehensively review the current research developments

across various types of transplanted organs.
2 Production of gd-cfDNA

In the cell nucleus, DNA wraps around histones to form

nucleosomes. During cell damage, apoptosis, or necrosis,

chromosomal DNA undergoes degradation and release. Initially,

DNA is cleaved into large fragments (50–300 kb), followed by

further degradation, resulting in the release of smaller DNA

fragments (180–200 bp) and nucleosomes into the blood. These

DNA fragments are eventually cleared in the liver and kidneys (6–8).

The half-life of theseDNA fragments ranges from approximately 15 to

90 minutes (9). These double-stranded DNA fragments circulating in

the plasma are called cfDNA, also known as circulating free DNA or

extracellularDNA.Thediscoveryof cfDNAdates back to1948 (10).As

a reliable “liquid biopsy”method, cfDNAhasbeenwidelyused infields

such as prenatal diagnosis and cancer monitoring (11, 12).

gd-cfDNA is a specific subcategory of cfDNA and refers to the

cfDNA derived from graft cells circulating in the recipient’s plasma

after transplantation. The majority of cfDNA in the recipient’s

blood (over 95%) originates from the recipient’s apoptotic

hematopoietic cells (13). Compared to hematopoietic-derived

DNA (with a peak length of approximately 166 bp), non-

hematopoietic-derived DNA is shorter, with gd-cfDNA primarily

ranging from 105 to 145 bp (14). The level of graft-derived cell-free

DNA (gd-cfDNA) is typically quantified in two ways: relative

quantification as gd-cfDNA(%) and absolute quantification as gd-

cfDNA(cp/mL), which refers to the percentage of gd-cfDNA

relative to total circulating cfDNA and the number of gd-cfDNA

copies per milliliter of serum, respectively (15). When the graft is

stable, the amount of gd-cfDNA released from apoptotic graft cells

constitutes only a tiny fraction of the total cfDNA in the recipient’s

blood, and it is shorter in length than recipient-derived cfDNA (13,
Abbreviations: gd-cfDNA, graft-derived cell-free DNA; cfDNA, cell-free DNA;

ddPCR, Droplet digital PCR; NGS, Next-generation sequencing; qPCR,

quantitative PCR; AR, Acute rejection; EMB, endomyocardial biopsy; ROC-

AUC, Receiver Operating Characteristic - Area Under the Curve; AMR,

antibody-mediated rejection; ACR, Acute Cellular Rejection; TCMR, T-

cellmediated rejection; SPK, pancreas-kidney transplantation; DSA,

Donorspecific antibodies; dnDSA, De novo donor-specific antibodies; PGD,

Primary graft dysfunction; CAV, Cardiac allograft vasculopathy; CLAD,

Chronic lung allograft dysfunction; RVI, Respiratory viral infection;

BKPyVAN, BK polyomavirus-associated nephropathy; IF/TA, Interstitial

fibrosis/ tubular atrophy; ATN, Acute tubular necrosis; GVHD, Graft-versus-

host disease; PCT, procalcitonin.
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14, 16). When the graft experiences ischemia-reperfusion injury,

rejection, or infection, resulting in graft cell necrosis, varying

amounts of gd-cfDNA are released into the recipient’s plasma.

(Figure 1). The extent of gd-cfDNA elevation correlates with the

type and severity of graft injury, making Changes in gd-cfDNA

levels a dynamic indicator for monitoring graft injury (17). Since

gd-cfDNA has an overall negative charge, it cannot be filtered by the

glomerulus (18); it is typically measured in blood. But unlike other

organ transplants, in kidney transplantation, if there is tubulitis or

interstitial inflammation, gd-cfDNA can also be excreted through

the kidneys, leading to elevated gd-cfDNA levels in urine (8, 19).

Thus, urinary gd-cfDNA levels can also reflect the status of the

transplanted kidney. Overall, by detecting gd-cfDNA in blood or

urine samples, gd-cfDNA can dynamically and early reflect the graft

status, providing clinicians with a basis for decision-making (20).
3 Detection methods of gd-cfDNA

In 1998, Lo et al. (21) identified Y chromosome-specific genes

from donors in female recipients using polymerase chain reaction

(PCR). However, at that time, the detection method was limited to

specific cases where the donor and recipient were of different sexes.

Currently, gd-cfDNA detection methods can be categorized into

targeted and random approaches (Table 1). The quantitative

detection of gd-cfDNA primarily relies on genetic markers,

typically single nucleotide polymorphisms (SNPs), to differentiate

between donor and recipient alleles (28). The development of

quantitative techniques has provided diverse options for clinical

practice. Real-time quantitative PCR (qPCR), as an early commonly

used technique, is characterized by its simplicity, low cost, and rapid

processing time, though it has relatively lower sensitivity and

specificity (22, 29). Droplet digital PCR (ddPCR) has high

sensitivity and accuracy compared to qPCR, but it may require

more expensive reagents and equipment, and data analysis and

interpretation may take longer (22, 30). Next-generation

sequencing (NGS) technology, with its ability to sequence

thousands of targets simultaneously, provides high sensitivity and

accuracy for detecting complex genetic variations and unknown

sequences (31). This capability makes NGS particularly

advantageous in multiple transplants, multi-organ transplants,

and monitoring rejection and infection (24, 32, 33). Despite the

challenges of cost, technical complexity, and analysis time

associated with NGS (24, 34, 35), its capability in gd-cfDNA

monitoring cannot be overlooked. The turnaround time for

ddPCR is shorter, with results typically available in one working

day, whereas NGS requires 2–3 working days (36). These methods

can provide relative quantification in relation to a calibrator, but

only ddPCR can achieve absolute quantification (37).
4 Comparison of gd-cfDNA with
common monitoring indicators

Histopathological biopsy remains the current gold standard for

organ transplant monitoring and diagnosis, but it requires
frontiersin.org
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TABLE 1 Comparison of targeted approach and random approach.

