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Evaluating the prognostic
potential of telomerase
signature in breast cancer
through advanced machine
learning model
Xiao Guo1†, Yuyan Cao1†, Xinlin Shi1, Jiaying Xing1,
Chuanbo Feng1 and Tao Wang2*

1School of Pharmacy, Beihua University, Jilin, Jilin, China, 2Research Laboratory Center, Guizhou
Provincial People’s Hospital, Guiyang, Guizhou, China
Background: Breast cancer prognosis remains a significant challenge due to the

disease's molecular heterogeneity and complexity. Accurate predictive models

are critical for improving patient outcomes and tailoring personalized therapies.

Methods: We developed a Machine Learning-assisted Telomerase Signature

(MLTS) by integrating multi-omics data from nine independent breast cancer

datasets. Using multiple machine learning algorithms, we identified six

telomerase-related genes significantly associated with patient survival. The

predictive performance of MLTS was evaluated against 66 existing breast

cancer prognostic models across diverse cohorts.

Results: The MLTS demonstrated superior predictive accuracy, stability, and

reliability compared to other models. Patients with high MLTS scores exhibited

increased tumor mutational burden, chromosomal instability, and poor survival

outcomes. Single-cell RNA sequencing analysis further revealed higher MLTS

scores in aneuploid tumor cells, suggesting a role in cancer progression. Immune

profiling indicated distinct tumor microenvironment characteristics associated

with MLTS scores, potentially guiding therapeutic decisions.

Conclusions: Our findings highlight the utility of MLTS as a robust prognostic

biomarker for breast cancer. The ability of MLTS to predict patient outcomes and

its association with key genomic and cellular features underscore its potential as

a target for personalized therapy. Future research may focus on integrating MLTS

with additional molecular signatures to enhance its clinical application in

precision oncology.
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Introduction

Breast cancer, historically labeled as the “invisible killer” in

middle-aged and older women, has alarmingly started to proliferate

among younger demographics at an unprecedented rate. Recent

findings from the International Agency for Research on Cancer

reveal a striking 24.2% incidence rate of breast cancer, underscoring

a critical, escalating public health issue that continues to rise

annually (1).

While various prognostic models have been developed, such as

those by Sui et al. using immune cell infiltration scores (2), and by

Elke M. et al. integrating genetic polymorphisms (3), the overall

accuracy and effectiveness of these models in predicting patient

outcomes remain suboptimal. This underscores a compelling need

for innovative approaches that enhance predictive accuracies which

could significantly alter treatment paradigms. Telomerase can

prevent telomeres from shortening with the increase in the

frequency of cell division, thus achieving the infinite cell

replication of cells (4). This activity is inhibited in normal cells.

However, some studies have shown that the expression rate of

telomerase in breast cancer, oral squamous cell carcinoma, gastric

cancer, lung cancer, liver cancer, and ovarian cancer is significantly

higher than that in benign lesions and normal tissues (5), suggesting

that telomerase helps tumor cells evade the limitations of cell aging

and death to promote their unlimited proliferation, so telomerase

has become one of the hotspots in cancer research.

This study introduces a novel predictive model based on

telomerase gene expressions, utilizing advanced machine learning

techniques to refine prognosis evaluations further. By integrating

comprehensive bioinformatics data, this research not only aims to

bridge the gap identified in traditional models but also enhances the

understanding of telomerase’s role in cancer progression—a pivotal

step in tailoring patient-specific therapeutic strategies.
Methods

Data Acquisition

We compiled data from 12 independent breast cancer cohorts

sourced from three major databases: The Cancer Genome Atlas

(TCGA), the Gene Expression Omnibus (GEO), and MetaGxData.

Our analysis focused on samples that included complete survival

data to ensure the reliability and comprehensiveness of the

prognostic analysis. Genes for telomere maintenance were

collected from the TelNet database (6).
Machine learning-assisted telomerase
signature for breast cancer

Following the methodology of Liu et al. (7), we integrated ten

computational tools to develop a unique telomerase signature for

breast cancer: Random Forest (RF), Least Absolute Shrinkage and

Selection Operator (LASSO), Gradient Boosting Machine (GBM),

Survival Support Vector Machine (Survival-SVM), Supervised
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Principal Component (SuperPC), Ridge Regression, Partial Least

Squares Cox Regression (plsRcox), CoxBoost, Stepwise Cox

Regression, and Elastic Net (Enet). Random Forest was used to

identify the most predictive genes by constructing multiple decision

trees, while LASSO was utilized for feature selection by shrinking

the regression coefficients of less significant features to zero. GBM

was employed as a boosting algorithm to build a sequence of weak

learners to progressively reduce the residual error in predictions,

and Survival-SVM modeled survival data by maximizing the

margin between survival time points of different classes.

Hyperparameters for each algorithm were optimized using grid

search with ten-fold cross-validation; for example, the number of

trees in RF was set to 1000, while the regularization parameter in

LASSO was tuned to minimize prediction error. RF, LASSO,

CoxBoost, and Stepwise Cox were particularly critical for

dimensionality reduction and variable selection, combined into

108 distinct configurations to generate a predictive signature. We

evaluated all cohorts, including TCGA and five GEO datasets, using

the average Concordance Index (C-index) to identify the most

reliable prognostic model, establishing a redox-specific signature to

predict outcomes in breast cancer.
Genomic alteration analysis in
MLTS groups

We investigated genetic variations between two MLTS groups

using the TCGA-BRCA database, analyzing both genetic mutation

levels and Copy Number Alterations (CNA). The Tumor Mutation

Burden (TMB) for high- and low-MLTS breast cancer patients was

calculated from raw mutation data, and the most frequently

mutated genes (mutation rate > 5%) were visualized using

maftools. Additionally, patient-specific mutational signatures were

identified with the deconstructSigs tool (8). Mutational analysis was

conducted to visualize the mutation spectrum across different

MLTS subgroups, with TMB calculated by counting the number

of mutations per megabase and results presented in box plots

comparing the groups. Copy number alterations were detected

using GISTIC2.0 to identify significant amplification and deletion

events across the genome, which were visualized using heatmaps to

illustrate the distribution of these alterations in the MLTS

subgroups. We highlighted four prominent mutational signatures

(SBS2, SBS13, SB7b, SBS7d) showing higher mutation frequencies

in the dataset, and noted the five most common regions of

amplification and deletion, particularly in genes located at

5p15.33 and 9p23.
Single-cell RNA sequencing
data processing

To analyze single-cell RNA sequencing data, we processed the

GSE161529 dataset using Seurat (v4.0) (9). Initially, genes without

expression were removed, focusing only on those with nonzero

expression levels. We normalized the expression matrix using

Seurat ’s “SCTransform” function and reduced dataset
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dimensionality through PCA and UMAP techniques. Distinct

