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Introduction: Alzheimer’s disease (AD) is one of the most prevalent forms of

dementia globally and remains an incurable condition that often leads to death.

PANoptosis represents an emerging paradigm in programmed cell death,

integrating three critical processes: pyroptosis, apoptosis, and necroptosis.

Studies have shown that apoptosis, necroptosis, and pyroptosis play important

roles in AD development. Therefore, targeting PANoptosis genes might lead to

novel therapeutic targets and clinically relevant therapeutic approaches. This

study aims to identify different molecular subtypes of AD and potential drugs for

treating AD based on PANoptosis.

Methods: Differentially expressed PANoptosis genes associated with AD were

identified via Gene Expression Omnibus (GEO) dataset GSE48350, GSE5281, and

GSE122063. Least Absolute Shrinkage and Selection Operator (LASSO) regression

was employed to construct a risk model linked to these PANoptosis genes.

Consensus clustering analysis was conducted to define AD subtypes based on

these genes. We further performed gene set variation analysis (GSVA), functional

enrichment analysis, and immune cell infiltration analysis to investigate

differences between the identified AD subtypes. Additionally, a protein-protein

interaction (PPI) network was established to identify hub genes, and the DGIdb

database was consulted to identify potential therapeutic compounds targeting

these hub genes. Single-cell RNA sequencing analysis was utilized to assess

differences in gene expression at the cellular level across subtypes.

Results: A total of 24 differentially expressed PANoptosis genes (APANRGs) were

identified in AD, leading to the classification of two distinct AD subgroups. The

results indicate that these subgroups exhibit varying disease progression states,

with the early subtype primarily linked to dysfunctional synaptic signaling.

Furthermore, we identified hub genes from the differentially expressed genes

(DEGs) between the two clusters and predicted 38 candidate drugs and

compounds for early AD treatment based on these hub genes. Single-cell RNA

sequencing analysis revealed that key genes associated with the early subtype are

predominantly expressed in neuronal cells, while the differential genes for the

metabolic subtype are primarily found in endothelial cells and astrocytes.
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Conclusion: In summary, we identified two subtypes, including the AD early

synaptic abnormality subtype as well as the immune-metabolic subtype.

Additionally, ten hub genes, SLC17A7, SNAP25, GAD1, SLC17A6, SLC32A1,

PVALB, SYP, GRIN2A, SLC12A5, and SYN2, were identified as marker genes for

the early subtype. These findings may provide valuable insights for the early

diagnosis of AD and contribute to the development of innovative

therapeutic strategies.
KEYWORDS
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therapeutic targets of early AD
1 Introduction

Alzheimer’s disease(AD) is the main cause of dementia and is

quickly becoming one of the most lethal, expensive, and burdening

diseases of this century (1), and its prevalence of dementia will triple

worldwide by 2050 (2). The clinical features of AD are characterized

by progressive loss of memory, learning, language, and cognitive

functions (3), and the primary pathological characteristics of AD

are the buildup of amyloid-b (Ab) plaque and intraneuronal

neurofibrillary tangle (NFT) (4). Ab plaques form owing to the

successive enzymatic breakdown of amyloid precursor protein by b-
secretase and g-secretase. In recent years, important advances have

been made in understanding the underlying pathology, identifying

multiple disease-causing and protective genes, recognizing new

blood and imaging biomarkers, and disease-improving treatments

(5–8), the underlying mechanisms of AD remain incompletely

understood, and current therapeutic options remain inadequate

(9). Consequently, early diagnosis and intervention are essential for

improving patient outcomes, and identifying molecular subtypes

could help uncover targeted therapies for AD.

PANoptosis, an emerging concept in programmed cell death

(PCD), involves the interaction and regulation of three processes,

apoptosis, necroptosis, and pyroptosis, and reliance on any one of

these processes alone cannot fully explain the phenomenon (10–

12). While these processes individually play crucial roles in AD
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pathology, their combined role under the umbrella of PANoptosis

remains unclear. Research shows that apoptosis and necroptosis are

highly prevalent in the neurons and glial cells of AD patients,

contributing to disease progression (13). Pyroptosis, the

inflammatory variant of programmed cell death, acts as a catalyst

for neuronal death in AD by activating NLRP3 and caspases,

leading to the secretion of IL-1 and IL-18 (14, 15). Despite the

importance of these individual pathways in AD, how PANoptosis as

a whole influences AD progression is still poorly understood.

Recent advancements in gene expression profiling, particularly

through single-cell sequencing, have provided new insights into the

complexity of AD (16, 17). By analyzing the expression of

PANoptosis-related genes (APANRGs) in AD and normal tissues,

we identified key genes associated with AD progression. Our study

classified AD into two subtypes based on these genes, each subtype

exhibiting distinct disease progression patterns. The early subtype is

primarily linked to disrupted synaptic signaling, while the other

subtype, associated with metabolic dysfunction, involves

differentially expressed genes in endothelial cells and astrocytes.

We also identified hub genes between these clusters and predicted

candidate drugs through the Drug Gene Interaction Database.

Single-cell analysis revealed that key genes in the early subtype

were predominantly expressed in neurons, whereas the metabolic

subtype was associated with endothelial and astrocyte expression.