Approach Method Technology Measurement Genotyping
required

Targeted Targeted approaches in ddPCR or targeted NGS use preselected SNPs with high minor
allele frequency, increasing the chance of donor-recipient allele differences. If the
recipient is homozygous for an SNP, any alternative allele fragment is from the graft, so
only a few SNPs are needed, and donor genotyping isn’t required (22, 23).

PCR-based with
ddPCR
read-out

TheraSure (22) Recipient

PCR-based with
NGS read-out

AlloSure (24) or
Prospera (25)

Not required

Random Random approaches use adapter ligation and NGS to sequence dsDNA fragments with
SNP markers directly from plasma. In this method, the donor and recipient are
genotyped, often with SNP-chip technology, to assign sequencing reads. Alternatively,
the gd-cfDNA fraction can be estimated using a statistical model that considers
population allele frequency, donor-recipient kinship, and sequencing/genotyping error
rates, eliminating the need for donor genotyping (23, 26).

Ligation-based Transplant
Rejection
Assessment using
gd-cfDNA
(TRAC) (27)

Recipient or
Donor
and Recipient
F
rontiers in Imm
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FIGURE 1

The Production and elevation of gd-cfDNA: When the graft is stable, gd-cfDNA in the plasma primarily originates from the apoptosis of graft cells,
constituting only a small portion of the total cfDNA in the recipient’s blood and is shorter in length compared to recipient-derived cfDNA. However,
in cases of ischemia-reperfusion injury, rejection, infection, or other causes leading to graft cell necrosis, more gd-cfDNA will released into the
recipient’s bloodstream, resulting in an increase in quantification of gd-cfDNA. (By Figdraw).
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operation by specialized medical personnel (38, 39). Moreover,

approximately 25% of kidney biopsy samples lack sufficient

glomeruli, especially when using finer biopsy needles, which may

increase the likelihood of requiring repeated punctures and thus

elevate unnecessary complications risk (40). Additionally, biopsy

sampling captures only a few glomeruli and a limited number of

renal tubules from a localized area, leading to sampling errors and

an incomplete understanding of the overall condition of the kidney.

Studies have shown that 43% of clinically indicated biopsies and

65% of protocol biopsies are unnecessary (41). Some biomarkers

used to monitor graft function, such as plasma creatinine, can

measure glomerular function but are not sensitive indicators of graft

injury. By the time complications like rejection lead to a significant

rise in plasma creatinine, substantial tissue damage may have

already occurred in the transplanted kidney (42). Similarly, other

commonly used indicators for monitoring organ function also have

some limitations. (Table 2).

Donor-specific antibody (DSA) is a crucial biomarker for

predicting the development of antibody-mediated rejection

(AMR) and assessing graft survival (67). However, limitations in
Frontiers in Immunology 04
DSA detection—such as variability in detection methods,

sensitivity, and clinical significance standards—restrict its role in

rejection (68, 69). Although increasing sensitivity of DSA detection

assays, a significant proportion of patients with the same histologic

picture of ABMR, do not have detectable circulating DSA (70, 71).

A recent kidney transplant study indicated that gd-cfDNA might be

a better predictor of AMR than DSA. In that study, DSA was

frequently negative in both molecular (56%) and histologic (51%)

AMR. In AMR, gd-cfDNA(%)≥1.0 was more frequent (75%) than

DSA positivity (44%). Moreover, all AMR patients, DSA-positive or

DSA-negative, showed elevated gd-cfDNA levels (mean 1.88% vs.

0.32% in the non-rejection group) (72). Some studies have

demonstrated a correlation between elevated gd-cfDNA levels and

the occurrence of DSA, allowing for the prediction of DSA

development. In heart transplantation, gd-cfDNA levels were

significantly higher in patients who experienced De novo donor-

specific antibodies (dnDSA) compared to those who did not (0.34%

vs. 0.06%) and were elevated a median of 20 days before dnDSA was

detected (73). In kidney transplant recipients, 40% (17/42) of

patients with gd-cfDNA ≥0.5% developed dnDSA, compared to
TABLE 2 Limitations of common monitoring indicators and findings of gd-cfDNA research.

Organs Indicator Limitations Findings of gd-cfDNA

Liver Biopsy Risk of bleeding, infection, sepsis, and bile
leak (43)

Early predictive value: peaked 1–2 weeks before
liver biopsy diagnosis of AR (44).

Liver function tests Inability to accurately assess rejection and
infection (45, 46);
Liver enzyme half-lives are long, with aspartate
aminotransferase (AST) at 17 hours and alanine
aminotransferase (ALT) at 47 hours, resulting in
slow clearance and lag (47)

Short half-life and increased 4–6 days before
aminotransferase elevation (48, 49).
The ROC-AUC for diagnosing acute rejection
(AR) was 0.99, outperforming alanine
aminotransferase (0.86), alkaline phosphatase
(0.66), g-glutamyl transferase (0.80), and
bilirubin (0.35) (50).

Kidney Biopsy High incidence of complications such as
hematuria, perirenal hematoma, and
arteriovenous fistula (51)

Provides more comprehensive graft information
when combined with Banff scoring (52).
Increased 30 days before histological
changes (27).

Serum creatinine, proteinuria, and eGFR Low specificity and lag in distinguishing
rejection from infection (53)

ROC-AUC for rejections was 0.80, significantly
higher than serum creatinine (0.50) and eGFR
(0.74) (25, 54).

Lung Biopsy Risk of bleeding, pneumothorax, and mediastinal
emphysema (55)

Increased an average of 2.8 months before biopsy
and lung function tests showed
abnormalities (56).

Bronchoscopy Due to complications such as accidental bleeding
and injury, radiological diagnosis of graft injury
is often relied upon (57)

High sensitivity and specificity for detecting
clinically asymptomatic graft injury (31).

Heart Biopsy Risk of cardiac perforation, valvular damage, and
nerve injury (39)

Detected graft injury 0.5–3.2 months before
biopsy-confirmed rejection (58).

Left ventricular ejection fraction Typically occurs at a late stage, with low
sensitivity for monitoring rejection (59)

Detects all rejection types before clinical
dysfunction occurs (35).

