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Introduction: Alzheimer's disease (AD) is one of the most prevalent forms of
dementia globally and remains an incurable condition that often leads to death.
PANoptosis represents an emerging paradigm in programmed cell death,
integrating three critical processes: pyroptosis, apoptosis, and necroptosis.
Studies have shown that apoptosis, necroptosis, and pyroptosis play important
roles in AD development. Therefore, targeting PANoptosis genes might lead to
novel therapeutic targets and clinically relevant therapeutic approaches. This
study aims to identify different molecular subtypes of AD and potential drugs for
treating AD based on PANoptosis.

Methods: Differentially expressed PANoptosis genes associated with AD were
identified via Gene Expression Omnibus (GEO) dataset GSE48350, GSE5281, and
GSE122063. Least Absolute Shrinkage and Selection Operator (LASSO) regression
was employed to construct a risk model linked to these PANoptosis genes.
Consensus clustering analysis was conducted to define AD subtypes based on
these genes. We further performed gene set variation analysis (GSVA), functional
enrichment analysis, and immune cell infiltration analysis to investigate
differences between the identified AD subtypes. Additionally, a protein-protein
interaction (PPI) network was established to identify hub genes, and the DGldb
database was consulted to identify potential therapeutic compounds targeting
these hub genes. Single-cell RNA sequencing analysis was utilized to assess
differences in gene expression at the cellular level across subtypes.

Results: A total of 24 differentially expressed PANoptosis genes (APANRGs) were
identified in AD, leading to the classification of two distinct AD subgroups. The
results indicate that these subgroups exhibit varying disease progression states,
with the early subtype primarily linked to dysfunctional synaptic signaling.
Furthermore, we identified hub genes from the differentially expressed genes
(DEGs) between the two clusters and predicted 38 candidate drugs and
compounds for early AD treatment based on these hub genes. Single-cell RNA
sequencing analysis revealed that key genes associated with the early subtype are
predominantly expressed in neuronal cells, while the differential genes for the
metabolic subtype are primarily found in endothelial cells and astrocytes.
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Conclusion: In summary, we identified two subtypes, including the AD early
synaptic abnormality subtype as well as the immune-metabolic subtype.
Additionally, ten hub genes, SLC17A7, SNAP25, GAD1, SLC17A6, SLC32A1,
PVALB, SYP, GRIN2A, SLC12A5, and SYN2, were identified as marker genes for
the early subtype. These findings may provide valuable insights for the early
diagnosis of AD and contribute to the development of innovative
therapeutic strategies.

Alzheimer’s disease, PANoptosis, molecular subtypes, drug gene interactions,
therapeutic targets of early AD

1 Introduction

Alzheimer’s disease(AD) is the main cause of dementia and is
quickly becoming one of the most lethal, expensive, and burdening
diseases of this century (1), and its prevalence of dementia will triple
worldwide by 2050 (2). The clinical features of AD are characterized
by progressive loss of memory, learning, language, and cognitive
functions (3), and the primary pathological characteristics of AD
are the buildup of amyloid-B (AP) plaque and intraneuronal
neurofibrillary tangle (NFT) (4). AB plaques form owing to the
successive enzymatic breakdown of amyloid precursor protein by f3-
secretase and y-secretase. In recent years, important advances have
been made in understanding the underlying pathology, identifying
multiple disease-causing and protective genes, recognizing new
blood and imaging biomarkers, and disease-improving treatments
(5-8), the underlying mechanisms of AD remain incompletely
understood, and current therapeutic options remain inadequate
(9). Consequently, early diagnosis and intervention are essential for
improving patient outcomes, and identifying molecular subtypes
could help uncover targeted therapies for AD.

PANoptosis, an emerging concept in programmed cell death
(PCD), involves the interaction and regulation of three processes,
apoptosis, necroptosis, and pyroptosis, and reliance on any one of
these processes alone cannot fully explain the phenomenon (10-
12). While these processes individually play crucial roles in AD

Abbreviations: AD, Alzheimer’s disease; AR, Amyloid-f; NFT, Neurofibrillary
tangle; APANRG, PANoptosis-related gene for AD; DEGs, Differentially
expressed genes; ADSP, Alzheimer’s Disease Sequencing Project; CDF,
Cumulative distribution function; GSVA, Gene Set Variation Analysis; Treg,
Regulatory T cell; GABA, Gamma-aminobutyric acid; STRING, Search tool for
retrieving gene interactions; DGIdb, Drug-Gene Interaction Database; PCs,
Principal components; EC, Entorhinal cortex; MTG, Middle temporal gyrus;
SEG, Superior frontal gyrus; SSC, Somatosensory or Entorhinal Cortex; UMAP,
Uniform Manifold Approximation and Projection; ExN, Excitatory neurons;
InN, Inhibitory neurons; Micr, Microglia; Astro, Astrocyte; Endo, Endothelial
cell; Oligo, Oligodendrocyte; OPC, Oligodendrocyte progenitor cell; L-R pairs,
Ligand-receptor pairs; PCD, Programmed cell death.
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pathology, their combined role under the umbrella of PANoptosis
remains unclear. Research shows that apoptosis and necroptosis are
highly prevalent in the neurons and glial cells of AD patients,
contributing to disease progression (13). Pyroptosis, the
inflammatory variant of programmed cell death, acts as a catalyst
for neuronal death in AD by activating NLRP3 and caspases,
leading to the secretion of IL-1 and IL-18 (14, 15). Despite the
importance of these individual pathways in AD, how PANoptosis as
a whole influences AD progression is still poorly understood.