The workflow is illustrated in Figure 1. In summary, our findings

provide potential new avenues for the early diagnosis and treatment

of AD.
2 Materials and methods

2.1 Acquisition and preprocessing of
AD datasets

Gene expression data of AD patients were obtained from the

GEO database (http://www.ncbi.nlm.nih.gov/geo). We selected

three datasets (GSE48350, GSE122063, and GSE5281, postmortem

brain tissue transcriptome analysis of AD patients) for the next
frontiersin.org
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analysis. We mainly focus on healthy individuals and AD patients,

excluding the other disease individuals. The three datasets cover

different brain regions and disease process stages. Additional single-

cell data from different brain regions of AD were obtained to check

the hub gene expression status of GEO, including GSE147528,

GSE188545, and GSE160936. The detailed information on

selected datasets is shown in Tables 1, 2 and Supplementary

Table S1. The sample of AD patients contained multiple brain

regions such as the entorhinal cortex, hippocampus, medial

temporal gyrus, posterior cingulate, superior frontal gyrus, and

primary visual cortex. All control human AD samples were

obtained from the normal-aged brain.
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2.2 Identification of differentially expressed
PANoptosis−related genes

The 509 PANoptosis genes were obtained from the literature

(18, 19), including apoptosis, pyroptosis, and necroptosis, and they

are presented in Supplementary Table S2 and Supplementary

Figures S1A, B. GSE48350, GSE122063, and GSE5281 datasets

were downloaded via R package “GEOquery”. Differentially

expressed genes in the GSE48350, GSE122063, and GSE5281

datasets were identified using the “limma” (20) R package with |

Log2FC| > 0.1375, |Log2FC| > 0.5, and |Log2FC| > 0.5, respectively.

Meanwhile, all three datasets satisfied FDR<0.05. Subsequently,
FIGURE 1

Flowchart of the research.
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PANoptosis-related DEG expression was extracted from three

differentially expressed gene datasets.
2.3 PANoptosis-related genes
correlation analysis

The correlation of 24 PANoptosis-related DEG’s expression in

all samples and AD samples was calculated. The correlations were

performed by Spearman’s correlation analysis and visualized by the

“corrplot” R package (21). Twenty confirmed AD-related

genes were downloaded from the ADSP database (https://

adsp.niagads.org/gvc-top-hits-list/). Correlation calculations were

performed between these and 24 PANoptosis-related DEGs.
2.4 Risk prediction in AD patients based on
PANoptosis-related DEGs

Univariate logistic regression analysis was used to identify

PANoptosis-related DEGs significantly associated with AD. LASSO

regression models were applied using the R package glmnet version

4.1.8 to reduce dimensionality and select significant genes. First,

models for LASSO were constructed with PANoptosis-related DEG

expression data and binary discrete variables (AD and normal). Next,

the model was cross-validated to obtain the best lambda value with a

regression penalty score of -1.2927, and the genes screened by LASSO

were extracted for multivariate logistic regression analysis. Finally, the

AD risk score for each sample was calculated based on the prediction

function. We generated the AdRisk score via regression coefficients

according to the following formula:

ADRisk score =on
i genei ∗ coefi

where genei represents the PANoptosis-related DEG expression

and coefi represents the LASSO coefficient of genes, respectively.
Frontiers in Immunology 04
2.5 Gene set variation analysis

Gene Set Variation Analysis (GSVA) (22) analysis was applied

to explore the difference in biological pathways between distinct

patterns according to the enrichment score. GSVA version 1.48.3

was applied to perform functional enrichment analysis to obtain

the enrichment pathways score, the parameters are set as follows:

mx.diff=FALSE, verbose=FALSE, parallel.sz =1,method=“ssgsea”.

We downloaded “c2.cp. kegg.v7.4.symbols.gmt” from the MsigDB

(23) database for analysis, including immune pathways and

metabolic pathways. Additional PANoptosis-related DEGs were

analyzed for correlation with pathway scores, with p< 0.05 defined

as significant gene-pathway correlation.
2.6 Classification and analysis of
AD subtypes

2.6.1 Consistent clustering of AD patients
To explore whether PANoptosis-related DEGs can be used for

subtypes of AD samples, we next used the ConsensusClusterPlus

package (24) to identify the optimum number of clusters in AD

patients. The expression profiles were firstly normalized by

subtracting the median and then subjected to this R package.

We used hierarchical clustering with Pearson correlation as the

similarity metric, with k values ranging from 1 to 6. We selected

the best solution for the consensus matrix by considering the

relative change in area under the CDF curve.

2.6.2 Immune cell infiltration in AD subtypes
The CIBERSORT (25) algorithm is a machine learning method

based on linear support vector regression for evaluating the

proportion of 22 immune cells in AD patient samples. With the

parameter setting perm = 100, this experiment simulates the

transcriptional signature matrix of 22 immune cells such as T
TABLE 1 Difference expression datasets referenced in this study.

GSE dataset Organism Sample number PMID Platform Type

GSE48350 Homo sapiens Control:173
AD:80

PMID: 18832152 GPL570 Bulk-seq

GSE122063 Homo sapiens Control:44
AD:56

PMID: 30990880 GPL16699 Bulk-seq

GSE5281 Homo sapiens Control:74
AD:87

PMID: 17077275 GPL570 Bulk-seq
TABLE 2 Single-cell sequencing datasets from GEO.