Troponin, B-type Natriuretic Peptide, C-
Reactive Protein, etc.

Limited monitoring value, no longer used for
rejection screening (60–62)

High sensitivity and ability to distinguish
rejection types (63).

Pancreas Biopsy Risk of infection, elevated blood amylase, and
pancreatic fluid leakage (64)

It can differentiate between pancreatic rejection
and pancreatitis (65).

Secretory function indicators, such as
amylase, HbA1c, C-peptide, etc.

Low specificity; pancreatic exocrine function may
be normal, and elevation may not accurately
reflect graft status (65)

ROC-AUC for diagnosing acute pancreatic
rejection (0.89) significantly outperformed lipase
(0.74) and amylase (0.46) (66).
ROC-AUC, Receiver Operating Characteristic - Area Under the Curve; DSA, Donor-specific antibody.
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only 2.7% (1/37) of patients with gd-cfDNA <0.5%, showing a

significant difference (74). Kidney transplant recipients with gd-

cfDNA levels of 0.5% or higher have nearly a threefold increased

risk of developing dnDSA, with levels rising a median of 91 days

before the identification of DSA (interquartile range, 30–125 days)

(54). Similarly, in heart transplantation, among 613 DSA samples

paired with gd-cfDNA levels, gd-cfDNA greater than 0.15% was

associated with a fourfold increase in the incidence of dnDSA in the

first year post-transplantation (75). However, research on the

diagnostic performance of gd-cfDNA and DSA in rejection

remains limited, and further studies are needed to confirm

their roles.

gd-cfDNA is directly derived from the graft and has a short

half-life, providing high sensitivity to tissue damage. The minimally

invasive nature of blood or urine sampling for gd-cfDNA testing

further adds to its advantages (5, 72). From an economic

perspective, gd-cfDNA monitoring also offers substantial benefits.

The estimated total cost of a kidney biopsy is approximately $3,931

(76), and the average cost of an endomyocardial biopsy (EMB) after

heart transplantation is as high as $7,918 (77). If biopsy-related

complications occur (such as hospitalization and hematoma

evacuation), additional costs can increase by an average of

$10,743 (78). In comparison, the cost of ddPCR for the first

year is about $4,012 (including testing on days 7 and 14 post-

transplant, monthly testing for the first 6 months, and quarterly

testing thereafter). In subsequent years, quarterly testing with

ddPCR costs around $1,604 (53). The cost difference and

risk considerations make gd-cfDNA a valuable non-invasive

monitoring method in managing organ transplant recipients.

It is important to note that gd-cfDNA testing cannot yet fully

replace pathological biopsy as the gold standard for diagnosing

rejection; it serves as a complementary test or routine monitoring

tool. Compared to creatinine, gd-cfDNA more effectively guides the

timing and necessity of clinical biopsies, significantly reducing the

number of biopsies and associated risks (37).
5 Baseline levels of gd-cfDNA

The baseline level of gd-cfDNA is the stable value of gd-cfDNA

observed in the recipient’s blood in the early post-transplant period

after the concentration of gd-cfDNA has declined from the initial

peak caused by surgical trauma and ischaemia-reperfusion injury. It

is critical for monitoring the health of the graft, as deviations from

this baseline may be indicative of graft injury, such as rejection (22,

79). The baseline gd-cfDNA levels are influenced by several factors,

including the type of transplanted organ, the recipient’s immune

response, and the extent of surgical trauma during transplantation.

The baseline levels vary by organ type. The speed at which elevated

gd-cfDNA levels return to baseline also varies among individuals

and types of transplanted organs. Table 3 summarizes the baseline

levels of gd-cfDNA found in current studies after various organ

transplants and the recovery Times to baseline levels (22, 80, 81).

Pancreas transplantation has higher risks for undesirable immune

response and complications compared with other types of organ

transplantation, which may contribute to the relatively slow return
Frontiers in Immunology 05
to gd-cfDNA baseline levels after pancreas transplantation, but

more research is needed to discover the exact reasons for this (62,

63). Furthermore, baseline levels of gd-cfDNA in liver and lung

transplants are slightly higher than in kidney and heart transplants,

possibly due to difference in the number of cells in the graft tissue

(22). In recipients of stable bilateral lung transplants, the median

gd-cfDNA level is higher than those of single lung transplants

(0.46% vs. 0.15%) (82).
6 The role of gd-cfDNA in
organ transplantation

6.1 gd-cfDNA and rejection

Rejection remains a severe complication affecting graft function

and recipient survival post-transplantation. Timely diagnosis and

treatment are vital to ensuring successful transplantation and long-

term survival (83). During graft rejection, gd-cfDNA (%) levels

increase significantly (84), and this rise occurs earlier than other

indicators, such as serum creatinine and transaminases (85).

Studies indicate that for every 1% increase in gd-cfDNA levels,

the risk of rejection increases 3.3-fold, with an overall rejection risk

ratio of 1.89 (54). gd-cfDNA levels are significantly positively

correlated with the type and severity of graft injury and Banff

rejection scorings (23, 86–89). For instance, in kidney

transplantation, the median gd-cfDNA in the non-rejection group

is 0.3%, while in AMR, it is 2.9%, and in T-cell-mediated rejection

(TCMR), it is 1.2%, with the highest levels observed in AMR (5).

This may be due to AMR being the most severe and destructive

form of immune-mediated graft injury, leading to more cell necrosis

and the release of gd-cfDNA (90). In reflecting the severity of

rejection, gd-cfDNA levels post-liver transplantation are 9.1%,

12.1%, and 28.6% in mild, moderate, and severe acute rejection

(AR), respectively, significantly higher than the 0.16% in the non-

rejection group and differences in gd-cfDNA levels exist among AR

patients of varying severity (91). gd-cfDNA as a non-invasive

marker for allograft rejection monitoring has the potential to be a

valuable non-invasive marker for allograft rejection monitoring and

has already been utilized by the International Society for Heart and

Lung Transplantation (ISHLT) for graft rejection monitoring

(92–94).