cellular groupings were identified via “FindNeighbors” and

“FindClusters” functions. The DoubletFinder package was

employed to eliminate potential doublets, ensuring dataset

integrity (10). Cells not meeting quality standards—such as those

with over 15% mitochondrial genes or fewer than 500 genes—were

excluded. Ultimately, 64,308 cells met our rigorous quality control

criteria and were further categorized by manually annotating cell

types based on established marker genes.
Adapting SCENIC for gene regulatory
network inference

The Single-Cell rEgulatory Network Inference and Clustering

(SCENIC) pipeline is a computational method used to reconstruct

gene regulatory networks from single-cell RNA sequencing

(scRNA-seq) data (11). SCENIC identifies co-expressed gene

modules, determines direct regulatory targets based on

transcription factor motif enrichment, and defines regulons

(transcription factors and their target genes): 1. We first identified

co-expression modules using the GENIE3 algorithm, which ranks

genes based on their importance as potential transcription factor

targets. This approach allows us to detect modules of genes that are

likely regulated by the same transcription factors. 2. For each co-

expression module, SCENIC applies motif enrichment analysis

using RcisTarget to identify direct targets of transcription factors.

Only genes with enriched binding motifs are retained as part of a

regulon, ensuring that the predicted gene-target interactions are

supported by sequence-specific evidence. 3. We used the AUCell

algorithm to calculate the regulatory activity score (RAS) for each

cell, based on the expression of genes within each regulon. This

scoring system quantifies the activity of each regulon in individual

cells, enabling the identification of cell states driven by specific

transcription factors (12). 4. Using dimensionality reduction

techniques (e.g., UMAP), we visualized the distribution of cells

based on regulon activity scores. Cells with similar transcriptional

regulatory profiles were grouped into clusters, highlighting distinct

cell states within the breast cancer microenvironment.

The SCENIC pipeline enabled us to identify key transcription

factors and their target genes that drive specific cell states in breast

cancer. This approach provided insights into the gene regulatory

networks underlying tumor progression and immune response,

revealing potential therapeutic targets for modulating

these pathways.
Regulon clustering in regulatory
crosstalk analysis

Our study utilizes a sophisticated computational approach to

map the regulatory crosstalk among TFs and their target genes,

emphasizing TF clustering. The method begins by filtering TF-

target interaction data to focus on significant pairs (significance

threshold > 1), prioritizing the most relevant regulatory

interactions. We identify key regulatory TFs, termed hub genes,
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by quantifying their target gene regulation. An undirected graph

model represents these interactions, refined spatially by a force-

directed algorithm to clearly depict the network architecture, and

highlight TF-target interplay. Further structural insights are gained

through the Leiden algorithm, which detects community structures

and groups TFs into clusters based on their regulatory links,

enhancing our analysis of the regulatory landscape.
Cell-cell communication analysis

We utilized the “CellChat” R package to analyze cell-cell

communication (13), creating CellChat objects from UMI count

matrices and employing the “CellChatDB.human” database for

ligand-receptor interactions. Analysis was performed using default

settings, with objects merged via the “mergeCellChat” function.

Interaction differences in number and intensity across cell types

were visualized using “netVisual_diffInteraction.” Changes in

signaling pathways were assessed with “rankNet,” and gene

expression distributions were depicted using “netVisual_bubble”

and “netVisual_aggregate.”

Additionally, the NicheNet package provided insights into

ligand activity and regulated expression of downstream targets

(14), enhancing our understanding of signaling dynamics and

communication pathways in the cellular microenvironment.
Evaluation of TME disparities and
immunotherapy response

To assess immune cell infiltration in the tumormicroenvironment

(TME), we utilized several algorithms: MCPcounter (15), EPIC (16),

xCell (17), CIBERSORT (18), quanTIseq (19), and TIMER (20). These

analyses helped categorize patients by their MLTS scores and provided

a comprehensive view of the immune landscape. Additionally, we

evaluated the ESTIMATE and TIDE indices to gain insights into

immunotherapy potentials and prognostic implications for breast

cancer (21, 22). Immune checkpoints were quantified to predict

patient responsiveness to immune checkpoint inhibitor (ICI)

therapy, supporting personalized medicine and improved

treatment strategies.
Therapeutic target and drug identification
for High MLTS patients

To identify potential therapies for high MLTS patients, we

initially filtered duplicate compounds from the Drug Repurposing

Hub, narrowing down to a list of 6,125 unique compounds (https://

clue.io/repurposing). We used Spearman correlation analysis to select

genes linked with breast cancer outcomes, focusing on those with a

correlation coefficient greater than 0.15 (P < 0.05) and those

indicating poor prognosis with coefficients below -0.30 (P < 0.05).

We also evaluated gene significance using CERES scores from the

Cancer Cell Line Encyclopedia (CCLE) related to brain cell risk

scores (23).
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Further, we assessed drug responsiveness using data from the

Cancer Therapeutics Response Portal (CTRP) and the PRISM

project, which include drug screening across cancer cell lines. The

predictive accuracy of drug responses was enhanced using the

pRRophetic package’s ridge regression model, validated by 10-

fold cross-validation (24).

Additionally, we explored potential drugs using Connectivity

Map (CMap) analysis by comparing gene expression profiles and

identifying compounds inversely related to CMap scores, suggesting

higher therapeutic potential against breast cancer.
Patient stratification in breast
cancer research

For gene expression analysis in breast cancer samples, RNA was

extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA),

and cDNA was synthesized using GoScript reverse transcriptase

and Master Mix (Promega), following manufacturer’s protocols.