GSE dataset Organism Sample number PMID Platform Type

GSE147528 Homo sapiens EC:10
SFG:10

PMID: 33432193 GPL24676 scRNA-seq

GSE188545 Homo sapiens MTG:6 PMID: 36865305 GPL24676 scRNA-seq

GSE160936 Homo sapiens SSC:6 PMID: 34767070 GPL20301 scRNA-seq
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cells, B cells, monocytes, macrophages, mast cells, dendritic cells,

and neutrophils.

2.6.3 Characterizing the functional heterogeneity
of AD subtypes

Next, the differentially expressed genes of the 2 clusters were

identified using the Limma package using strict thresholds: adjusted

p<0.05 and |log2FC|>1.3. The R package clusterProfiler was used to

conduct GO biological process analysis [32]. Go terms with p-

value< 0.05 were considered as significant enrichment. KEGG

pathway analyses of DEGs in the two clusters were obtained in

the DAVID database, and p<0.05 was considered significant

enrichment. Cytoscape (26) plugins EnrichmentMap (27) and

AutoAnnotate (28) were used to visualize similar BP terms with

stringent similarity scores.

2.6.4 PPI network construction in subtypes
PPI networks were constructed by importing genes into the

search tool for retrieving gene interactions (STRING, www.string-

db.org) (29). Cytoscape (version 3.7.2) was used to visualize the

network, while the cytoHubba plugin (30)was used to sort the genes

in the network according to their topological properties. The

algorithm selected in cytoHubba was MCC. Hub genes were those

with the top 10 MCC values.

2.6.5 Drug prediction based on subtyped highly
expressed genes

The DGIdb database (31) (Drug-Gene Interaction database,

http://dgidb.org/), is a drug-gene interaction database that

provides information on the association of genes with their

known or potential drugs, including Alzheimer’s disease-related

genes (31). Selected hub genes, which were considered potential

drug targets for the treatment of AD, were imported into DGIdb to

explore existing drugs or compounds. Gene-drug interactions were

shown as results using the R packages ggplot2 and riverplot.
2.7 Characterizing the landscape of
different brain regions in AD at the single-
cell level

2.7.1 Analysis of scRNA-sequencing data of AD
R (version 4.3.1) and the Seurat R package (32) (version 4.3.0.1)

were used for the analyses. For each sample for 4 brain regions, the

gene and count features were identified, and cells with less than 200

or more than 4000 features were filtered. Then, cells with

mitochondrial RNA percentage > 15 were further removed.

Potential doublets identified were also removed from further

analyses. Furthermore, the top 2000 highly variable genes in single

cells were identified after controlling for the expression. Principal

component analysis with variable genes was used to identify

significant principal components (PCs) based on the jackStraw

function. With a resolution of 0.3, cells were clustered using the
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‘FindClusters’ function. Differentially expressed genes (DEGs) in each

cluster were identified using the “FindAllMarkers” function.

Subsequently, a few classical markers of brain cell subsets were

obtained from a previous study (33) and CellMarker 2.0 (34), and

manually labeled according to the expression of maker genes.

2.7.2 Cell-cell communication analysis
We used CellChat (35) to explore the interactions between cell-

to-cell communication, which comprises ligand-receptor

interaction databases to assess intercellular communication

networks based on scRNA-seq data from different cell clusters.

netVisual_bubble was used to demonstrate multiple ligand-

receptor-mediated cellular interactions (L-R pairs).
2.8 Statistical analysis

All statistical analyses were carried out in R 4.3.1 and GraphPad

Prism 9. Statistical tests such as t-test, chi-square test, and ANOVA

were used to test the differences between the 2 subgroup samples.

Univariate and multivariate logistic regression analyses to assess the

diagnostic value of AD risk models. All statistical tests were two-

sided and p< 0.05 was defined as a significant difference.
3 Results

3.1 Defining the expression of PANoptosis
genes in AD

The PANoptosis gene sets include 381 apoptosis-related genes,

27 pyroptosis-related genes, and 160 necroptosis-related genes

(Supplementary Figures S1A, B). Differential expression analysis

of PANoptosis genes in AD revealed 88 differentially expressed

genes (DEGs) in the GSE48350 dataset, 193 DEGs in the GSE5281

dataset, and 96 DEGs in the GSE122063 dataset (Table 3). By

comparing these gene sets, we identified 24 overlapping genes,

which we defined as PANoptosis-related genes for AD (APANRGs)

(Figure 2A). Chromosomal mapping of these 24 APANRGs showed

they are predominantly located on autosomes (Figure 2B). To

further explore the crosstalk of 24 APANRGs, we conducted a

PPI network using the STRING database, and the result shows a

tight interaction across the 24 genes (Figure 2C). The volcano plot

shows the differential expression pattern of 24 APANRGs in the

GSE48350 dataset (Figures 2D–F). Among the APANRGs, 5 genes

(CCNA1, ENO2, MAGED1, VDAC1, YWHAZ) were down

regulated while 19 genes (ANXA1, BTG2, CAPN2, CASP4,

CASP7, CD44, GSN, HGF, IL18, IRAK3, LY96, NFKBIA,

PDGFRB, PRKX, TAP1, TGFB2, TNFRSF10A, TNFRSF10B,

TNFRSF1A) were up regulated in AD.