To better use gd-cfDNA for monitoring and identifying

rejection post-organ transplantation, different studies have set
TABLE 3 Baseline levels of gd-cfDNA and recovery times for
various organs.

Organs Baseline levels Recovery times

Liver 3.3%-5.0% 1-2 weeks

Kidney 0.3%-1.2% 1-2 weeks

Lung 1.0%-3.0% 2-3 weeks

Heart 0.1%-0.5% 1-2 weeks

Pancreas 0.1%-1.0% 1 month
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varying gd-cfDNA thresholds to analyze diagnostic efficacy for graft

injury (Table 4). In patients with stable graft status during the first

year after liver transplantation, a 10% threshold demonstrated

higher diagnostic efficacy for rejection than traditional liver

function tests (LFTs) conducted on the same day (48). In kidney

transplantation, 0.5%–1.0% thresholds showed good diagnostic

performance for rejection, outperforming serum creatinine and

eGFR (25, 53, 54). After lung transplantation, gd-cfDNA levels

below 1.0% help exclude AR (102). In heart transplantation, when

gd-cfDNA does not exceed 0.25%, there is a high confidence that
Frontiers in Immunology 06
rejection has not occurred, and this threshold is widely applied

clinically (63). There is a lack of research on gd-cfDNA monitoring

after pancreas-only transplantation. However, after simultaneous

pancreas-kidney transplantation (SPK), a gd-cfDNA threshold of

70 cp/mL has been effectively used to detect early pancreatic graft

rejection (66).

It is important to note that plasma gd-cfDNA levels are

relatively low in early Banff 1A and borderline TCMR in kidney

transplants. The median gd-cfDNA level in TCMR patients is 0.7%,

but it is only 0.20% in borderline TCMR patients (Banff t1/i1), even
TABLE 4 Diagnostic efficacy of different gd-cfDNA thresholds in graft injury.

Organs First
author,
Year

Reference Sample
types

Injury
types

Thresholds ROC-
AUC

Sensitivity Specificity PPV NPV

Kidney Sigdel, 2013 (95) Urine AR 3 cp/
mg creatinine

0.80 81.00% 75.00% NA NA

Oellerich, 2019 (37) Plasma Rejection 0.43% 0.73 73.00% 69.00% 12.00% 98.00%

Bu, 2022 (54) Plasma Rejection 0.50% 0.80 78.00% 71.00% 50.00% 90.00%

Huang, 2018 (96) Plasma Rejection 0.74% 0.71 79.40% 72.40% 77.10% 75.00%

Huang, 2018 (96) Plasma AMR 0.74% 0.82 100.00% 71.80% 68.60% 100.00%

Bloom, 2017 (5) Plasma AR 1.00% 0.74 59.00% 85.00% 61.00% 84.00%

Bloom, 2017 (5) Plasma AMR 1.00% 0.87 81.00% 83.00% 44.00% 96.00%

Sigdel, 2018 (25) Plasma AR 1.00% 0.87 88.70% 72.60% 51.90% 95.10%

Graver, 2023 (27) Plasma AR 0.5%-1% NA 50%-100% 69%-96% 12%-
77%

75%-
98%

Oellerich, 2021 (53) Plasma Rejection 0.74%-1.0% 0.74 80.00% 76.00% 56.00% 90.00%

Whitlam, 2019 (97) Plasma AMR 21 cp/mL 0.92 90% 88% 60% 98%

Oellerich, 2019 (37) Plasma Rejection 52 cp/mL 0.83 73.00% 73.00% 13.00% 98.00%

Liver Levitsky, 2022 (85) Plasma AR 5.30% 0.95 87.00% NA NA 100.00%

Schütz, 2017 (48) Plasma AR 10.00% 0.97 90.30% 92.90% NA NA

Fernández-
Galán, 2022

(44) Plasma AR 13.80% 0.77 85.70% 63.30% 35.30% 95.50%

Levitsky, 2022 (85) Plasma AR 20.40% 0.71 66.70% NA NA 87.80%

Zhao, 2021 (98) Plasma Pediatric
Rejection

28.70% 0.88 72.70% 94.70% 80.00% 92.30%

Zhao, 2021 (98) Plasma Pediatric
Rejection

2076 cp/mL 0.84 81.80% 81.90% 56.20% 93.90%

Cox, 2022 (91) Plasma TCMR 33.50% 0.73 NA 97.00% NA 86.10%

Goh, 2019 (50) Plasma AR 898 cp/mL 0.99 83.30% 100.00% 100.00% 87.70%

Lung Agbor-
Enoh, 2018

(56) Plasma Rejection 0.50% 0.80 78.00% 71.00% 50.00% 90.00%

Jang, 2021 (79) Plasma AR 0.50% 0.89 95.00% 65.00% 85.63% 92.92%

Khush, 2021 (99) Plasma AR 0.85% 0.67 55.60% 74.80% 70.00% 63.04%

Sayah, 2020 (100) Plasma AR 0.87% 0.72 73.10% 52.90% 60.78% 65.71%

DeVlaminck,
2015

(101) Plasma AR 1.00% 0.90 100.00% 73.00% 83.80% 88.10%

(Continued)
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lower than the 0.23% in the non-rejection group, leading to poor

diagnostic accuracy (54). This may be because borderline and Type

I (IA and IB) TCMR primarily manifest as tubulitis and interstitial

inflammation, damaging tubular epithelial cells, which increases

urinary gd-cfDNA levels but has a smaller effect on plasma gd-

cfDNA levels (68, 108). Therefore, it is recommended to

simultaneously test plasma and urinary gd-cfDNA in kidney

transplant patients for a comprehensive assessment.