Quantitative expression was measured via qRT-PCR on the CFX96

Touch Real-Time PCR Detection System (BioRad, Hercules, CA,

USA) using the 2-DDCq method with GAPDH as a normalization

control. Patients were then categorized based on gene expression

levels calculated from a formula derived from the MLTS, which

helped identify varying risk profiles and assisted in developing

customized treatment approaches.
Immunohistochemistry analysis

We collected breast cancer tissue samples from 30 patients at

Guizhou Provincial People’s Hospital and performed Hematoxylin

and Eosin (HE) staining according to established protocols, with

diagnoses confirmed by two independent pathologists. For the

immunohistochemistry (IHC) analysis on paraffin-embedded

samples, we followed the procedures and scoring systems

described in our previous studies (25, 26). Protein expression

levels were assessed independently by the same pathologists,

ensuring methodological consistency with our earlier research (26).
Results

Construction of telomerase gene signature
based on machine learning

To investigate the relationship between breast cancer and

telomerase genes in depth, the information related to telomerase

genes was collected from TelNet database to ensure the

comprehensiveness and accuracy of the data. An in-depth

analysis was conducted on the 9 independent datasets, and ten-

fold cross-validation and 108 algorithm combinations were applied

to construct a machine learning-assisted telomerase signature

(MLTS). Subsequently, C-index values of the algorithms were

calculated and compared to select the best algorithm (Figure 1A).

The heatmap highlights the performance of each algorithm across
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the datasets, with red colors indicating higher C-index values, which

signify better predictive performance. The RSF was identified as the

most robust model, displaying the highest C-index values.

The telomerase genes may regulate the breast cancer process,

and the individual assessment on the important genes contained in

the point with the lowest error rate was conducted by RSF algorithm

(Figure 1B). The error rate for the RSF algorithm is plotted against

the number of trees, showing that as the number of trees increases,

the error rate significantly decreases and stabilizes around 400 trees.

This suggests that the RSF model reached optimal performance at

this level, making it a reliable choice for gene selection. The

prognostic value of these key telomerase genes was explored by

univariate COX regression analysis, in which some typical

oncogenes, such as HMGB3, XRCC4, RGS3, and PFKL, were

found to be positively correlated with the poor prognosis, and

some typical tumor suppressor genes, such as JAK2 and DAXX,

were also found to be negatively correlated with the poor prognosis

in breast cancer patients (Figure 1C). The six screened genes were

used to construct a MLTS (Figure 1D), and the survival of the

binary classification model was verified by calculating MLTS scores

in 9 cohorts. The results showed that the binary classification model

could effectively distinguish between the high- and low-MLTS

patients, indicating that MLTS can provide some important

reference information for predicting the survival of breast cancer

patient (Supplementary Figure S1).
Evaluation of MLTS using 66 published
breast cancer models

The independence between MLTS and other clinical indicators

was compared by univariate and multivariate COX analysis

(Supplementary Figure S2A), and MLTS, stage, and age were

ultimately used to establish a nomogram for evaluating the

patient’s OS at 1, 3, and 5 years (Supplementary Figure S2B).

The calibration curve analysis showed that the OS predicted by

the nomogram was highly consistent with the observed OS

(Supplementary Figure S2C). In addition, Hosmer-Leme analysis

found no significant difference between the MLTS nomogram curve

and the ideal curve (Supplementary Figure S2D). The DCA results

showed that the net benefit of the MLTS curve was much higher

than that of the other two curves (Supplementary Figure S2E). At

last, the ROC curve of MLTS was relatively higher than other

traditional factors (Supplementary Figure S2F).

To comprehensively evaluate the predictive ability of MLTS, 66

breast cancer prediction models developed by different research

teams were collected, and the stability and accuracy of these 67

models (including MLTS) were evaluated in 10 independent datasets.

Heatmap summarizes the stability of each model across the datasets,

with MLTS consistently performing as the most stable model

(Figure 2A). In addition, average C-index values calculated by the

different model in 10 datasets a comparison were compared, and the

comparison results indicated that MLTS had a high accuracy and

stability (Figure 2B). The plot illustrates that MLTS achieved the

highest average C-index across the datasets, demonstrating its

superior predictive accuracy compared to other models.
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Gene mutation landscape of MLTS

Due to the important role of gene mutations in the occurrence

and development of cancer, differences in the genomic level

between MLTS subgroup were deeply explored by using a multi-

omics integrated analysis method. Firstly, the tumor mutation

burden (TMB) of patients in the two groups was compared

(Figures 3A, C). The top panel of Figure 3A illustrates the

distribution of TMB between the high- and low-MLTS groups,

showing that the high-MLTS patients tend to have a significantly
Frontiers in Immunology 05
higher TMB, as confirmed by the box plot in Figure 3C. The study

focused on the analysis of genes with higher point mutation rates

and variations in their chromosome copy numbers, and it was

found that the mutation and variation in these genes were more

frequent in the high-MLTS patients (Figure 3A). Each row in

heatmap represents a gene with a high mutation frequency, with

darker shades indicating higher mutation rates. High-MLTS

patients show a more pronounced mutation profile, especially in

genes such as TP53, highlighting the potential link between these

mutations and poor prognosis.
FIGURE 1

Machine learning and development of telomerase gene model. (A) C index values of 9 datasets in different machine learning combinations. (B) The
error rates of RSF algorithm running 1000 times. (C) Prognostic outcomes of different important genes in 9 datasets. (D) Coefficients of 6 genes for
model construction.
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Finally, combined with the data from 10 carcinogenic

signaling pathways, the mutation rates of important genes were

observed. The results showed that the mutation rate of some

classic tumor suppressor genes was significantly higher in the

high-MLTS group. For example, the mutation rate of TP53, a

typical tumor suppressor gene, was 43.3% in the high-MLTS

group, and only 27.3% in the low-MLTS group. (Figures 3A, B).

The maps the involvement of these mutated genes in critical

signaling pathways, such as the TP53 and PI3K pathways, where

nodes are color-coded to indicate the mutation frequency, further

linking the pathway alterations to the aggressive tumor behavior

observed in high-MLTS patients.