To validate these findings, we analyzed the expression patterns

of the 24 APANRGs in the GSE5281 and GSE122063 datasets.

Consistently, five genes were downregulated in both datasets, while
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LY96 showed an opposing expression pattern between the

GSE48350 and GSE5281 datasets (Figures 2G, H). The remaining

upregulated genes displayed consistent differential expression

across all three datasets, suggesting that these 24 APANRGs

exhibit stable differential expression in AD.
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3.2 Association between APANRG
expression and AD disease progression

24 APANRGs expression correlation in all samples and AD

samples were calculated via R package corrplot (21). We found that

24 APANRGs were associated with each other. For instance,

YWHAZ was correlated with MAGED1 and VDAC1 in all cases

and AD cases (Figures 3A, B, spearman R = 0.86,0.89 in all samples,

respectively, and p< 2.2e-6, p< 2.2e-6, respectively. spearman R =

0.88,0.81 in AD samples, respectively, p< 2.2e-16, p< 2.2e-16,

respectively). The Alzheimer’s Disease Sequencing Project (ADSP,

https://adsp.niagads.org/) database contains 20 AD susceptibility

genes (36). Correlation analyses demonstrated that the 24
TABLE 3 PANoptosis genes identified in GSE datasets.

GSE dataset DEGs DEG_PANoptosis

GSE48350 3064 88

GSE122063 4920 96

GSE5281 7037 193
FIGURE 2

Characteristics and differences of PANoptosis genes in AD. (A) Venn plot of the differentially expressed PANoptosis genes in the three GEO datasets.
(B) The location of 24 PANoptosis genes and PSEN2 on 23 chromosomes. (C) PPI network showing the interactions of the PANoptosis-related
genes. (D) The volcano plot of the 24 differentially expressed PANoptosis-related genes in the GSE48350 dataset. Up-regulated, red; Down-
regulated, blue. (E) A box plot of the 24 PANoptosis genes in the GSE48350 dataset. Normal, blue; AD, yellow. P values were shown as: *P< 0.05;
**P< 0.01; ***P< 0.001; ****P< 0.0001. (F) A heatmap plot of the 24 PANoptosis genes. (G) A box plot of the 24 PANoptosis genes in the GSE5281
dataset. (H) A box plot of the 24 PANoptosis genes in the GSE122063 dataset.
frontiersin.org

https://adsp.niagads.org/
https://doi.org/10.3389/fimmu.2024.1462003
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1462003
APANRGs were strongly associated with the expression of these AD

susceptibility genes (Figure 3C).

Univariate logistic regression analysis was applied to screen AD-

related PANoptosis genes among the above 24 APANRGs. All 24 genes

met the significance of p<0.05, down-regulated genes with OR< 1 were

defined as AD-protective genes, and up-regulated genes with OR > 1

were significantly associated with AD progression (Figure 3D). Next,

we applied all 24 APANRGs into LASSO regression and included 9

genes in the predictionmodel based on the optimal l value (Figures 3E,
F). Multivariate logistic regression analysis showed that HGF and

YWHAZ were significantly associated with AD progression

(Figure 3G). We then generated the AD risk score (AdRisk) via

regression coefficients according to the following formula: AdRisk

=-1.2927 + 0.2807 * CAPN2+ 0.0690 * CASP7 + 0.1229 * CD44 +

0.0215 * GSN+0.2170 * HGF - 0.0057 * MAGED1 + 0.1487 *TGFB2 +

0.3159 * TNFRSF10B - 0.6568 * YWHAZ.

The AD group had significantly higher AdRisk scores than the

control group (p< 2e-16, Figure 3H), suggesting that APANRGs

play a role in AD progression. Further analysis of TNFRSF10B, a

key gene in the risk model, indicated that it is strongly associated
Frontiers in Immunology 07
with immune and metabolic pathways, as well as with the regulation

of Alzheimer’s disease-related pathways (Figure 3I). YWHAZ and

TNFRSF10A were also closely linked to immune and metabolic

pathways (Supplementary Figures S2A, B). These findings suggest

that APANRGs may contribute to AD progression through

multiple biological pathways.
3.3 Identification and analysis of different
molecular subtypes of AD based on
PANoptosis genes

Based on 24 APANRGs, consensus clustering classified the gene

expression profiles for 223 AD samples (including GSE48350,

GSE122063, and GSE5281) after removing the batch effect into

distinct subclasses. The AD samples were categorized into two to six

subclasses (Supplementary Figure S3). According to the CDF plot

and consensus matrix heatmap, k=2 was determined as the optimal

number of clusters. Finally, 123 cases were included in Cluster 1,

and 100 cases were included in Cluster 2, respectively (Figures 4A,
FIGURE 3

Association of APANRGs expression with AD disease progression. (A) Correlation analysis of APANRGs in GSE96804; All samples. (B) Correlation
analysis of APANRGs in GSE96804; Disease samples. (C) Correlation analysis of AD susceptibility genes with APANRGs. (D) Forest plot for univariate
logistic regression analysis of 24 APANRGs. (E) LASSO coefficient for 24 APANRGs genes. (F) Cross-validation curves for 24 APANRGs genes.
(G) Forest plot of multivariate logistic regression analysis for 24 APANRGs. (H) Risk score of normal and AD group. (I) Enrichment analysis of
TNFRSF10B gene in metabolic and immune pathways.
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B). Moreover, we analyzed the inter-cluster expression of the 9

AdRisk genes and found that 8 of the 9 genes (CAPN2, CASP7,

CD44, GSN, MAGED1, TGFB2, TNFRSF10B, YWHA) showed

significant expression differences between clusters (Figure 4C,

Supplementary Figure S3). There was a significant gender

difference between the two subtypes, with a greater proportion of

women than men overall (p = 0.04393, Figure 4D).