In lung transplant recipients, gd-cfDNA (%) median levels

significantly increase in patients with AR (12.0%), higher than in

stable patients (1.1%). After the resolution of rejection, gd-cfDNA

levels decrease to the level in the stable group (57). Other study has

also shown that after early aggressive treatment of AR, gd-cfDNA

levels gradually decline and return to lower levels (<0.5%),

providing crucial information for monitoring the efficacy of

rejection treatment (109).
6.2 gd-cfDNA and other types of
graft injury

gd-cfDNA is not a specific marker for rejection and is also

associated with various types of graft injury, though the degree of

elevation varies, which can help in differentiation (110) (Table 5).

Furthermore, not all types of infections result in elevated gd-cfDNA

levels. For instance, cytomegalovirus infections (e.g., cytomegalovirus-

related hepatitis) do not cause direct graft injury and therefore do not

lead to an increase in gd-cfDNA levels (33).
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BK polyomavirus-associated nephropathy (BKPyVAN) is also a

severe complication that can lead to graft dysfunction and loss in

kidney transplantation. BKPyVAN is themost severe stage of BK virus

infection, causing the death of graft kidney cells and releasing high

levels of gd-cfDNA (116). However, BKPyVAN shares features with

TCMR, especially Banff IA and IB TCMR, both characterized by

tubulointerstitial inflammation and graft dysfunction (68, 117). The

standard diagnosis of BKPyVAN is through histopathological

detection of Simian virus 40 (SV40) in kidney biopsy tissue (118).

However, due to the focal nature of BKPyVAN lesions, there is a high

false-negative rate in biopsies (119), making it difficult to distinguish

between the two when SV40 staining is negative. Since the treatment

principles for BKPyVAN and TCMR are entirely different, there is an

intense need for more precise diagnostic techniques. Fortunately,

elevated urinary gd-cfDNA levels are more significantly associated

with BKPyVAN, aiding in differentiation (110, 120). Although

BKPyVAN and Type I TCMR have similar histological features,

biopsy-confirmed BKPyVAN recipients have significantly higher

urinary gd-cfDNA (%) and concentrations than those with Type I

TCMR (median 68.4% vs. 55.3% and 10.4 ng/mL vs. 6.1 ng/mL,

respectively) (117). This might be because BKPyVAN primarily

infects tubular epithelial cells, leading to the kidney cell lysis and the

release of gd-cfDNA into the tubular lumen, which is then excreted in

the urine (121, 122). Whereas the TCMR mainly results in

inflammatory cell infiltration rather than cell lysis (68). Shen et al.

(117) identified a urinary gd-cfDNA concentration threshold of 7.81

ng/mL, which may effectively distinguish confirmed BKPyVAN from

Type I TCMR.
TABLE 4 Continued

Organs First
author,
Year

Reference Sample
types

Injury
types

Thresholds ROC-
AUC

Sensitivity Specificity PPV NPV

Keller, 2022 (102) Plasma AR 1.00% 0.82 73.90% 87.70% 43.40% 96.50%

Keller, 2022 (102) Plasma AR 1.10% 0.86 78.00% 83.00% 81.88% 79.14%

Sorbini, 2022 (103) Plasma AR 1.25% 0.87 80.70% 73.00% 75.47% 80.00%

Pedini, 2023 (84) Plasma AR 1.72% 0.80 NA NA 75.00% 91.40%

Trindade,
2023

(104) Plasma ALAD 0.85%-1% 0.87 87.00% 78.00% 74.00% 89.00%

Heart Khush, 2021 (105) Plasma AR 0.15% NA 55.90% 71.50% 7.80% 97.40%

Kim, 2022 (106) Plasma AR 0.15% 0.86 78.50% 76.90% 97.30% 25.10%

Khush, 2021 (105) Plasma AR 0.20% 0.64 44.10% 80.40% 8.90% 97.10%

Agbor-
Enoh, 2021

(58) Plasma AR 0.25% 0.92 NA NA NA 99.00%

Kittleson, 2021 (63) Plasma AR 0.25% 0.92 81.00% NA NA 99.00%

Holzhauser,
2023

(3) Plasma AR 0.25% 0.92 81.00% 85.00% NA 99.20%

Borkowski,
2024

(107) Plasma AR 0.25% NA NA NA NA 99.00%
front
AR, Acute Rejection; AMR, Antibody Mediated Rejection; TCMR, T-cell-mediated rejection; ALAD, Acute lung allograft dysfunction; NA, not available; ROC-AUC, Receiver Operating
Characteristic - Area Under the Curve; PPV, Positive predictive value; NPV, Negative predictive value.
iersin.org

https://doi.org/10.3389/fimmu.2024.1461480
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1461480
6.3 Monitoring immunosuppressive therapy
with gd-cfDNA

Organ transplant recipients require long-term immunosuppression

to prevent immune rejection (1). The application of gd-cfDNA in

monitoring the effectiveness of immunosuppressive therapy is gaining

increasing attention, particularly indetecting rejectiondue to inadequate

immunosuppression, where gd-cfDNA outperforms traditional

therapeutic drug monitoring (53). Given the high variability in

individual sensitivity to immunosuppressive drugs, maintaining an

immunosuppressive therapeutic window through drug concentration
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monitoring may not be suitable for every patient. Moreover, there is a

significant difference in drug concentrations between blood and

lymphocytes for every patient, meaning that immunosuppressant

levels may not accurately reflect the drug’s impact on immune cells

(123–125). gd-cfDNA levels can predict damage before the onset of

severe AR symptoms; if immunosuppressant drug levels are below the

therapeutic range at this time, it indicates a need to increase the

dosage (85).

Oellerich et al. (126) simultaneously measured gd-cfDNA levels

and tacrolimus trough concentrations in liver transplant patients,

finding that when drug concentrations were in the therapeutic
TABLE 5 Relationship between different types of graft injury and gd-cfDNA.

Organs Injury types Findings

Liver Hepatitis C virus infection Compared to 88 recipients with stable graft function (median gd-cfDNA of 3.3%), 17 recipients infected with hepatitis
C virus (5.9%) showed a slight increase, which was lower than the 17 patients in the AR group (29.6%), with
statistically significant differences between each group (48).