Recent advancements in gene expression profiling, particularly
through single-cell sequencing, have provided new insights into the
complexity of AD (16, 17). By analyzing the expression of
PANoptosis-related genes (APANRGs) in AD and normal tissues,
we identified key genes associated with AD progression. Our study
classified AD into two subtypes based on these genes, each subtype
exhibiting distinct disease progression patterns. The early subtype is
primarily linked to disrupted synaptic signaling, while the other
subtype, associated with metabolic dysfunction, involves
differentially expressed genes in endothelial cells and astrocytes.
We also identified hub genes between these clusters and predicted
candidate drugs through the Drug Gene Interaction Database.
Single-cell analysis revealed that key genes in the early subtype
were predominantly expressed in neurons, whereas the metabolic
subtype was associated with endothelial and astrocyte expression.
The workflow is illustrated in Figure 1. In summary, our findings
provide potential new avenues for the early diagnosis and treatment
of AD.

2 Materials and methods

2.1 Acquisition and preprocessing of
AD datasets

Gene expression data of AD patients were obtained from the
GEO database (http://www.ncbi.nlm.nih.gov/geo). We selected
three datasets (GSE48350, GSE122063, and GSE5281, postmortem
brain tissue transcriptome analysis of AD patients) for the next

frontiersin.org


http://www.ncbi.nlm.nih.gov/geo
https://doi.org/10.3389/fimmu.2024.1462003
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

10.3389/fimmu.2024.1462003

Wang et al.
1.Data acquisition and preprocessing 2.Differences of PANoptosis genes in AD
\e [
- =) }Nﬁ .
Gene Expression Omnibus s/ E"’g"’; o
GSE48350,GSE5281,GSE122063 . éﬂ il
3.PANoptosis genes with AD disease progression 4.ldentification different molecular subtypes of AD
0?2 p=<2e-16 ‘ consensus matrix k=2 Cluster 1(n=123)
(,3) i W Cluster 2(n=100)
50 ~—= AD risk index
2 .
a
<_p
—
<—=Immune and Metabolic
5.Characterization different subtypes of AD 8.Specificity of cellular distribution of the two subtypes
P superior frontal gyrus—~ 1T
P
o] | s
Q@ -3 < /)
s + % # + igdle temporal gyru
3 g % entorhinal cortex
2 agers | 8 ‘\\
6.ldentification of early AD marker genes
| |
| |
! -1510-50 5 10 -1510-50 5 10
I UMAP_1 UMAP_1
|
L%
- v
o8]
4 = 9.Validation of marker gene expression
| I,
[ I
GRIN2A SN:.P'E
7.Drug Prediction of early AD genes .
Drug Gene Reactome Pathw - b3
- B
\\ Control Control AD
FIGURE 1

Flowchart of the research.

analysis. We mainly focus on healthy individuals and AD patients,
excluding the other disease individuals. The three datasets cover
different brain regions and disease process stages. Additional single-
cell data from different brain regions of AD were obtained to check
the hub gene expression status of GEO, including GSE147528,
GSE188545, and GSE160936. The detailed information on
selected datasets is shown in Tables 1, 2 and Supplementary
Table SI. The sample of AD patients contained multiple brain
regions such as the entorhinal cortex, hippocampus, medial
temporal gyrus, posterior cingulate, superior frontal gyrus, and
primary visual cortex. All control human AD samples were

obtained from the normal-aged brain.
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2.2 ldentification of differentially expressed
PANoptosis—related genes

The 509 PANoptosis genes were obtained from the literature
(18, 19), including apoptosis, pyroptosis, and necroptosis, and they
are presented in Supplementary Table S2 and Supplementary
Figures S1A, B. GSE48350, GSE122063, and GSE5281 datasets
were downloaded via R package “GEOquery”. Differentially
expressed genes in the GSE48350, GSE122063, and GSE5281
datasets were identified using the “limma” (20) R package with |
Log2FC| > 0.1375, |Log2FC| > 0.5, and |Log2FC| > 0.5, respectively.
Meanwhile, all three datasets satisfied FDR<0.05. Subsequently,
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TABLE 1 Difference expression datasets referenced in this study.

10.3389/fimmu.2024.1462003

GSE dataset Organism Sample number PMID Platform Type

GSE48350 Homo sapiens Control:173 PMID: 18832152 GPL570 Bulk-seq
AD:80

GSE122063 Homo sapiens Control:44 PMID: 30990880 GPL16699 Bulk-seq
AD:56

GSE5281 Homo sapiens Control:74 PMID: 17077275 GPL570 Bulk-seq
AD:87

PANoptosis-related DEG expression was extracted from three
differentially expressed gene datasets.

2.3 PANoptosis-related genes
correlation analysis

The correlation of 24 PANoptosis-related DEG’s expression in
all samples and AD samples was calculated. The correlations were
performed by Spearman’s correlation analysis and visualized by the
“corrplot” R package (21). Twenty confirmed AD-related
genes were downloaded from the ADSP database (https://
adsp.niagads.org/gvc-top-hits-list/). Correlation calculations were
performed between these and 24 PANoptosis-related DEGs.