To explore the molecular differences between these clusters, we

analyzed genes involved in alpha-secretase, gamma-secretase, and

neurofibrillary tangle (NFT) formation. The NFT coding gene in

Cluster 1 was notably lower compared with that in Cluster 2 and

healthy agers (p = 9.56e-11; Figure 4E). Compared with Cluster 2,

alpha-secretase coding gene-ADAM10, gamma-secretase coding
Frontiers in Immunology 08
gene-PSEN1 were elevated in Cluster 1 (p=6.61e-08, p=7.66e-05,

respectively; Figure 4E). The beta-secretase coding gene-BACE1,

gamma-secretase coding gene-PSEN2 were significantly decreased

in Cluster 1 compared to Cluster 2 and healthy agers (p = 1.08e-09,

p<2e-16, respectively; Figure 4E). Overall, the gene expression of

Cluster 2 was intermediate between Cluster 1 and the healthy

samples, which may be an intermediate AD disease state between

normal and AD. Moreover, concerning the AD Braak stage, there

was no difference between the two subclasses (Figure 4F). The tissue

origin of Cluster 1 and Cluster 2 is shown in Figure 4H. The

proportions of the entorhinal cortex, middle temporal gyrus,

superior frontal gyrus, and post-central gyrus were significantly

different in the two subclasses (p=0.0108, Figure 4G).
FIGURE 4

Identification and analysis of different molecular subtypes of AD based on PANoptosis genes. (A, B) 223 AD patients in three datasets were grouped
into two clusters according to the consensus clustering matrix (k = 2). (C) Heatmap of the two clusters divided by the 14 APANRGs. (D) Proportion of
sex between two subclasses. (E) Comparison of coding gene of NFT, gamma-secretase, beta-secretase, and alpha-secretase between each
subclass. (F) Proportion of Braak stage between two subclasses. (G) Proportion of brain zone between two subclasses. (H) Heatmap of GSVA analysis
showed representative KEGG pathways. (I) The immune cell infiltration score in two clusters.
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To better understand the biological processes distinguishing the

clusters, we performed gene set variation analysis (GSVA). Cluster 1

showed significant enrichment in signal transduction-related

pathways, such as olfactory transduction, and neuroactive ligand

receptor interaction. In contrast, Cluster 2 was enriched in DNA

replication, apoptosis, Fc gamma R-mediated phagocytosis,

endocytosis pathways, and neurotrophin signaling pathway

(Figure 4H). Additionally, cell-type identification by estimating

relative subsets of RNA transcripts (CIBERSORT) algorithm was

applied to investigate the infiltration of 22 types of immune cells in

two clusters. Comparing the immune landscape between Cluster 1

and Cluster 2, we found there was a significant difference in 12

immune cell types (Figure 4I). Cluster 1 had higher levels of M1 and

M2 macrophages, neutrophils, resting NK cells, CD4 memory

resting T cells, and regulatory T cells (Tregs). Conversely, Cluster

2 showed increased levels of memory B cells, activated dendritic

cells, activated NK cells, plasma cells, CD8+ T cells, and follicular

helper T cells. These differences in immune cell infiltration suggest

distinct immune landscapes between the two molecular subtypes.
3.4 Screening for DEGs in patients in
PANoptosis-related molecular subtypes

To explore the key genes that differed in the two

subpopulations, we screened 223 DEGs in both clusters using the
Frontiers in Immunology 09
R package ‘Limma’ under the conditions of p-value< 0.05 and | log2

(Fold Change) | > 1.3. Of these, 29 genes were up-regulated for

expression in Cluster 1, and 194 genes were up-regulated in Cluster

2 (Figure 5A).

Analysis of the biological processes of DEGs between the

clusters showed Cluster 2 up-regulated genes were mainly

enriched in chemical synaptic signaling, neuron morphogenesis

synapse, memory locomotory behavior, and other cytosolic

neurotransmitter synaptic transporters. Up-regulated genes in

Cluster 1 were mainly enriched in positive receptor pathway,

humoral immune response, negative regulatory biosynthetic,

response defense, and other positive regulatory metabolic

immune processes (Figure 5B). KEGG pathway enrichment

further supported these findings, showing that DEGs in Cluster 2

were significantly involved in pathways such as the GABAergic

synapse, neuroactive ligand-receptor interaction, synaptic vesicle

cycle, and glutamatergic synapse. Meanwhile, DEGs in Cluster 1

were enriched in immune-inflammatory pathways, including

complement and coagulation cascades and the apelin signaling

pathway (Figure 5C).