Then, the copy number alteration of patients in MLTS were

further explored, and it was found that the amplification and

deletion of chromosomes at the chromosome arm level were

more pronounced in the high-MLTS group (Figures 3A, D),

indicating that the poor prognosis of high-MLTS patients may be

related to the significant increase of multiple oncogenes such as

5p15.33 and the deletion of multiple tumor suppressor genes such

as 9p23 (Figure 3A).
Frontiers in Immunology 06
Interpretation of biological mechanisms of
MLTS at the single-cell level

The single-cell distribution of 8 breast cancer patients was

analyzed, maps of the single-cell distribution in four normal

tissues and four tumor tissues are included (Supplementary

Figures S3A, B). Single-cell distribution maps of these 8 breast

cancer patients were analyzed after removing the batch effect, and

20 clusters and seven cell types were identified. (Figures 4A, B). The

UMAP plot shows distinct clusters representing the 20 different cell

populations and specific cell types to these clusters, each color-

coded to highlight its identity, indicating the diversity of cell

populations within the tumor microenvironment. The overall

number of these 7 types of cells and their proportion in the

bodies of these 8 tumor patients was statistically analyzed

(Supplementary Figures S3C, D). The representative markers in

these 7 types of cells and their actual distribution within the cells

were observed (Figure 4C; Supplementary Figure S3E). Violin plots

of key marker genes for each cell type, illustrating their expression

profiles across the identified populations, which helps confirm the
FIGURE 2

Comparison between the MLTS and 66 published models. (A) Univariate Cox regression analysis of MLTS and 66 published signatures. (B) C-indices
of MLTS and 66 published signatures in 10 datasets.
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identity of these cells in both normal and tumor tissues. Moreover,

the distribution of these 7 types of cells in the tumor tissue and

normal tissue was summarized. We observed that epithelial cells,

macrophages, and T cells accounted for a larger proportion in the

tumor tissue in comparison with normal tissue (Figure 4D),

indicating that tumor tissues have a higher prevalence of these

immune and epithelial cells compared to normal tissues, suggesting

their involvement in the tumor ’s immune landscape

and progression.

Next, MLTS was incorporated into the single-cell analysis for

scoring (Figure 4E). The cells were divided into two groups based on

peak MTLS scores of the epithelial cells (Figure 4F). Differential

gene expression analysis and functional clustering were performed

on these 7 cell types to elucidate the potential functional pathways
Frontiers in Immunology 07
of MTLS (Supplementary Figures S3F, G). Further observation on

the copy-number alteration by copyKat algorithm was used to

distinguish between normal cells and tumor cells (Figure 4G),

and finally a higher MTLS score in tumor-aneuploid than in

tumor-diploid, implying the significance of MTLS in breast

cancer progression (Figure 4H).
Exploring specific regulatory factors that
drive MLTS and cell recognition

To comprehensively construct a gene regulatory network, the

SCENIC pipeline was applied to analyze single-cell RNA seq data

with cis-regulatory sequence information (Figures 5A, B). The PCA
FIGURE 3

Genomic and pathway alterations associated with MLTS. (A) Displays the TMB and various mutational signatures across the genome. A detailed
heatmap below illustrates the frequency of specific genomic alterations, such as gains and losses, with adjacent bar graphs quantifying these
alterations for selected genes. (B) Mutation map for genes implicated in ten canonical cancer pathways, revealing the complexity of oncogenic
signaling and the interactions among pathways in tumorigenesis. (C, D) Box plots compare TMB (C) and copy number variations D). *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001.
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and variance analyses were performed to explore the specific

regulons based on the MLTS and cell identity. Results showed

that PC1 accounted for cell type-specific TFs, while PC2 was

correlated with MLTS-specific TFs (Figures 5C, D; Supplementary

Figures S4A, B). The activity and expression levels of NFICH and

START1 in 7 different cells were analyzed, and the results showed

that START1 was activated in all high-MLTS cells, but the

expression levels did not show significant changes, while NFIC

was exactly the opposite (Supplementary Figures S4C, D).

Based on the Jensen Shannon divergence, the regulator specific

score (RSS) was defined, and the regulatory factors with higher RSS

scores were selected from these 7 types of cells for matrix analysis.

The results showed that GATA3, SPDEF; ELF3 were the most

relevant specific regulators to epithelial cells, the UMAP plot

provided an additional support for the highly specific activity of

these regulators to epithelial cells, and the most relevant specific

regulators in the other 6 types of cells were also analyzed

(Figures 5E, F; Supplementary Figure S4E).

Next, the RAS score similarity of each transcription factor was

compared based on Leiden algorithm, and 11 transcription factor

clusters were obtained by cluster analysis, of which A and D

transcription factor sets had a higher contribution rate to the

development of MLTS compared to the other 9 groups

(Figures 5G, H; Supplementary Figure S4F). We next focused on

the exact TFs that drive epithelial cells transcriptomic changes by
Frontiers in Immunology 08
MLTS. Multiple mutation pathways were identified by GSEA

analysis (Figures 5I, J). Transcription factors that contributed to

these two representative pathways were identified by further

analysis (Figures 5K; Supplementary Figure S4G). Figures 5L;

Supplementary Figure S4H show the regulatory network diagrams

of these transcription factors, such as KYNU which is associated

with this activation pathway, and the transcription factors involved

in the progression of MLTS was confirmed.
Intercellular communication between
MLTS groups

The intercellular communication of these 7 types of cells in

MLTS was evaluated by Cell Chat analysis. The interaction numbers

and strength were stronger in the low MLTS cells (Figures 6A, B).

Signaling pathways analysis further showed that there were stronger

intercellular communications in most of the signaling pathways in

the low MLTS group (Figure 6C). For example, epithelial cells were

alleviated form the signals of macrophages, and the gene expression

of collagen was significantly different between two MLTS groups in

epithelial cells (Supplementary Figures S5A, B). Moreover, the

outgoing and incoming interaction strength was deployed to

monitor the cell-cell interactions (Figure 6D). The results showed

the changes in the intensity of outgoing and incoming signals in
FIGURE 4

Single-cell analysis of cellular heterogeneity and MLTS level. (A) A UMAP visualization identifies various clusters, each color representing a distinct
cluster. (B) UMAP plot is color-coded to delineate different cell types within the sample. (C) Violin plots illustrate the expression levels of specific
marker genes across different cell types, providing insights into the relative abundance or activity of these cells. (D) A bar chart shows the proportion
of each cell type in normal versus tumor samples, comparing cellular composition. (E) A UMAP density plot visualizes MLTS value across different cell
populations, with warmer colors indicating higher expression levels. (F) A violin plot reveals the distribution of MLTS value across various cell types.
(G) A heatmap by CopyKAT displays inferred copy number variations for a range of genes (rows) against individual cells (columns), where color
intensity indicates the extent of aneuploidy or copy number alterations. (H) A violin plot contrasts the MLTS score between diploid and aneuploid
cells within the epithelial cell population, highlighting significant genomic differences. ****p < 0.0001.
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FIGURE 5