2.4 Risk prediction in AD patients based on
PANoptosis-related DEGs

Univariate logistic regression analysis was used to identify
PANoptosis-related DEGs significantly associated with AD. LASSO
regression models were applied using the R package glmnet version
4.1.8 to reduce dimensionality and select significant genes. First,
models for LASSO were constructed with PANoptosis-related DEG
expression data and binary discrete variables (AD and normal). Next,
the model was cross-validated to obtain the best lambda value with a
regression penalty score of -1.2927, and the genes screened by LASSO
were extracted for multivariate logistic regression analysis. Finally, the
AD risk score for each sample was calculated based on the prediction
function. We generated the AdRisk score via regression coefficients
according to the following formula:

ADRisk score = " gene; * coef;

where gene; represents the PANoptosis-related DEG expression
and coef; represents the LASSO coefficient of genes, respectively.

TABLE 2 Single-cell sequencing datasets from GEO.

GSE dataset Organism Sample number
GSE147528 Homo sapiens EC:10
SFG:10
GSE188545 Homo sapiens MTG:6
GSE160936 Homo sapiens ‘ SSC:6
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2.5 Gene set variation analysis

Gene Set Variation Analysis (GSVA) (22) analysis was applied
to explore the difference in biological pathways between distinct
patterns according to the enrichment score. GSVA version 1.48.3
was applied to perform functional enrichment analysis to obtain
the enrichment pathways score, the parameters are set as follows:
mx.dift=FALSE, verbose=FALSE, parallel.sz =1,method="ssgsea”.
We downloaded “c2.cp. kegg.v7.4.symbols.gmt” from the MsigDB
(23) database for analysis, including immune pathways and
metabolic pathways. Additional PANoptosis-related DEGs were
analyzed for correlation with pathway scores, with p< 0.05 defined
as significant gene-pathway correlation.

2.6 Classification and analysis of
AD subtypes

2.6.1 Consistent clustering of AD patients

To explore whether PANoptosis-related DEGs can be used for
subtypes of AD samples, we next used the ConsensusClusterPlus
package (24) to identify the optimum number of clusters in AD
patients. The expression profiles were firstly normalized by
subtracting the median and then subjected to this R package.
We used hierarchical clustering with Pearson correlation as the
similarity metric, with k values ranging from 1 to 6. We selected
the best solution for the consensus matrix by considering the
relative change in area under the CDF curve.

2.6.2 Immune cell infiltration in AD subtypes

The CIBERSORT (25) algorithm is a machine learning method
based on linear support vector regression for evaluating the
proportion of 22 immune cells in AD patient samples. With the
parameter setting perm = 100, this experiment simulates the

transcriptional signature matrix of 22 immune cells such as T

PMID Platform Type
PMID: 33432193 GPL24676 scRNA-seq
PMID: 36865305 GPL24676 scRNA-seq
‘ PMID: 34767070 GPL20301 scRNA-seq
04 frontiersin.org
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cells, B cells, monocytes, macrophages, mast cells, dendritic cells,
and neutrophils.

2.6.3 Characterizing the functional heterogeneity
of AD subtypes

Next, the differentially expressed genes of the 2 clusters were
identified using the Limma package using strict thresholds: adjusted
p<0.05 and |log2FC|>1.3. The R package clusterProfiler was used to
conduct GO biological process analysis [32]. Go terms with p-
value< 0.05 were considered as significant enrichment. KEGG
pathway analyses of DEGs in the two clusters were obtained in
the DAVID database, and p<0.05 was considered significant
enrichment. Cytoscape (26) plugins EnrichmentMap (27) and
AutoAnnotate (28) were used to visualize similar BP terms with
stringent similarity scores.

2.6.4 PPI network construction in subtypes

PPI networks were constructed by importing genes into the
search tool for retrieving gene interactions (STRING, www.string-
db.org) (29). Cytoscape (version 3.7.2) was used to visualize the
network, while the cytoHubba plugin (30)was used to sort the genes
in the network according to their topological properties. The
algorithm selected in cytoHubba was MCC. Hub genes were those
with the top 10 MCC values.

2.6.5 Drug prediction based on subtyped highly
expressed genes

The DGIdb database (31) (Drug-Gene Interaction database,
http://dgidb.org/), is a drug-gene interaction database that
provides information on the association of genes with their
known or potential drugs, including Alzheimer’s disease-related
genes (31). Selected hub genes, which were considered potential
drug targets for the treatment of AD, were imported into DGIdb to
explore existing drugs or compounds. Gene-drug interactions were
shown as results using the R packages ggplot2 and riverplot.

2.7 Characterizing the landscape of
different brain regions in AD at the single-
cell level

2.7.1 Analysis of scRNA-sequencing data of AD

R (version 4.3.1) and the Seurat R package (32) (version 4.3.0.1)
were used for the analyses. For each sample for 4 brain regions, the
gene and count features were identified, and cells with less than 200
or more than 4000 features were filtered. Then, cells with
mitochondrial RNA percentage > 15 were further removed.
Potential doublets identified were also removed from further
analyses. Furthermore, the top 2000 highly variable genes in single
cells were identified after controlling for the expression. Principal
component analysis with variable genes was used to identify
significant principal components (PCs) based on the jackStraw
function. With a resolution of 0.3, cells were clustered using the
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‘FindClusters’ function. Differentially expressed genes (DEGs) in each
cluster were identified using the “FindAllMarkers” function.
Subsequently, a few classical markers of brain cell subsets were
obtained from a previous study (33) and CellMarker 2.0 (34), and
manually labeled according to the expression of maker genes.

2.7.2 Cell-cell communication analysis

We used CellChat (35) to explore the interactions between cell-
to-cell communication, which comprises ligand-receptor
interaction databases to assess intercellular communication
networks based on scRNA-seq data from different cell clusters.
netVisual_bubble was used to demonstrate multiple ligand-
receptor-mediated cellular interactions (L-R pairs).