Studies have shown that abnormal glutamate-mediated

excitatory synaptic transmission and impaired gamma-

aminobutyric acid (GABA)-mediated inhibitory synaptic

transmission promote early AD seizures and exacerbate cognitive

impairment (37). The disruption of the GABAergic system in early

AD leads to overactivity of hippocampal neurons, resulting in an
FIGURE 5

Characterization of PANoptosis-related molecular subtypes. (A) The volcano plot for the analysis of differences between the two subtypes. (B) Network
diagram of biological processes underlying differential gene enrichment in two subtypes. (C) Differences in KEGG pathways enriched in the two
subtypes. (D) Abstract graph of state transfer for two subtypes.
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imbalance between excitation and inhibition (38, 39). These results

indicate that Cluster 2 may represent a transitional state between

normal and Cluster 1, signifying the early stage of synaptic

dysfunction in AD (Figure 5D).
3.5 Construction of hub genes within two
subtypes and prediction of drug-
gene interactions

To further investigate the interactions of these 223 DEGs

between the two AD clusters, we constructed a PPI degree-

weighted network with 158 nodes and 706 edges, including 142

Cluster 2 up-regulated genes, and 16 Cluster 1 up-regulated genes

(Figure 6A). Among them, SNAP25, SLC17A7, SYP, SYT1, and

SLC32A1 genes were the top 5 genes with the highest connectivity

in the network. Using the MCC algorithm with plug-in CytoHubba

(30), we identified the top 10 hub genes with the highest scores:

SLC17A7, SNAP25, GAD1, SLC17A6, SLC32A1, PVALB, SYP,

GRIN2A, SLC12A5, and SYN2 (Figure 6B). All 10 hub genes

were upregulated in Cluster 2. Recent studies highlight that

SNAP25, a marker of synaptic degeneration, is elevated in the

early stages of AD (40), supporting our analysis of Cluster 2 as

representing an early AD subtype. Moreover, in the rat model,

Grin2a is a synaptic protective factor in astrocytes early in Ab
exposure, and knockdown of Grin2a exacerbates b-amyloid-

induced memory and cognitive deficits (41).
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Using the DGIdb database, drug-gene interaction analysis

revealed 6 hub genes corresponding to 38 potential drug targets

and 7 associated pathways for AD treatment (Figure 6C,

Supplementary Table S3). Notably, 30 drugs target GRIN2A, the

gene with the highest number of drug predictions, while 4 drugs

target SNAP25. GAD1, PVALB, SYP, and SLC12A5 were each

targeted by one drug. GRIN2A primarily involves pathways like

Transcriptional Regulation by MECP2 and Transmission across

Chemical Synapses. MECP2, which interacts directly with RNA

polymerase II, plays a crucial role in regulating human neuron

transcription (42). Among the predicted drugs, memantine and

memantine hydrochloride were classical drugs for Alzheimer’s

disease that target GRIN2A. Memantine, a moderate affinity

uncompetitive NMDA receptor antagonist that interacts with its

target only during states of pathological activation, acts on

transmission across chemical synapses pathway (43, 44).

Interestingly, many of the predicted drugs are used to treat

depression, suggesting a potential link between depression and

AD, particularly given the upregulation of these genes in the early

AD subtypes. In addition, we analyzed 16 DEGs in Cluster 1 related

to drugs, with 6 genes corresponding to 79 drugs and compounds

(Supplementary Figure S4). Among these, TUBB6 was linked to 41

drugs, CP to 14 drugs, and PRKX to 13 drugs. TUBB6 is a

cytoskeletal component involved in metabolic and immune-

related processes (45, 46), further supporting its potential as a

therapeutic target. These results suggest that two subtypes of hub

gene are known drug targets and associated with multiple neuronal
FIGURE 6

Drug prediction based on hub genes in differentially expressed gene clusters. (A) PPI network of 223 DEGs between two distinct clusters. (B) The
hub genes in the PPI network. (C) Drug-gene-pathway interaction prediction of hub genes,6 genes were targeted in the DGIdb database.
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system pathways and could be potential candidate targets for

AD treatment.
3.6 Specificity of cellular distribution of the
two subtypes revealed by single
cell analysis

To clarify the processes underlying the key genes of the two

subtypes during AD, we initially re-analyzed previously published

scRNA-seq datasets that included entorhinal cortex (EC), middle

temporal gyrus (MTG), superior frontal gyrus (SFG) and

somatosensory or entorhinal cortex (SSC) using the Seurat

approach. After normalizing gene expression, we performed the

PCA for four brain regions and clustered cells using UMAP-based

clustering on the informative PCA space, seven distinct cell

populations present in EC, MTG, and SFG were identified based

on highly variable genes, and eight-cell populations were identified

in SSC (Figures 7A–D). We identified the seven major classes of

cells based on multiple cell markers: excitatory neurons (ExN),

inhibitory neurons (InN), microglia (Micr), astrocyte (Astro),

endothelial cel l (Endo), oligodendrocyte (Oligo), and

oligodendrocyte progenitor cell (OPC). In addition, Neural

progenitor cell and immune cell marker genes were found in SSC.

The proportions of distinct cell types in each region are depicted in

Supplementary Figures S5A–D, revealing that oligodendrocyte cells,

excitatory neuron cells, astrocyte cells, and inhibitory neurons were

abundant in EC, SFG, and MTG. However, astrocyte cells and

microglial cells were most abundant in SSC.