MLTS-specific regulon activity analysis. (A) A umapRAS plot illustrates distinct clusters within a cell population, with each color representing a unique
cluster, suggesting differences in cell subtypes or states. (B) This umapRAS plot further depicts MLTS levels across the cell population, with varying color
intensities reflecting the magnitude of scores. (C) A variance analysis plot highlights the impact of cell types and MLTS on transcription factor activity,
using color mapping to PC1 to emphasize the primary variance influenced by these factors. (D) Another variance analysis plot, color-mapped to PC2,
explores additional dimensions of variability. (E) Displays a ranking for regulons in each cell type based on Regulon Specificity Score (RSS). (F) UMAP plots
specifically focus on epithelial cells, each showing areas where a particular regulon is active. (G) A network graph, constructed via the Leiden algorithm,
mapped the complex interactions among them. (H) This graph concentrates on modules A and D, which significantly contribute to MLTS, elucidating
their role in regulon dynamics. (I) GSEA identifies pathway variations linked to MLTS in epithelial cells. (J) Representative pathways activated or inhibited
in the context of high MLTS, indicating specific pathway engagement within epithelial cells. (K) Lists transcription factors involved in G2M checkpoint,
highlighting their roles in MLTS progression. (L) A detailed regulatory network diagram illustrates the interactions among transcription factors involved in
G2M checkpoint, delineating their interconnected roles in driving MLTS progression.
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different cells, in which stronger incoming interactions among

epithelial cells, T cells, macrophages and pericytes in low MLTS

group, accompanied by stronger outgoing interactions between

pericytes and fibroblasts. Various pathways in epithelial cells are

specific in low MLTS group, for instance, outgoing signals were

specific in both Collagen and Laminin pathways, and whether the
Frontiers in Immunology 10
incoming and outgoing interactions of different cells were enhanced

in the specific signaling pathways was also exhibited in detail

(Figure 6E; Supplementary Figures S5C, D).

The effects of different cells on TME epithelial cells were

explored by nichenetr analysis, and some potential ligands that

could specifically regulate epithelial cells were speculated in the two
FIGURE 6

Dissecting cell-cell interactions and signaling pathway dynamics in MLTS-modulated breast cancer progression. (A) Bar graphs depict a decrease in
cell-cell interactions within the high MLTS group compared to the low. (B) Network diagrams illustrate varied interaction strengths among cell types
in high MLTS groups. (C) A bar chart displays the information flow across 38 signaling pathways, showing that most are more active in the low MLTS
group, particularly collagen and MIF pathways crucial for tumor microenvironment structuring. (D) Scatter plots compare outgoing and incoming
interaction strengths between cell types in low and high MLTS. (E) Pathway specificity in epithelial cells within high MLTS includes notably specific
pathways like, laminin and collagen, pivotal in aggressive cancer phenotypes. (F) Potential ligand-receptor interactions, inferred through NicheNet
analysis, emphasize activity differences between cell types across MLTS groups, identifying key interactions that may guide targeted therapies. (G) A
Circos plot summarizes top-predicted ligand-receptor pairs, pointing to heightened interactions, especially involving HMGB1-SDC1 in high MLTS
cells, indicative of aggressive behavior. (H) A detailed map of the routes of THBS1 ligands and HMGB1 ligands to the target receptor SDC1.
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MLTS groups (Supplementary Figure S5E). One of the most

interesting ligands based on the carcinogenic effect during

development tumor was HMGB1. HMGB1 exhibited a stronger

ligand activity in T cells and fibroblasts compared with

macrophages and pericytes (Supplementary Figure S5F), and a

significant difference in the amount of this ligand was observed in

pericytes (Supplementary Figure S5G). Depper analyses revealed

the differential activity of ligand-receptor pairs for MLTS, we

summarize the top-predicted links in the circos plot (Figure 6F).

A high degree of interaction between HMGB1-SDC1 was observed

in cells in low MLTS group (Figure 6G), indicating that fibroblasts

and T cells may be the main sending cells of affecting changes in the

epithelial cell pathway. Figure 6H shows a detailed roadmap of

HMGB1 ligand reaching the target receptor SDC1 through other

receptors or transcription factors.
Evaluation of potential immunotherapeutic
targets of MLTS

Due to the correlation between the immune microenvironment

and tumor progression, six algorithms were applied to evaluate the

immune infiltration. A higher proportion of immune cell

infiltration was found in the low MLTS patients, while only a few

immune cell infiltrations was observed in the high MLTS patients

(Supplementary Figure S6A). The low MLTS patients were superior

in estimated scores, immune scores, and stromal scores, while the

high MLTS patients showed a greater advantage in tumor purity

(Figure 7A), indicating that the former is more likely to be inclined

towards immunotherapy. It was found in the routine analysis of

TIDE that Dysfunction and Exclusion values of patients were higher

in the low MLTS group, but no significant difference was found in

TIDE values between the MLTS groups (Figure 7B). To better

stratify patients, patients were compared and analyzed with TIDE

and MLTS (Figure 7C). The correlation between the steps of tumor

immune cycle 1-7 and the ten major signaling pathways related to

breast cancer was analyzed, and it was found that MLTS was related

to most of the signaling pathways and tumor immune cycle in the

breast cancer (Figure 7D).