2.8 Statistical analysis

All statistical analyses were carried out in R 4.3.1 and GraphPad
Prism 9. Statistical tests such as t-test, chi-square test, and ANOVA
were used to test the differences between the 2 subgroup samples.
Univariate and multivariate logistic regression analyses to assess the
diagnostic value of AD risk models. All statistical tests were two-
sided and p< 0.05 was defined as a significant difference.

3 Results

3.1 Defining the expression of PANoptosis
genes in AD

The PANoptosis gene sets include 381 apoptosis-related genes,
27 pyroptosis-related genes, and 160 necroptosis-related genes
(Supplementary Figures S1A, B). Differential expression analysis
of PANoptosis genes in AD revealed 88 differentially expressed
genes (DEGs) in the GSE48350 dataset, 193 DEGs in the GSE5281
dataset, and 96 DEGs in the GSE122063 dataset (Table 3). By
comparing these gene sets, we identified 24 overlapping genes,
which we defined as PANoptosis-related genes for AD (APANRGS)
(Figure 2A). Chromosomal mapping of these 24 APANRGs showed
they are predominantly located on autosomes (Figure 2B). To
further explore the crosstalk of 24 APANRGs, we conducted a
PPI network using the STRING database, and the result shows a
tight interaction across the 24 genes (Figure 2C). The volcano plot
shows the differential expression pattern of 24 APANRGsS in the
GSE48350 dataset (Figures 2D-F). Among the APANRGs, 5 genes
(CCNA1, ENO2, MAGEDI1, VDAC1, YWHAZ) were down
regulated while 19 genes (ANXA1l, BTG2, CAPN2, CASP4,
CASP7, CD44, GSN, HGF, IL18, IRAK3, LY96, NFKBIA,
PDGFRB, PRKX, TAP1, TGFB2, TNFRSF10A, TNFRSF10B,
TNFRSF1A) were up regulated in AD.

To validate these findings, we analyzed the expression patterns
of the 24 APANRGs in the GSE5281 and GSE122063 datasets.
Consistently, five genes were downregulated in both datasets, while
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TABLE 3 PANoptosis genes identified in GSE datasets.

GSE dataset DEGs DEG_PANoptosis
GSE48350 3064 88

GSE122063 4920 9

GSE5281 7037 193

LY96 showed an opposing expression pattern between the
GSE48350 and GSE5281 datasets (Figures 2G, H). The remaining
upregulated genes displayed consistent differential expression
across all three datasets, suggesting that these 24 APANRGs
exhibit stable differential expression in AD.

PANoptosis Gene in AD

L TNFRSF108 ENO2

GSE48350

101 1 MAGED1 TGFB2 CD44

TNFRSF1A |

CASP4 15 [E
PDGFRB

' YWHAZ TAP1

1 voAct PRIX

. CASPT HGF

10.3389/fimmu.2024.1462003

3.2 Association between APANRG
expression and AD disease progression

24 APANRGs expression correlation in all samples and AD
samples were calculated via R package corrplot (21). We found that
24 APANRGs were associated with each other. For instance,
YWHAZ was correlated with MAGED1 and VDACI in all cases
and AD cases (Figures 3A, B, spearman R = 0.86,0.89 in all samples,
respectively, and p< 2.2e-6, p< 2.2e-6, respectively. spearman R =
0.88,0.81 in AD samples, respectively, p< 2.2e-16, p< 2.2e-16,
respectively). The Alzheimer’s Disease Sequencing Project (ADSP,
https://adsp.niagads.org/) database contains 20 AD susceptibility
genes (36). Correlation analyses demonstrated that the 24
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Characteristics and differences of PANoptosis genes in AD. (A) Venn plot of the differentially expressed PANoptosis genes in the three GEO datasets.
(B) The location of 24 PANoptosis genes and PSEN2 on 23 chromosomes. (C) PPl network showing the interactions of the PANoptosis-related
genes. (D) The volcano plot of the 24 differentially expressed PANoptosis-related genes in the GSE48350 dataset. Up-regulated, red; Down-
regulated, blue. (E) A box plot of the 24 PANoptosis genes in the GSE48350 dataset. Normal, blue; AD, yellow. P values were shown as: *P< 0.05;
**P< 0.01; ***P< 0.001; ****P< 0.0001. (F) A heatmap plot of the 24 PANoptosis genes. (G) A box plot of the 24 PANoptosis genes in the GSE5281
dataset. (H) A box plot of the 24 PANoptosis genes in the GSE122063 dataset.
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APANRGs were strongly associated with the expression of these AD
susceptibility genes (Figure 3C).

Univariate logistic regression analysis was applied to screen AD-
related PANoptosis genes among the above 24 APANRGs. All 24 genes
met the significance of p<0.05, down-regulated genes with OR< 1 were
defined as AD-protective genes, and up-regulated genes with OR > 1
were significantly associated with AD progression (Figure 3D). Next,
we applied all 24 APANRGs into LASSO regression and included 9
genes in the prediction model based on the optimal A value (Figures 3E,
F). Multivariate logistic regression analysis showed that HGF and
YWHAZ were significantly associated with AD progression
(Figure 3G). We then generated the AD risk score (AdRisk) via
regression coefficients according to the following formula: AdRisk
=-1.2927 + 0.2807 * CAPN2+ 0.0690 * CASP7 + 0.1229 * CD44 +
0.0215 * GSN+0.2170 * HGF - 0.0057 * MAGED1 + 0.1487 *TGFB2 +
0.3159 * TNFRSF10B - 0.6568 * YWHAZ.