Graft-versus-host
disease (GVHD)

GVHD lacks sensitive and specific biomarkers for assessing the immune status of solid organ recipients; 97% of
granulocytes in the blood were observed to be of donor origin in a patient who developed GVHD, with a higher
proportion of T cells and B cells, and significantly elevated gd-cfDNA levels (39.8%). After aggressive treatment, the
levels of gd-cfDNA (%) and donor-derived immune cells decreased, indicating that gd-cfDNA might be a promising
biomarker for monitoring GVHD and treatment efficacy (111).

Infection and drug-induced
liver injury

All 49 recipients in the study developed complications. Among the 11 patients with rejection, the median gd-cfDNA
was 41.7%, 16.6% in the 10 patients with EBV infection, 11.2% in the 22 patients with CMV infection, and 7.8% in
the 6 patients with drug-induced liver injury. There was a significant difference between the rejection group and the
other groups, but no statistical difference among the other three groups; gd-cfDNA can distinguish infection and
drug-induced liver injury from rejection (98).

Kidney Fibrosis/tubular atrophy and
acute tubular necrosis

Among 189 kidney transplant patients, the median gd-cfDNA was 0.29% in 83 stable patients, 0.57% in 15 patients
with rejection, 0.46% in 24 patients with interstitial fibrosis/tubular atrophy (IF/TA), and 0.46% in 29 patients with
acute tubular necrosis (ATN). There were significant differences between the three groups with complications and the
stable group; IF/TA also showed significant differences compared to the other two groups. Therefore, elevated gd-
cfDNA is associated not only with rejection but also with IF/TA and ATN (37).

Acute tubular necrosis and
acute pyelonephritis

Increases in gd-cfDNA (%) (>0.88%) were significantly associated with acute tubular necrosis and acute
pyelonephritis; however, there was no correlation with BKV or CMV infection, symptomatic lower urinary tract
infections, fluid retention, prerenal acute kidney injury, or serum creatinine elevation due to calcineurin inhibitor
use (112).

BK polyomavirus-associated
nephropathy (BKPyVAN)

The urinary gd-cfDNA concentration had a true positive rate of 95.2% for diagnosing BKPyVAN, significantly higher
than the 71.4% and 33.3% for urinary and plasma BKV-DNA loads, respectively; suggesting that urinary gd-cfDNA is
better than urinary/plasma BKV viral load for diagnosing BKPyVAN (110).

Lung Primary graft
dysfunction (PGD)

There is an association between gd-cfDNA and the occurrence and severity of PGD: on post-transplant day 3, gd-
cfDNA (%) in PGD patients was significantly higher than in non-PGD patients (median: 12.2% vs 8.5%) (113).

Pulmonary infection and
reduced oxygenation

The median gd-cfDNA (12.0%) in the acute rejection group showed a significant difference compared to the infection
group (4.2%) and the stable group (1.1%), which helps distinguish rejection from infection, but the difference between
the infection group and the stable group was not statistically significant; the gd-cfDNA level was negatively correlated
with oxygenation levels (PaO2/FiO2 ratio) (57)

Respiratory viral
infection (RVI)

An increase in gd-cfDNA (≥1%) in 7 days after RVI was closely associated with the development of CLAD, decline in
lung function, and increased risk of graft failure (114).

Chronic lung allograft
dysfunction (CLAD)

Early post-transplant levels of gd-cfDNA in PGD patients were higher, and those who developed CLAD had gd-
cfDNA levels about twice as high as those who did not develop CLAD (median: 22.4% vs 9.9%), with the difference
being statistically significant (113).

Heart Cardiac allograft
vasculopathy (CAV)

Compared to samples without CAV, recipients with CAV had significantly elevated gd-cfDNA levels (mean 0.47% vs
0.09%), with a statistically significant difference (115).

Pancreas Pancreatitis In a study of 46 pancreatic transplants, the median gd-cfDNA was 2.25% in 13 patients with rejection, 0.36% in 2
patients with pancreatitis, and 0.18% in the stable group; there was a significant difference in gd-cfDNA levels
between the rejection/pancreatitis group and the stable group (65).
gd-cfCDNA, graft-derived cell-free DNA; AR, Acute rejection; GVHD, Graft-versus-host disease; CMV, Cytomegalovirus; EBV, Epstein-Barr Virus; BKPyVAN, BK polyomavirus-associated
nephropathy; IF/TA, Interstitial fibrosis/tubular atrophy; ATN, Acute tubular necrosis; PGD, Primary graft dysfunction; RVI, Respiratory viral infection; CLAD, Chronic lung allograft
dysfunction; CAV, Cardiac allograft vasculopathy.
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range and gd-cfDNA relative quantification was below 10%, graft

function remained stable. Furthermore, when gd-cfDNA relative

quantification was below 10% post-liver transplantation, the

minimum effective tacrolimus trough concentration was 6.8 ng/

mL (originally used 8 ng/mL), suggesting that combined

monitoring of gd-cfDNA relative quantification could help reduce

the drug dosage. Another study conducted a 180-day follow-up on a

liver transplant recipient with hepatorenal syndrome. Due to the

severe renal insufficiency and worsening symptoms experienced by

this recipient, tacrolimus was switched to everolimus on

postoperative day 84. When tacrolimus blood levels dropped to

the lower end of the therapeutic range, gd-cfDNA (%) rapidly

increased to 66%. Nevertheless, as everolimus blood levels reached

the therapeutic range, gd-cfDNA (%) quickly decreased and

remained below 5%, indicating that gd-cfDNA (%) correlates with

the concentration of immunosuppressants in the appropriate

therapeutic window (20).