The expression level of immune checkpoint inhibitors (ICIs) is

considered a key indicator for evaluating the responsiveness to

immunotherapy. The results showed that many immune

checkpoints were elevated in the low MLTS patients, while fewer

immune checkpoints were observed higher in the high MLTS group

(Supplementary Figure S6B), suggesting that the low MLTS patients

may be more suitable for immunotherapy, as there are more

immune checkpoints in their bodies , so multi-target

immunotherapy can be used in them. IHC was performed to

support the above results using the representative cell markers

and clinical ICIs (Supplementary Figure S6D). MLSG in the

IMvigor210 (anti-PD-L1) and GSE78220 (anti-PD-1) cohorts was

further evaluated. In IMvigor210 (Figures 7E-H) and GSE78220

(Figures 7I-L), patients with low MLTS had better survival rates and

clinical benefits than those with high MLTS. In summary, low

MLTS patients may benefit better from ICIs treatment.
Frontiers in Immunology 11
Identification of therapeutic drugs for high
MLTS patients

Chemotherapy remains a cornerstone treatment for cancer. In

this study, we developed a targeted approach for breast cancer

patients exhibiting high MLTS levels, utilizing sensitivity data

gathered from multiple datasets. Initially, we used Spearman’s

correlation analysis to identify key therapeutic targets. The

analysis indicated a positive correlation between MLTS and the

abundance of six potential targets (NDUFA6, COX7B, NDUFB3,

COX5A, COX4I1, NDUFA9); importantly, these targets also

showed notably negative correlations with their respective CERES

scores, suggesting their viability as therapeutic targets for patients

with high MLTS levels (Figure 8A). Additionally, these six targets

were found to be closely linked to various drug action pathways,

underscoring their significance as critical therapeutic targets for this

patient subgroup (Figure 8B).

Subsequently, we procured nine chemical compounds from the

CTPR and PRISM datasets, including SB-743921, paclitaxel,

BI2536, vincristine, gemcitabine, and ispinesib. An analysis

comparing the AUC values of these compounds between two

MLTS groups revealed higher AUC values in patients with low

MLTS, indicating a less favorable response to chemotherapy in this

demographic (Figures 8C, D). A comprehensive multiple-

perspective analysis was then conducted to select the most

effective therapeutic drugs from these nine candidates. This

analysis included detailed evaluations of each compound’s clinical

status, experimental evidence, mRNA expression levels, and

Connectivity Map (CMap) scores. Ultimately, vincristine and

gemcitabine were identified as the most suitable therapeutic drug

for patients with high MLTS, based on its CMap score (Figure 8E).
Discussion

Brest cancer is the main malignant tumor that endangers

women’s health and remains an important disease that causes

female mortality despite in recent years. Currently, prognostic

measures for breast cancer remain suboptimal, with a lack of

widely applicable prognostic prediction models in clinical

practice. Telomerase activation is detected in approximately 80%-

90% of human cancer cells but is absent in normal somatic cells,

suggesting that telomerase detection could enhance cancer

prognostic diagnoses (5, 27). Telomerase has been extensively

studied as a therapeutic target in breast cancer due to its role in

maintaining genomic stability and promoting tumor cell survival.

Recent studies highlight its potential as a drug target, offering new

avenues for therapeutic intervention aimed at inhibiting telomerase

activity in cancer cells (28). Given the potential role of telomerase

genes in malignant tumor progression, this study has developed a

prognostic model based on telomerase gene activity to enhance the

accuracy of breast cancer prognosis predictions.

Key telomerase genes were screened using the RSF algorithm.

Finally, six telomerase genes related to breast cancer prognosis were

identified and used for establishing a prognostic model. The results
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FIGURE 7

MLTS correlation with immune infiltration and response to immunotherapy in breast cancer. (A) Violin plots illustrate the comparison of ESTIMATE,
immune, and stromal scores between low and high MLTS groups, highlighting the variation in the tumor microenvironment influenced by MLTS
levels. (B) Box plots demonstrate TIDE values, dysfunction, and exclusion metrics for patients with low versus high MLTS, providing insights into
immune evasion strategies associated with different MLTS levels. (C) Kaplan-Meier survival curves display the survival outcomes for breast cancer
patients stratified by MLTS and TIDE scores, revealing differences in patient prognoses based on MLTS. (D) Correlation analysis of MLTS with different
stages and signaling pathways of tumor immunity. (E, I) Violin charts display the relationship between MLTS levels and responses to anti-PDL1
(E) and anti-PD1 (I) therapies, detailing the differential immune responses. (F, J) Survival probabilities of low and high MLTS patients in anti-PDL1
(F) and anti-PD1 (J) cohorts, respectively, illustrating the impact of MLTS on survival outcomes. (G, K) Analysis estimates the predictive ability of
MLTS via AUC values, considering TMB combinations, in anti-PDL1 (G) and anti-PD1 (K) cohorts, evaluating the efficacy of MLTS as a biomarker.
(H, L) The percentages of complete response/partial response (CR/PR) and stable disease/progressive disease (SD/PD) in anti-PDL1 (H) and anti-PD1
(L) cohorts are shown, based on MLTS levels, to assess treatment effectiveness. *p < 0.05, **p < 0.01, ***p < 0.001.
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showed that the survival rate of patients in high MLTS group was

low, and the distribution of these six telomerase genes in subgroups

was significantly different. The expression levels of JAK2 and DAXX

genes were higher in low MLTS patients, while those of four

telomerase genes, HMGB3, XRCC4, RGS3, and PFKL, were

higher in high MLTS patients. Janus kinase 2 (JAK2) is an
Frontiers in Immunology 13
intracellular enzyme that promotes the growth, death, and

differentiation of cells. Balko JM proposed that JAK2 might be a

therapeutic target for triple-negative breast cancers with

amplification of JAK2, and specific JAK2 inhibitors could be used

in combination with chemotherapy to inhibit this process, to reduce

tumor-initiating stem cell-like cells and inhibit the tumor growth.
FIGURE 8

Screening therapeutic targets and drugs for high MLTS breast cancer patients. (A) Scatter plots display Spearman’s correlation coefficients, illustrating
the association between MLTS and the abundance of six potential therapeutic targets in breast cancer patients. A notable negative correlation with
CERES scores suggests these targets could be especially significant for patients with high MLTS, potentially offering new avenues for targeted
therapy. (B) Network analysis highlights the intricate connections between these six therapeutic targets and their associated drug action pathways,
indicating significant implications for the development of therapeutics for breast cancer patients with high MLTS and underscoring their potential as
critical intervention points. (C, D) Box plots compare the AUC values of nine compounds, sourced from the CTRP and PRISM datasets, between low
and high MLTS patient groups. Observations of higher AUC values in low MLTS patients indicate less favorable chemotherapy outcomes for this
subgroup, pointing to the need for personalized treatment strategies. (E) A summary table outlines the multi-perspective analysis of the nine
candidate compounds, detailing their clinical status, experimental evidence, mRNA expression levels, and CMap scores. Vincristine and gemcitabine
are highlighted as a potentially suitable therapeutic agent for high MLTS patients based on its favorable CMap score, suggesting it could be
particularly effective in this patient subset. ****p < 0.0001.
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These findings are of great significance for the targeting