The AD group had significantly higher AdRisk scores than the
control group (p< 2e-16, Figure 3H), suggesting that APANRGs
play a role in AD progression. Further analysis of TNFRSF10B, a
key gene in the risk model, indicated that it is strongly associated

Speamman'sR  Spearman'sR P Value
10

IRAK3 { © © L <005

PANoptosis Gene(N

10.3389/fimmu.2024.1462003

with immune and metabolic pathways, as well as with the regulation
of Alzheimer’s disease-related pathways (Figure 3I). YWHAZ and
TNFRSF10A were also closely linked to immune and metabolic
pathways (Supplementary Figures S2A, B). These findings suggest
that APANRGs may contribute to AD progression through
multiple biological pathways.

3.3 Identification and analysis of different
molecular subtypes of AD based on
PANoptosis genes

Based on 24 APANRGs, consensus clustering classified the gene
expression profiles for 223 AD samples (including GSE48350,
GSE122063, and GSE5281) after removing the batch effect into
distinct subclasses. The AD samples were categorized into two to six
subclasses (Supplementary Figure S3). According to the CDF plot
and consensus matrix heatmap, k=2 was determined as the optimal
number of clusters. Finally, 123 cases were included in Cluster 1,
and 100 cases were included in Cluster 2, respectively (Figures 4A,
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Association of APANRGs expression with AD disease progression. (A) Correlation analysis of APANRGs in GSE96804; All samples. (B) Correlation
analysis of APANRGs in GSE96804; Disease samples. (C) Correlation analysis of AD susceptibility genes with APANRGs. (D) Forest plot for univariate
logistic regression analysis of 24 APANRGs. (E) LASSO coefficient for 24 APANRGs genes. (F) Cross-validation curves for 24 APANRGs genes.

(G) Forest plot of multivariate logistic regression analysis for 24 APANRGs. (H) Risk score of normal and AD group. (I) Enrichment analysis of

TNFRSF10B gene in metabolic and immune pathways.
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B). Moreover, we analyzed the inter-cluster expression of the 9
AdRisk genes and found that 8 of the 9 genes (CAPN2, CASP7,
CD44, GSN, MAGEDI1, TGFB2, TNFRSF10B, YWHA) showed
significant expression differences between clusters (Figure 4C,
Supplementary Figure S3). There was a significant gender
difference between the two subtypes, with a greater proportion of
women than men overall (p = 0.04393, Figure 4D).

To explore the molecular differences between these clusters, we
analyzed genes involved in alpha-secretase, gamma-secretase, and
neurofibrillary tangle (NFT) formation. The NFT coding gene in
Cluster 1 was notably lower compared with that in Cluster 2 and
healthy agers (p = 9.56e-11; Figure 4E). Compared with Cluster 2,
alpha-secretase coding gene-ADAMI10, gamma-secretase coding

consensus matrx k=2 Cluster 1(n=128) c
W Cluster 2(n=100)

21 0 -1-2

—

NFT Coding Gene

o-Secretase Coding Gene

B-Secretase Coding Gene

10.3389/fimmu.2024.1462003

gene-PSEN1 were elevated in Cluster 1 (p=6.61e-08, p=7.66e-05,
respectively; Figure 4E). The beta-secretase coding gene-BACEL,
gamma-secretase coding gene-PSEN2 were significantly decreased
in Cluster 1 compared to Cluster 2 and healthy agers (p = 1.08e-09,
p<2e-16, respectively; Figure 4E). Overall, the gene expression of
Cluster 2 was intermediate between Cluster 1 and the healthy
samples, which may be an intermediate AD disease state between
normal and AD. Moreover, concerning the AD Braak stage, there
was no difference between the two subclasses (Figure 4F). The tissue
origin of Cluster 1 and Cluster 2 is shown in Figure 4H. The
proportions of the entorhinal cortex, middle temporal gyrus,
superior frontal gyrus, and post-central gyrus were significantly
different in the two subclasses (p=0.0108, Figure 4G).
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To better understand the biological processes distinguishing the
clusters, we performed gene set variation analysis (GSVA). Cluster 1
showed significant enrichment in signal transduction-related
pathways, such as olfactory transduction, and neuroactive ligand
receptor interaction. In contrast, Cluster 2 was enriched in DNA
replication, apoptosis, Fc gamma R-mediated phagocytosis,
endocytosis pathways, and neurotrophin signaling pathway
(Figure 4H). Additionally, cell-type identification by estimating
relative subsets of RNA transcripts (CIBERSORT) algorithm was
applied to investigate the infiltration of 22 types of immune cells in
two clusters. Comparing the immune landscape between Cluster 1
and Cluster 2, we found there was a significant difference in 12
immune cell types (Figure 4I). Cluster 1 had higher levels of M1 and
M2 macrophages, neutrophils, resting NK cells, CD4 memory
resting T cells, and regulatory T cells (Tregs). Conversely, Cluster
2 showed increased levels of memory B cells, activated dendritic
cells, activated NK cells, plasma cells, CD8+ T cells, and follicular
helper T cells. These differences in immune cell infiltration suggest
distinct immune landscapes between the two molecular subtypes.

3.4 Screening for DEGs in patients in
PANoptosis-related molecular subtypes

To explore the key genes that differed in the two
subpopulations, we screened 223 DEGs in both clusters using the

'
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R package ‘Limma’ under the conditions of p-value< 0.05 and | log2
(Fold Change) | > 1.3. Of these, 29 genes were up-regulated for
expression in Cluster 1, and 194 genes were up-regulated in Cluster
2 (Figure 5A).