Next, we analyzed the expression distribution of 10 hub genes

within various cells in EC (Figure 7E). The results revealed that

almost all hub genes were expressed in excitatory neurons and

inhibitory neurons, especially SNAP25, the most critical hub gene,

which was strongly expressed. GAD1 was specifically overexpressed

in inhibitory neurons, whereas SLC32A1 and PVALB were less

distributed among seven cell types. However, the results of the

expression distribution of the top 10 Cluster 1 upregulated genes

showed that most of the genes were expressed in endothelial cells

and astrocytes. SLC14A1 was strongly expressed in astrocytes,

whereas TXNIP was expressed in endothelial cells, microglia,

OPCs, and astrocytes (Figure 7F). Consistently, Cluster 2 hub

genes showed the same expression distribution in MTG and SFG

(Figure 7G, Supplementary Figures S5E, F). Inconsistently with EC,

the up-regulated gene XIST in Cluster1 was expressed in all types of

neuronal cells in MTG. In SSC, Cluster 2 hub genes were

predominantly expressed in neurons, especially SNAP25, GAD1,

GRIN2A, and SYN2. Among the Cluster 1 up-regulated genes,

PRKX and TXNIP were highly expressed in immune cells, and

microglia (Supplementary Figure 6A). In conclusion, our analysis

revealed that the Cluster 2 hub genes tend to be expressed in

excitatory neurons, inhibitory neurons, and OPC cells, whereas the

Cluster 1 top10 genes are widely expressed in astrocytes, endothelial

cells, and microglia (Figure 7H).
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3.7 Interactions between various types of
neuronal cells are explained by
cellular communication

To explore the interactions across various types of neuronal

cells, we then used CellChat to infer cell-cell communication among

various types of neuronal cells. Circle diagrams showed the general

strengths of interactions (proportion) between two cell groups to

visualize the integrated cell communication networks (Figure 7I,

Supplementary Figures S6B, C). Different cell groups had obviously

different contributive signals on the incoming and outgoing signals.

Signaling across neuronal cells was consistently enhanced in the

SSC and MTG. (Figure 7I). Astrocytes, microglia, and neurons

contributed the most to both incoming and outgoing signals within

the SSC, while excitatory neurons, inhibitory neurons, astrocytes,

and oligodendrocytes exhibited the highest communication

frequency in the MTG, as well as in the EC and SFG

(Supplementary Figures S6B, C).

Next, we investigated cell-cell communication across various

neuronal cells by modeling ligand-receptor interactions. Calculating

the interaction strength for ligand-receptor pairs in distinct cell

types, we inferred cell state-specific ligand-receptor interaction

networks of four brain regions (Figures 7J, K, Supplementary

Figures S6D, E). For instance, neurons, including excitatory and

inhibitory types, expressed high levels of ligands such as NRG2 and

NRG3, while their corresponding receptor, ERBB4, was

predominantly expressed in oligodendrocytes and OPCs. This

indicates that these ligands may play an important role in

influencing signaling between neuronal cells.

At last, 10 potential targets in the Cluster 2 mentioned above

were verified by GEO datasets. We detected the expression of those

genes in samples of AD patients using GSE48350, GSE122063, and

GSE5281 datasets (Figure 8). The results showed that these 6 genes

were consistently downregulated and expressed in AD. In contrast,

PVALB showed no significant change in expression in the

GSE48350 dataset. Notably, GRIN2A and SNAP25, which are

linked to several predicted drug targets, were significantly

downregulated across all three datasets. The downregulation of

these genes in the early subtypes of AD suggests that these genes

have an inhibitory effect on AD progression.
4 Discussion

Cells undergo multiple programmed cell death procedures

through a wide range of crosstalk that can be activated

simultaneously in the context of specific conditions, such as

PANoptosis (“P,” pyroptosis; “A,” apoptosis; “N,” necroptosis);

(47, 48). Previous studies of target molecules in the therapeutic

PCD pathway have been largely unsuccessful, possibly owing to

functional redundancy among them (49, 50). Therefore, targeting

PANoptosis and its regulatory complex, the PANoptosome, could

offer novel therapeutic strategies for Alzheimer’s disease (AD) (51,
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52). Apoptotic and necrotic cells are present in AD and could be

simulated in models of AD neuronal degeneration (53, 54). For AD

patients, high expression levels of inflammasome (e.g., NLRP1,

NLRP3, and AIM2) could activate inflammatory factors, leading

to the death of neuronal cells via pyroptosis (55–58). Given the

complexity of AD’s pathomechanisms, understanding the interplay

between apoptosis, necroptosis, and pyroptosis is critical to

advancing AD research (59). Although research on PANoptosis
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and AD is still limited, the association between apoptosis,

pyroptosis, necroptosis, and AD is becoming clearer.