development of selective JAK2 inhibitors in triple-negative breast

cancer and basal-like breast carcinoma (BLbreast cancer) patients

(29). Death domain-associated protein (DAXX) is a multifunctional

protein that can interact with various cytokines, cell proteins, or

viral proteins to inhibit viral transcription (30). The overexpression

of DAXX is a common feature of various cancers, and is associated

with tumor occurrence, disease progression (31). Hussien Marwa

Tet al.’s study demonstrated that the low expression of DAXX was

associated with the poor prognosis in breast cancer, indicating that

the mechanism-mediated by DAXX as a target may have the

potential to treat different types of cancer (32). In summary,

combining the previous studies with our study can enhance the

persuasiveness of JAK2 and DAXX as candidate genes for breast

cancer treatment.

Human high mobility group protein B3 (HMGB3) plays a

crucial role in the repair, recombination, transcription, and

replication of DNA. HMGB3 is highly expressed in many

malignant tumors, and it can promote the growth of tumor cells,

it can also be used to predict poor prognoses. Zhou et al. found that

the expression of HMGB3 was higher in breast cancer cells, a

knockdown of HMGB3 can stimulate breast cancer cell

proliferation and improve chemotherapy sensitivity (33). X-ray

repair cross-complementing protein 4 (XRCC4) is an important

part of the DNA double-strand break repair pathway NHEJ. Wen Y

et al. pointed out that XRCC4 gene knockout could enhance the

sensitivity of triple-negative breast cancer cells to ionizing radiation,

which could be used as a new predictor of radiation sensitivity and

expected to become a target of triple-negative breast cancer (34).

According to Hong Z, et al., regulator of G-protein signaling 3

(RGS3) found miR-126-3 played an inhibitory role in regulating the

activity of triple-negative breast cancer cells by targeting RGS3,

suggest that miR-126-3p/RGS3 axis may be a potential therapeutic

target for triple-negative breast cancer (35). L-phosphofructose

kinase (PFKL) glycolysis is the key for the occurrence and

progression of tumors, which is associated with the poor

prognosis of cancers. The research results of Wang J et al. show

that hypoxia-related features of PFKL gene can serve as a potential

biomarker for the prognosis of breast cancer (36). HMGB3, XRCC4,

RGS3 and PFKL have been identified as potential target genes for

breast cancer in many studies, providing more directions for the

treatment of breast cancer patients.

Our genome-level analysis revealed a high mutation rate of the

tumor suppressor gene TP53 in high MLTS patients, which appears

to play a significant role in driving poor prognosis. TP53, often

referred to as the “guardian of the genome,” is crucial for

maintaining genomic stability by regulating cell cycle arrest, DNA

repair, and apoptosis in response to cellular stress. Mutations in

TP53 disrupt these tumor-suppressive functions, leading to

uncontrolled cell proliferation, evasion of apoptosis, and

increased susceptibility to additional genetic alterations, thereby

fostering an environment conducive to tumor progression and

metastasis (37). KOçAK et al. found that the prognosis of

diagnosed breast cancer was poor in young women with a high
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copy number alteration and TP53 mutation level (38), have

significantly worse clinical outcomes, further supporting the role

of these mutations in poor prognosis. In our study, high MLTS

patients showed not only an increased frequency of TP53 mutations

but also significant amplifications in oncogenes such as those

located at 5p15.33 and deletions in tumor suppressors like

CDKN2A and loci on 9p23. These alterations may lead to

chromosomal instability, creating a permissive environment for

tumor heterogeneity and further oncogenic mutations, ultimately

exacerbating the tumor’s aggressiveness and its resistance to

standard therapies. Some gene expression levels on chromosomes

also changed, and the amplification and deletion of chromosome

arms in the high MLTS group were more pronounced, which may

disrupt the normal functional order of genomic genes, and the poor

prognosis of high MLTS patients may be related to the significant

increase of multiple oncogenes such as 5p15.33 and the deletion of

multiple tumor suppressor genes such as 9p23. Wilhelm et al.’s

study showed that the chromosomal instability is a marker

associated with the poor prognosis of cancers (39), so it is

speculated that high-level mutations in tumor suppressor genes

and chromosomal copy number alterations may be associated with

the poor prognosis of breast cancer, and the poor prognosis of

breast cancer is positively correlated with the frequency of these

mutations. Together, these findings emphasize the critical role of

TP53 mutations and chromosomal alterations in shaping the tumor

microenvironment, influencing breast cancer progression, and

determining patient outcomes. Understanding these molecular

mechanisms not only strengthens the biological relevance of our

findings but also underscores the importance of developing novel

therapeutic strategies that specifically target these genetic

vulnerabilities to improve prognosis for high MLTS breast

cancer patients.

According to the correlation between telomerase gene

expression and immune infiltration, it has been found that there

is a higher proportion of CD4+ T cells, CD8+ T cells and

macrophage infiltration in breast cancer patients. Some studies

suggest that the poor prognosis of breast cancer is related to the

infiltration of highly immunosuppressive T cells and macrophages

within the tumor (40, 41). Tumor-specific CD4+ T cells play a

crucial role in the immune response against cancers, promoting the

activation of cytotoxic CD8+ T cells to increase their ability to

destroy tumors (42, 43). Therefore, it is speculated that high levels

of CD4+ T cell infiltration and CD8+ T cell infiltration are related to

the poor prognosis of breast cancer. CD8+ T cells are crucial effector

cells in the anti-tumor immune response, capable of recognizing

and directly killing tumor cells. In our analysis, the infiltration level

of CD8+ T cells was significantly higher in the low MLTS group

compared to the high MLTS group, correlating with better

responsiveness to immunotherapy. This suggests that the tumor

microenvironment in low MLTS patients is more favorable for

activating CD8+ T cells, enhancing their ability to target and

eliminate cancer cells (42, 43). Macrophages have been proved to

be associated with the poor prognosis in many cancers (44, 45).