Inakidney transplant study,6monthsofgd-cfDNAmonitoringwas

performed after adjusting the immunosuppressant mycophenolic acid

(MPA).Among17 recipients in the low-risk group (gd-cfDNA<1%), no

rejection occurred after MPA dose reduction; however, in 4 patients in

the high-risk group (gd-cfDNA ≥1%) whose MPA dosage remained

unchanged, 2 developed graft dysfunction, and 1 experienced graft loss

(127). Continuous monitoring and dynamic changes in gd-cfDNA can

guide clinicians in making more precise decisions when adjusting

immunosuppressant doses, contributing to personalized treatment in

immunosuppressive therapy and demonstrating significant potential in

improving the management of organ transplant recipients (27, 85).
6.4 Prognostic prediction with gd-cfDNA

Early dynamic changes in gd-cfDNA post-transplantation can

reflect the recovery of organ function and provide information

related to long-term prognosis. In kidney transplantation, gd-

cfDNA levels below 0.5% on postoperative day 7 are considered

normal recovery, whereas patients with levels equal to or greater

than 0.5% had a median dialysis time of 13.50 days post-

transplantation. The median gd-cfDNA level in patients with

delayed graft function (fDGF) in 24 hours reached 7.20%, while it

was 2.70% in those without functional DGF. Patients whose gd-

cfDNA decreased to below 0.5% in 7 days postoperatively had a

higher 7-year expected graft survival rate compared to those whose

gd-cfDNA levels remained at or above 0.5% after 7 days (79.5% ±

16.8% vs. 67.7% ± 24.1%) (128). Patients with gd-cfDNA ≥0.5% had

a doubling increased risk of a 25% decline in eGFR in three years

post-transplantation (54).

Compared to patients with low and moderate gd-cfDNA levels

(low, medium, and high gd-cfDNA levels were 0.7%, 1.6%, and 3.6%),

those with high gd-cfDNA levels (%) after lung transplantation had a

6.6-fold increased risk of graft failure, with progression to CLAD or

death (31).Additionally, plasmagd-cfDNAlevelsnegatively correlated

with oxygenation levels (PaO2/FiO2 ratio) immediately after and 72

hours post-lung transplantation, suggesting that increased gd-cfDNA

levelsmay indicate declining oxygenation capacity of the transplanted

lung (57).
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Approximately 50% of heart transplant recipients develop

cardiac allograft vasculopathy (CAV) 10 years post-transplantation,

a major obstacle to long-term survival typically detected via selective

coronary angiography, which carries significant risk (129). An

increase in gd-cfDNA levels to ≥0.12% two years post-

transplantation is significantly associated with the occurrence of

CAV (130). Early evaluation of such patients helps in personalizing

the understanding of CAV risk. Furthermore, higher gd-cfDNA

levels post-heart transplantation are associated with a composite

endpoint of death, re-transplantation, hemodynamic compromise,

or graft dysfunction in three years (131). Recipients with left

ventricular ejection fraction (LVEF) below 40% had significantly

higher gd-cfDNA (%) than those with LVEF of 40% or above (0.46%

vs. 0.04%) (106).

gd-cfDNA monitoring can dynamically reflect graft status,

helping doctors identify high-risk patients for potential graft

dysfunction or early decline, allowing timely intervention or

treatment. gd-cfDNA shows potential and application value in

prognosis prediction post-organ transplantation, though further

research is needed to verify its clinical accuracy and reliability.
7 Advantages

The main advantages of gd-cfDNA can be summarized

as follows:
1. Non-invasive Monitoring: gd-cfDNA offers a more

frequent and less invasive monitoring method than

biopsy, reducing patient discomfort and risk.

2. Early Diagnosis, High Sensitivity, and Dynamic

Monitoring: With a shorter half-life, gd-cfDNA

demonstrates higher sensitivity. gd-cfDNA can provide

early warnings before graft injury, such as rejection,

enabling early diagnosis and timely treatment. The more

severe the injury, the higher the gd-cfDNA levels (132).

3. Immunosuppressive Efficacy Allows for Personalized

Treatment: Due to its short half-life, gd-cfDNA allows for

longitudinal monitoring of disease progression, providing

near real-time indications of organ injury (133). Dynamic

monitoring of gd-cfDNA levels enables safer and more

effective use of immunosuppressants, dose adjustments,

and personalized treatment, improving the long-term

survival quality of organ transplant recipients (20).

4. Predicting Transplant Outcomes: Elevated gd-cfDNA levels

post-transplantation are associated with poor graft function

recovery, graft injury, and inadequate immunosuppression,

helping to predict long-term transplant outcomes (134).
8 Limitations
1. Limited Specificity for Injury Types: gd-cfDNA is highly

sensitive in reflecting graft cell damage and death; however,
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its ability to distinguish the types of injuries is currently

limited. It is not a specific marker for any type of injury but

is observed in various graft injuries. Though studies have

indicated that gd-cfDNA levels are higher in AR recipients

compared to other pathological states caused by non-

rejection factors (91). At present, gd-cfDNA may serve as

a reliable marker for AMR, but its role in addressing Acute

Cellular Rejection (ACR), chronic rejection, and other

types of graft injuries has not yet been fully proven (135).

2. Uncertain sample stability: Most commercial assays require

blood samples to be sent to external laboratories for

analysis, potentially using different detection techniques,

which may lead to inconsistencies in results and pricing.

Additionally, the instability of cfDNA necessitates rapid

and prec ise handl ing during sample transfer ,

transportation, and processing to avoid variations in

results (24).

3. Uncertainty in Thresholds and Undefined Monitoring

Frequency: There is variability in the diagnostic

thresholds and monitoring frequency of gd-cfDNA across

different studies, and no standardized guidelines currently

exist. Further research is needed to determine the optimal

monitoring frequency and thresholds, especially in the

early post-transplant period when the risk of AR and

infection is highest (54).

4. Global Disparities in Medical Resources: As an advanced

medical technology, the accessibility of gd-cfDNA testing

varies significantly across different countries and regions

(136, 137).

5. Monitoring in Multi-Organ Transplants and Long-Term

Monitoring: Due to the unique nature of multi-organ

transplants, there is currently limited research on gd-

cfDNA monitoring in these cases. Moreover, there is a

lack of reports on routine graft monitoring beyond five

years in clinically stable organ transplant recipients (3).
9 Discussion

As an emerging non-invasive biomarker, gd-cfDNA shows

great potential in monitoring and prognostic assessment

following organ transplantation. This is particularly significant for

thoracic organs. Given the stringent size-matching requirements for

thoracic organ transplants, the unique immunological

characteristics post-lung transplantation, and the lack of

extracorporeal life support options, long-term survival rates

remain lower than other solid organ transplants (138, 139).