Analysis of the biological processes of DEGs between the
clusters showed Cluster 2 up-regulated genes were mainly
enriched in chemical synaptic signaling, neuron morphogenesis
synapse, memory locomotory behavior, and other cytosolic
neurotransmitter synaptic transporters. Up-regulated genes in
Cluster 1 were mainly enriched in positive receptor pathway,
humoral immune response, negative regulatory biosynthetic,
response defense, and other positive regulatory metabolic
immune processes (Figure 5B). KEGG pathway enrichment
further supported these findings, showing that DEGs in Cluster 2
were significantly involved in pathways such as the GABAergic
synapse, neuroactive ligand-receptor interaction, synaptic vesicle
cycle, and glutamatergic synapse. Meanwhile, DEGs in Cluster 1
were enriched in immune-inflammatory pathways, including
complement and coagulation cascades and the apelin signaling
pathway (Figure 5C).

Studies have shown that abnormal glutamate-mediated
excitatory synaptic transmission and impaired gamma-
aminobutyric acid (GABA)-mediated inhibitory synaptic
transmission promote early AD seizures and exacerbate cognitive
impairment (37). The disruption of the GABAergic system in early
AD leads to overactivity of hippocampal neurons, resulting in an
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imbalance between excitation and inhibition (38, 39). These results
indicate that Cluster 2 may represent a transitional state between
normal and Cluster 1, signifying the early stage of synaptic
dysfunction in AD (Figure 5D).

3.5 Construction of hub genes within two
subtypes and prediction of drug-
gene interactions

To further investigate the interactions of these 223 DEGs
between the two AD clusters, we constructed a PPI degree-
weighted network with 158 nodes and 706 edges, including 142
Cluster 2 up-regulated genes, and 16 Cluster 1 up-regulated genes
(Figure 6A). Among them, SNAP25, SLC17A7, SYP, SYTI, and
SLC32A1 genes were the top 5 genes with the highest connectivity
in the network. Using the MCC algorithm with plug-in CytoHubba
(30), we identified the top 10 hub genes with the highest scores:
SLC17A7, SNAP25, GADI, SLC17A6, SLC32A1, PVALB, SYP,
GRIN2A, SLCI2A5, and SYN2 (Figure 6B). All 10 hub genes
were upregulated in Cluster 2. Recent studies highlight that
SNAP25, a marker of synaptic degeneration, is elevated in the
early stages of AD (40), supporting our analysis of Cluster 2 as
representing an early AD subtype. Moreover, in the rat model,
Grin2a is a synaptic protective factor in astrocytes early in AB
exposure, and knockdown of Grin2a exacerbates (-amyloid-
induced memory and cognitive deficits (41).

10.3389/fimmu.2024.1462003

Using the DGIdb database, drug-gene interaction analysis
revealed 6 hub genes corresponding to 38 potential drug targets
and 7 associated pathways for AD treatment (Figure 6C,
Supplementary Table S3). Notably, 30 drugs target GRIN2A, the
gene with the highest number of drug predictions, while 4 drugs
target SNAP25. GAD1, PVALB, SYP, and SLC12A5 were each
targeted by one drug. GRIN2A primarily involves pathways like
Transcriptional Regulation by MECP2 and Transmission across
Chemical Synapses. MECP2, which interacts directly with RNA
polymerase II, plays a crucial role in regulating human neuron
transcription (42). Among the predicted drugs, memantine and
memantine hydrochloride were classical drugs for Alzheimer’s
disease that target GRIN2A. Memantine, a moderate affinity
uncompetitive NMDA receptor antagonist that interacts with its
target only during states of pathological activation, acts on
transmission across chemical synapses pathway (43, 44).
Interestingly, many of the predicted drugs are used to treat
depression, suggesting a potential link between depression and
AD, particularly given the upregulation of these genes in the early
AD subtypes. In addition, we analyzed 16 DEGs in Cluster 1 related
to drugs, with 6 genes corresponding to 79 drugs and compounds
(Supplementary Figure S4). Among these, TUBB6 was linked to 41
drugs, CP to 14 drugs, and PRKX to 13 drugs. TUBB6 is a
cytoskeletal component involved in metabolic and immune-
related processes (45, 46), further supporting its potential as a
therapeutic target. These results suggest that two subtypes of hub
gene are known drug targets and associated with multiple neuronal

A C
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system pathways and could be potential candidate targets for
AD treatment.

3.6 Specificity of cellular distribution of the
two subtypes revealed by single
cell analysis

To clarify the processes underlying the key genes of the two
subtypes during AD, we initially re-analyzed previously published
scRNA-seq datasets that included entorhinal cortex (EC), middle
temporal gyrus (MTG), superior frontal gyrus (SFG) and
somatosensory or entorhinal cortex (SSC) using the Seurat
approach. After normalizing gene expression, we performed the
PCA for four brain regions and clustered cells using UMAP-based
clustering on the informative PCA space, seven distinct cell
populations present in EC, MTG, and SFG were identified based
on highly variable genes, and eight-cell populations were identified
in SSC (Figures 7A-D). We identified the seven major classes of
cells based on multiple cell markers: excitatory neurons (ExN),
inhibitory neurons (InN), microglia (Micr), astrocyte (Astro),
endothelial cell (Endo), oligodendrocyte (Oligo), and
oligodendrocyte progenitor cell (OPC). In addition, Neural
progenitor cell and immune cell marker genes were found in SSC.
The proportions of distinct cell types in each region are depicted in
Supplementary Figures SSA-D, revealing that oligodendrocyte cells,
excitatory neuron cells, astrocyte cells, and inhibitory neurons were
abundant in EC, SFG, and MTG. However, astrocyte cells and
microglial cells were most abundant in SSC.