In the study, we found that 24 PANoptosis genes were

differentially expressed in AD patients compared with control

samples, suggesting that PANoptosis genes may be important

indicators of AD progression. Additionally, we found strong

correlations between PANoptosis genes and well-established AD

susceptibility genes, including PSEN1, PSEN2, APP, and MS4A6A,
FIGURE 7

Characterization of key genes of two subtypes based on single-cell data. (A-D) UMAP of brain zone across major cell classes including excitatory
neuron, inhibitory neuron, oligodendrocyte, oligodendrocyte precursor cell (OPC), astrocyte, immune cell (Immune), microglia, and endothelial
cell. (E) 10 hub genes of subtype 2 in the EC region. (F) top 10 genes of subtype 1 in the EC region. (G) 10 hub genes of subtype 2 in the MTG
region. (H) Distribution of key genes for subtype 1, subtype 2. (I) Cellular interactions between major cell classes. (J) Bubble heatmap showing
cell interaction strength for different ligand-receptor pairs in SSC. Dot size indicates the p-value generated by the permutation test and dot color
represents communication probabilities. (K) Bubble heatmap for different ligand-receptor pairs in MGT.
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which are linked to CD44, IL18, and TNFRSF10A. Using logistic

regression, all 24 genes were implicated in influencing AD

progression, and nine were selected as key variables in our final

model. Among these, HGF, YWHAZ, and TNFRSF10B were
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identified as significant contributors. Notably, TNFRSF10B, a

known risk gene for AD, is involved in glycolytic metabolic

pathways and inflammatory responses. The pathogenesis of AD

involves inflammatory activation and metabolic reprogramming of
FIGURE 8

The expression of the identified top 10 hub genes (GAD1, GRIN2A, PVALB, SLC12A5, SLC17A6, SLC17A7, SLC32A1, SNAP25, SYN2, SYP). (A) mRNA
expression of hub genes in GSE5281. (B) GSE48350. (C) GSE122063. P values were shown as: **P< 0.01; ***P< 0.001; ****P< 0.0001, ns represent
no significant.
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microglia, especially the metabolic shift from oxidative

phosphorylation to glycolysis (60), highlighting the connection

between inflammation, metabol ic dysregulat ion, and

AD pathogenesis.

The pathological features of AD were the cleavage of AbPP to

Ab to form amyloid plaques and intraneuronal neurogenic fibril

tangles (NFT). Three major secretases ADAM10, BACE1 and g-
secretase (including PSEN1, PSEN2), and MAPT are involved in

this process (61–63). In this study, we identified two distinct AD

states based on the PANoptosis gene. Compared to subtype 1 and

the normal subgroup, the expressions of MAPT, ADAM10, BACE1,

and PSEN2 in subtype 2 resided in an intermediate state, which

implied that subtype 2 might be a transition state from normal to

AD. However, the expression of the PSEN1 gene was not

intermediate between subtype 1 and normal. Based on the

differential genes of the two clusters, we found that Cluster 2 was

mainly associated with exocytosis neurotransmitter synaptic

transport cell, GABAergic synapse, and neuroactive ligand-

receptor interaction, while Cluster 1 is associated with

phagosome, complement, and coagulation cascades inflammatory

pathways. This finding provides further evidence that subtype 2 is

an early AD stage. Qing et al. found that GABAergic abnormalities

occur early in AD, earlier than cognitive deficits. Brain regions in

AD, such as the hippocampus, exhibit early and tonic

hyperexcitability, which may be associated with damage to

GABAergic circuits (38). In addition, single cell sequencing data

showed that Cluster 2 hub genes were mainly highly expressed in

neuronal cells, and Cluster 1 highly expressed genes were more

inclined in astrocyte, endothelial cells. The results indicate that

there might be abnormalities in the glutamatergic synapse as well as

GABAergic synapse in the early stage of AD, leading to the

disruption of neurotransmitter transmission among neurons and

causing excitation or inhibition of synaptic neurons, and ultimately

resulting in brain function abnormalities.

In addition, with Cluster 2 hub genes, we identified six genes

with potential target drugs or compounds, among which GRIN2A

corresponds to more than 30 drugs. GRIN2A encodes the GluN2A

subunit of the NMDA (N-methyl-d-aspartate) receptor (NMDAR),

which plays a crucial role in excitatory synaptic transmission and

plasticity (64, 65). Most of the drugs corresponding to GRIN2A are

antidepressants as well as antipsychotics, such as apimostinel,

esketamine, and haloperidol, which improve cognitive deficits

caused by the early stages of Alzheimer’s disease (66, 67). These

findings suggest that hub genes, such as GRIN2A, play a pivotal role

in modulating neurotransmission and may serve as promising

therapeutic targets for Alzheimer’s disease.

To the best of our knowledge, this is the first study to

characterize early subtypes of AD from a PANoptosis perspective.

The screening and validation of these characterized genes provide

potential molecular targets for further exploration of the

mechanism of programmed cell death in AD. The three GEO

datasets analyzed may not fully represent the entire Alzheimer’s

disease patient population, thus potentially failing to capture the full

spectrum of AD heterogeneity. Furthermore, while we focused

primarily on AD marker genes within the context of APANRGs,
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a deeper investigation into the regulatory mechanisms of each

PANoptosis gene associated with AD is necessary. This will be a

key focus of our future research efforts.

In conclusion, our comprehensive bioinformatics analysis

revealed a strong association between PANoptosis genes and AD

pathogenesis. Two subclasses of AD from the perspective of pan-

apoptosis were identified with substantial differences in clinical

features, metabolic characteristics, and immune infiltration. The

results may better elucidate the heterogeneity of AD patients.

Additionally, we highlighted 10 hub genes, including SLC17A7,

SNAP25, GAD1, and GRIN2A, as potential markers for early AD

diagnosis, offering a more accurate framework for identifying early-

stage AD patients.
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