Additionally, the incidence of AR in the first year post-lung

transplantation is 26.6%, significantly higher than that of other

organ transplants (140). Chronic lung allograft dysfunction

(CLAD) occurs in approximately 50% of lung transplant

recipients in five years, posing a major obstacle to long-term

survival. Currently, there are no reliable predictive markers or

effective preventive or therapeutic methods for CLAD (141),

highlighting the urgent need for reliable graft monitoring tools.
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Currently, Primary graft dysfunction (PGD) and AR have been

identified as strong independent risk factors for the development of

CLAD (142, 143). The detection of gd-cfDNA enables the early

identification of patients at risk for AR, PGD, and CLAD,

facilitating timely therapeutic interventions that enhance the

management of long-term complications and improve the

prognosis of transplant recipients (141, 144).

Currently, research progress on gd-cfDNA varies across

different organ fields. Some studies explored differences between

graft injuries based on time trends, the extent of gd-cfDNA

elevation, fragment length, and genomic composition. For

example, in liver transplant research, the distribution and

proportion of gd-cfDNA fragment sizes in plasma have been

found to monitor post-transplant graft function (145). In lung

transplantation, the combined approach of gd-cfDNA (%) and

cfDNA fragment size is used to determine the occurrence and

potential source of infection (84). Heart transplant studies have

found that the genomic composition of DNA fragments differs

between AMR and ACR, with AMR exhibiting a higher percentage

of short fragments and higher guanine-cytosine content than ACR

(58, 59). Transcriptome analysis of biopsy tissues has revealed that

gd-cfDNA-associated gene expression patterns may be related to

the type of rejection and response to treatment (146). These

findings may help distinguish different types of injuries to better

understand graft status monitoring.

Moreover, there is currently no consensus in clinical practice on

whether to use gd-cfDNA (%) or gd-cfDNA (cp/mL) to optimize

monitoring (147). The release of recipient cfDNA is influenced by

factors such as immunosuppressants, age, and increased BMI (148).

For instance, in two liver transplant studies, themedian gd-cfDNA(%)

in the AR group was 21.8% (91) and 41.9% (98), respectively. The

former study population consisted of adult liver transplant recipients

(median age 53.7 years), while the latter involved pediatric liver

transplant recipients (median age 19.4 months). Schütz et al. (149)

found that as the dose of immunosuppressants was reduced, the rate of

leukocyte apoptosis decreased, leading to a decline in total cfDNA

levels over time, while gd-cfDNA (%) correspondingly increased.

However, the absolute quantification of gd-cfDNA remained stable

during this period, indicating that the absolute quantification of gd-

cfDNAmayperformbetter thangd-cfDNA(%) inmonitoring (37, 97).

Nonetheless, the gd-cfDNA(%)assaywas less sensitive topreanalytical

variables andmore advantageous in comparison among studies (150).

In thefield of lung transplantation, the concept of relative change value

(RCV) in gd-cfDNA (%) has been proposed, suggesting that an

increase of more than 73% from baseline may indicate pathological

changes, thereby enhancing diagnostic performance (104).

gd-cfDNA can provide early warnings for rejection and various

types of graft injuries with high sensitivity. However, gd-cfDNA

monitoring cannot entirely replace biopsies; instead, it aids

clinicians in more accurately identifying patients who genuinely

need biopsies, reducing unnecessary invasive procedures and

associated risks (151). As a single non-invasive test, gd-cfDNA

has lower specificity for injury types. However, it can provide some

information about the injury, which can be used to better determine

the specific type of injury by combining it with other biomarkers or

artificial intelligence techniques. For example, biopsy remains the
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gold standard for graft assessment, but relying solely on histological

predictions has limitations; combining gd-cfDNA with Banff biopsy

scores offers a more comprehensive assessment of graft injury and

prognosis than biopsy features alone (52). Studies have shown that

combining gd-cfDNA with DSA improves diagnostic accuracy for

AMR compared to using either marker alone, and it significantly

outperforms traditional graft function indicators (69, 72, 152). For

instance, when predicting AMR, the AUC for gd-cfDNA (%) and

DSA alone was 0.85 and 0.66, respectively, while the combined

AUC was 0.88 (72). Some experienced heart transplant centers

transition monitoring to a strategy that combines gene expression

profiling (GEP) with gd-cfDNA in patients with stable grafts after 8

weeks post-transplant. GEP can assess the quiescent or activated

state of the immune system, while gd-cfDNA monitoring serves as a

specific marker for graft injury (151). Infection markers, such as

procalcitonin (PCT), combined with gd-cfDNA, can enhance the

ability to differentiate between AR and infection; during severe

infections post-transplant, PCT is similarly elevated above the

threshold when gd-cfDNA levels rise significantly, but PCT levels do

not exceed threshold values in AR patients (153). gd-cfDNA

monitoring combined with artificial intelligence leads to powerful

predictive models, guiding clinical decisions and potentially better

identifying high-risk patients (53, 98, 107). Additionally, combining

gd-cfDNA with other testing methods, such as organ function tests,

pathogen detection, and mRNA transcripts in the graft, may provide

more comprehensive information on graft function, improve

diagnostic efficiency, enable personalized post-transplant

management, and ultimately enhance the quality of life and survival

rates of transplant recipients (3).

In addressing the challenges of variable thresholds, undefined

monitoring frequency, and global disparities in medical resources in

the clinical application of gd-cfDNA, future research should focus

on establishing standardized monitoring protocols, narrowing

global healthcare gaps, and exploring new possibilities for gd-

cfDNA. Through these efforts, gd-cfDNA has the potential to

become a revolutionary monitoring tool in organ transplantation,
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providing more personalized and precise diagnostic information for

transplant recipients, improving their quality of life, and increasing

long-term survival rates.
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