Next, we analyzed the expression distribution of 10 hub genes
within various cells in EC (Figure 7E). The results revealed that
almost all hub genes were expressed in excitatory neurons and
inhibitory neurons, especially SNAP25, the most critical hub gene,
which was strongly expressed. GAD1 was specifically overexpressed
in inhibitory neurons, whereas SLC32A1 and PVALB were less
distributed among seven cell types. However, the results of the
expression distribution of the top 10 Cluster 1 upregulated genes
showed that most of the genes were expressed in endothelial cells
and astrocytes. SLC14A1 was strongly expressed in astrocytes,
whereas TXNIP was expressed in endothelial cells, microglia,
OPCs, and astrocytes (Figure 7F). Consistently, Cluster 2 hub
genes showed the same expression distribution in MTG and SFG
(Figure 7G, Supplementary Figures S5E, F). Inconsistently with EC,
the up-regulated gene XIST in Cluster]l was expressed in all types of
neuronal cells in MTG. In SSC, Cluster 2 hub genes were
predominantly expressed in neurons, especially SNAP25, GADI,
GRIN2A, and SYN2. Among the Cluster 1 up-regulated genes,
PRKX and TXNIP were highly expressed in immune cells, and
microglia (Supplementary Figure 6A). In conclusion, our analysis
revealed that the Cluster 2 hub genes tend to be expressed in
excitatory neurons, inhibitory neurons, and OPC cells, whereas the
Cluster 1 top10 genes are widely expressed in astrocytes, endothelial
cells, and microglia (Figure 7H).
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3.7 Interactions between various types of
neuronal cells are explained by
cellular communication

To explore the interactions across various types of neuronal
cells, we then used CellChat to infer cell-cell communication among
various types of neuronal cells. Circle diagrams showed the general
strengths of interactions (proportion) between two cell groups to
visualize the integrated cell communication networks (Figure 71,
Supplementary Figures S6B, C). Difterent cell groups had obviously
different contributive signals on the incoming and outgoing signals.
Signaling across neuronal cells was consistently enhanced in the
SSC and MTG. (Figure 7I). Astrocytes, microglia, and neurons
contributed the most to both incoming and outgoing signals within
the SSC, while excitatory neurons, inhibitory neurons, astrocytes,
and oligodendrocytes exhibited the highest communication
frequency in the MTG, as well as in the EC and SFG
(Supplementary Figures S6B, C).

Next, we investigated cell-cell communication across various
neuronal cells by modeling ligand-receptor interactions. Calculating
the interaction strength for ligand-receptor pairs in distinct cell
types, we inferred cell state-specific ligand-receptor interaction
networks of four brain regions (Figures 7], K, Supplementary
Figures S6D, E). For instance, neurons, including excitatory and
inhibitory types, expressed high levels of ligands such as NRG2 and
NRG3, while their corresponding receptor, ERBB4, was
predominantly expressed in oligodendrocytes and OPCs. This
indicates that these ligands may play an important role in
influencing signaling between neuronal cells.

At last, 10 potential targets in the Cluster 2 mentioned above
were verified by GEO datasets. We detected the expression of those
genes in samples of AD patients using GSE48350, GSE122063, and
GSE5281 datasets (Figure 8). The results showed that these 6 genes
were consistently downregulated and expressed in AD. In contrast,
PVALB showed no significant change in expression in the
GSE48350 dataset. Notably, GRIN2A and SNAP25, which are
linked to several predicted drug targets, were significantly
downregulated across all three datasets. The downregulation of
these genes in the early subtypes of AD suggests that these genes
have an inhibitory effect on AD progression.

4 Discussion

Cells undergo multiple programmed cell death procedures
through a wide range of crosstalk that can be activated
simultaneously in the context of specific conditions, such as
PANoptosis (“P,” pyroptosis; “A,” apoptosis; “N,” necroptosis);
(47, 48). Previous studies of target molecules in the therapeutic
PCD pathway have been largely unsuccessful, possibly owing to
functional redundancy among them (49, 50). Therefore, targeting
PANoptosis and its regulatory complex, the PANoptosome, could
offer novel therapeutic strategies for Alzheimer’s disease (AD) (51,
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FIGURE 7

Characterization of key genes of two subtypes based on single-cell data. (A-D) UMAP of brain zone across major cell classes including excitatory
neuron, inhibitory neuron, oligodendrocyte, oligodendrocyte precursor cell (OPC), astrocyte, immune cell (Immune), microglia, and endothelial
cell. (E) 10 hub genes of subtype 2 in the EC region. (F) top 10 genes of subtype 1 in the EC region. (G) 10 hub genes of subtype 2 in the MTG
region. (H) Distribution of key genes for subtype 1, subtype 2. (I) Cellular interactions between major cell classes. (J) Bubble heatmap showing
cell interaction strength for different ligand-receptor pairs in SSC. Dot size indicates the p-value generated by the permutation test and dot color
represents communication probabilities. (K) Bubble heatmap for different ligand-receptor pairs in MGT.