Macrophages in the TME play a complex dual role, categorized into
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M1 (pro-inflammatory) and M2 (immunosuppressive) phenotypes.

M2 macrophages are typically associated with tumor growth,

metastasis, and immune evasion. In the high MLTS group, we

observed a significant increase in M2 macrophages, which might

contribute to poor immunotherapy responsiveness and worse

prognosis in these patients (44, 45). The results of the analysis on

the cell-to-cell communication, the intercellular interaction

network and the intensity of incoming and outgoing interactions

showed that the number and intensity of communication between

macrophages and fibroblasts in breast cancer tissue increased

significantly, also indicating that macrophages may be related to

the poor prognosis of breast cancer.

Based on the immune cell infiltration scores and the expression

of immune checkpoints in the two MLTS subgroups, it was found

that the immune cell infiltration in patients in the low MLTS group

was more significant, and the expression of immune checkpoints in

the low MLTS group was much higher than that in the high MLTS

group. ŚLEDZIŃSKA et al. reported that immune checkpoints play

a dominant role in malignant tumors and can prevent the effective

anti-tumor immune response. However, manipulating these

immune checkpoints with therapeutic antibodies can control or

even eliminate tumors, which may become a new method for tumor

immunotherapy (46). It can be inferred that patients in the low

MLTS group are in an immune activated state, while those in the

high MLTS group are in an immunosuppressive state. To better

compare the two groups and determine which would be more

suitable for immunotherapy, multiple methods were used in this

study. Our analysis showed significantly higher expression levels of

immune checkpoint molecules in the low MLTS group, indicating

that these patients might be in an immune-activated state and more

suitable for immune checkpoint inhibitor therapy. In contrast, the

high MLTS group had lower expression of immune checkpoints,

suggesting an immunosuppressive state that might make these

patients less responsive to immunotherapy (46). The results

showed that the low MLTS patients were more suitable for

immunotherapy than the high MLTS patients, and low MLTS

patients could benefit from ICIs. Chemotherapy is currently one

of the standard therapies for cancers. Six specific targets associated

with MLTS (NDUFA6, COX7B, NDUFB3, COX5A, COX411, and

NDUFA9) were screened out, so it is speculated that these six

targets may serve as potential therapeutic targets for high MLTS

patients. Finally, six compounds related to MLTS were identified

from two datasets, and the comparison on AUC values in the two

MLTS subgroups showed that patients in high MLTS group were

more suitable for chemotherapy, however, gemcitabine and

vincristine were ultimately identified as potential therapeutic

drugs for high MLTS breast cancer patients.

This study’s findings not only illuminate the pivotal role of

telomerase gene expressions in breast cancer progression but also

underscore the transformative potential of machine learning in

medical prognostics. Our analysis, built on a novel predictive

model, reveals a significant correlation between telomerase

activity and patient outcomes, highlighting its utility as a

prognostic biomarker. Furthermore, the integration of machine

learning has allowed for a nuanced interpretation of complex
Frontiers in Immunology 15
genetic data, leading to more precise predictions than those

offered by traditional methods. This approach has shown its

capacity to handle the intricate patterns of gene expressions,

providing a robust framework for future research aiming to

expand upon these findings.

While our study presents a comprehensive approach to

understanding breast cancer prognosis using the MLTS, there are

several limitations that should be acknowledged. First, the data used

for model development and validation were primarily derived from

publicly available datasets such as TCGA and GEO. Although these

datasets provide valuable resources for large-scale analysis, they

may introduce biases due to the lack of representation of diverse

patient populations, ethnic groups, and clinical subtypes. As a

result, the generalizability of our findings might be limited when

applied to populations not included in these datasets. Future studies

should aim to validate our model in more geographically and

ethnically diverse cohorts to assess its robustness across different

clinical settings. The use of machine learning models in this study,

while offering significant predictive power, also comes with inherent

challenges. One limitation is the risk of overfitting, particularly

when using complex models like Random Forest, Gradient Boosting

Machine, and Survival-SVM. Overfitting can occur when the model

learns noise or specific patterns in the training data that do not

generalize well to new, unseen data. To mitigate this issue, we

employed cross-validation and parameter optimization techniques,

but the potential for overfitting remains a concern. Additionally,

machine learning models often operate as “black boxes,” where the

interpretation of results can be difficult, especially in understanding

the contribution of individual features to the model’s predictions.

Further work is needed to explore interpretable machine learning

techniques that can provide more insight into the decision-making

process of these models.

Interpreting scRNA-seq data poses several challenges that can

affect the reliability of our findings. One major issue is technical

variability, which includes factors like sequencing depth, batch effects,

and data dropout, where genes may appear as unexpressed due to

insufficient sensitivity in detection. These factors can lead to

inconsistencies in gene expression profiles and impact the

identification of cell types or states. While we applied rigorous data

preprocessing and quality control measures, such as filtering cells

with high mitochondrial gene content and using normalization

techniques, these challenges highlight the need for careful

interpretation of scRNA-seq results. Moreover, the inherent

sparsity and noise in scRNA-seq data can complicate downstream

analyses, such as clustering and trajectory inference, potentially

affecting the robustness of the conclusions drawn from these datasets.

Our study highlights the robust predictive power of the MLTS

in forecasting breast cancer prognosis, but its true potential lies in

its application within clinical settings. Integrating MLTS into

routine clinical practice could significantly enhance personalized

treatment strategies by enabling clinicians to stratify patients based

on their risk profiles. High-risk patients identified through MLTS

could benefit from more aggressive treatment regimens or closer

monitoring, while low-risk patients might be spared from

unnecessary toxic therapies, thereby improving their quality of life.
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Conclusion

The implications of these findings are profound, suggesting that

incorporating machine learning into cancer research can greatly

enhance the precision of prognostic models. This advancement

holds promise for personalized medicine, where tailored therapies

can be developed based on individual genetic profiles, potentially

leading to better patient outcomes. It appears that patients in the

low MLTS group may respond better to immunotherapy, while

those in the high MLTS group may respond better to chemotherapy.

The screened six potential targets for breast cancer patients in high

MLTS group and two potential therapeutic drugs found in this

study may provide a new treatment option for high MLTS breast

cancer patients.
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