52). Apoptotic and necrotic cells are present in AD and could be
simulated in models of AD neuronal degeneration (53, 54). For AD
patients, high expression levels of inflammasome (e.g., NLRPI,
NLRP3, and AIM2) could activate inflammatory factors, leading
to the death of neuronal cells via pyroptosis (55-58). Given the
complexity of AD’s pathomechanisms, understanding the interplay
between apoptosis, necroptosis, and pyroptosis is critical to
advancing AD research (59). Although research on PANoptosis
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and AD is still limited, the association between apoptosis,
pyroptosis, necroptosis, and AD is becoming clearer.

In the study, we found that 24 PANoptosis genes were
differentially expressed in AD patients compared with control
samples, suggesting that PANoptosis genes may be important
indicators of AD progression. Additionally, we found strong
correlations between PANoptosis genes and well-established AD
susceptibility genes, including PSEN1, PSEN2, APP, and MS4A6A,
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The expression of the identified top 10 hub genes (GAD1, GRIN2A, PVALB, SLC12A5, SLC17A6, SLC17A7, SLC32A1, SNAP25, SYN2, SYP). (A) mRNA
expression of hub genes in GSE5281. (B) GSE48350. (C) GSE122063. P values were shown as: **P< 0.01; ***P< 0.001; ****P< 0.0001, ns represent

no significant.

which are linked to CD44, IL18, and TNFRSF10A. Using logistic
regression, all 24 genes were implicated in influencing AD
progression, and nine were selected as key variables in our final
model. Among these, HGF, YWHAZ, and TNFRSF10B were
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identified as significant contributors. Notably, TNFRSF10B, a
known risk gene for AD, is involved in glycolytic metabolic
pathways and inflammatory responses. The pathogenesis of AD
involves inflammatory activation and metabolic reprogramming of
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microglia, especially the metabolic shift from oxidative
phosphorylation to glycolysis (60), highlighting the connection
between inflammation, metabolic dysregulation, and
AD pathogenesis.

The pathological features of AD were the cleavage of ABPP to
AP to form amyloid plaques and intraneuronal neurogenic fibril
tangles (NFT). Three major secretases ADAM10, BACEI and y-
secretase (including PSEN1, PSEN2), and MAPT are involved in
this process (61-63). In this study, we identified two distinct AD
states based on the PANoptosis gene. Compared to subtype 1 and
the normal subgroup, the expressions of MAPT, ADAM10, BACEL,
and PSEN2 in subtype 2 resided in an intermediate state, which
implied that subtype 2 might be a transition state from normal to
AD. However, the expression of the PSENI gene was not
intermediate between subtype 1 and normal. Based on the
differential genes of the two clusters, we found that Cluster 2 was
mainly associated with exocytosis neurotransmitter synaptic
transport cell, GABAergic synapse, and neuroactive ligand-
receptor interaction, while Cluster 1 is associated with
phagosome, complement, and coagulation cascades inflammatory
pathways. This finding provides further evidence that subtype 2 is
an early AD stage. Qing et al. found that GABAergic abnormalities
occur early in AD, earlier than cognitive deficits. Brain regions in
AD, such as the hippocampus, exhibit early and tonic
hyperexcitability, which may be associated with damage to
GABAergic circuits (38). In addition, single cell sequencing data
showed that Cluster 2 hub genes were mainly highly expressed in
neuronal cells, and Cluster 1 highly expressed genes were more
inclined in astrocyte, endothelial cells. The results indicate that
there might be abnormalities in the glutamatergic synapse as well as
GABAergic synapse in the early stage of AD, leading to the
disruption of neurotransmitter transmission among neurons and
causing excitation or inhibition of synaptic neurons, and ultimately
resulting in brain function abnormalities.

In addition, with Cluster 2 hub genes, we identified six genes
with potential target drugs or compounds, among which GRIN2A
corresponds to more than 30 drugs. GRIN2A encodes the GIuN2A
subunit of the NMDA (N-methyl-d-aspartate) receptor (NMDAR),
which plays a crucial role in excitatory synaptic transmission and
plasticity (64, 65). Most of the drugs corresponding to GRIN2A are
antidepressants as well as antipsychotics, such as apimostinel,
esketamine, and haloperidol, which improve cognitive deficits
caused by the early stages of Alzheimer’s disease (66, 67). These
findings suggest that hub genes, such as GRIN2A, play a pivotal role
in modulating neurotransmission and may serve as promising
therapeutic targets for Alzheimer’s disease.

To the best of our knowledge, this is the first study to
characterize early subtypes of AD from a PANoptosis perspective.
The screening and validation of these characterized genes provide
potential molecular targets for further exploration of the
mechanism of programmed cell death in AD. The three GEO
datasets analyzed may not fully represent the entire Alzheimer’s
disease patient population, thus potentially failing to capture the full
spectrum of AD heterogeneity. Furthermore, while we focused
primarily on AD marker genes within the context of APANRGs,
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a deeper investigation into the regulatory mechanisms of each
PANoptosis gene associated with AD is necessary. This will be a
key focus of our future research efforts.

In conclusion, our comprehensive bioinformatics analysis
revealed a strong association between PANoptosis genes and AD
pathogenesis. Two subclasses of AD from the perspective of pan-
apoptosis were identified with substantial differences in clinical
features, metabolic characteristics, and immune infiltration. The
results may better elucidate the heterogeneity of AD patients.
Additionally, we highlighted 10 hub genes, including SLC17A7,
SNAP25, GADI, and GRIN2A, as potential markers for early AD
diagnosis, offering a more accurate framework for identifying early-
stage AD patients.
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