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Background: We conducted an investigation into the characteristics of single-

cell differentiation data in gliomas, with a focus on developing DAPK1-based

prognostic markers to predict patient outcomes. Dysregulated expression of

DAPK1 has been associated with the invasive behavior of various malignancies,

including gliomas. However, the precise role and underlying mechanisms of

DAPK1 in gliomas remain inadequately understood.

Methods:We performed analyses on RNA-seq andmicroarray datasets from The

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), in addition

to single-cell RNA sequencing (scRNA-seq) data from glioma patients available in

GEO. Utilizing the Seurat R package, we identified gene clusters associated with

survival from the scRNA-seq data. Prognostic models were developed using

LASSO and stepwise regression algorithms. Furthermore, we assessed the

predictive potential of these genes within the immune microenvironment and

their relevance in immunotherapy contexts.

Results: Our scRNA-seq data analysis revealed 32 distinct cell clusters

corresponding to 10 cell types. Through dimensionality reduction and

clustering, we identified three glial cell subpopulations based on their

differentiation trajectories. DAPK1, serving as a marker gene for the terminal

subpopulation, exhibited an association with poor prognosis.

Conclusions: DAPK1-based prognostic models show promise for accurately

predicting outcomes in glioblastoma and glioma. An in-depth examination of

DAPK1’s specific mechanisms in glioblastoma could elucidate its role in

immunotherapy response. Targeting the DAPK1 gene may offer therapeutic

benefits for glioma patients.
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1 Introduction

Gliomas are among the most prevalent and lethal intracranial

tumors in adults, presenting a significant challenge to global public

health due to their high incidence and poor prognosis (1, 2). The

diagnosis and treatment of gliomas are particularly challenging

because of the complex etiology of neurological diseases (3, 4),

unclear pathophysiological processes, and limited advances in

pharmacological treatments and therapeutic interventions (5, 6).

Treatment options for glioma patients remain limited; while

emerging immunotherapies show promise in other tumors, their

efficacy in gliomas is hindered by the tumor’s immune-suppressive

environment (7, 8). Traditional approaches such as surgery,

radiotherapy, and chemotherapy also provide limited success

(9–11). Early diagnosis, effective intervention, and accurate

prognosis are critical for improving outcomes in glioma patients,

as those diagnosed early and treated with targeted therapies tend to

have better prognoses (12, 13). Thus, there is an urgent need for

research to discover new and more effective strategies to combat

glioma (14). Despite significant progress in understanding tumor

cell heterogeneity and the tumor microenvironment (TME) in

recent years (15, 16), translating these findings into enhanced

diagnostics and immunotherapy advancements for glioma

patients has been challenging due to the complex interactions

among various cells within the TME (17, 18). Therefore,

elucidating the interactions among diverse cells within the TME

related to glioma initiation and progression, and identifying

potential pathological mechanisms and therapeutic targets, is

essential for achieving significant clinical advancements (19, 20).

Macrophages play a crucial role in gliomas (21, 22). These

immune cells, primarily found in tissues including the brain, are

responsible for clearing foreign substances, dead cells, and debris

while participating in immune responses (23, 24). In gliomas,

macrophages can exhibit dual roles. They can identify and

destroy tumor cells, thereby inhibiting tumor growth and spread

through the release of cytotoxic factors such as oxidants and nitric

oxide (25, 26), and by promoting the activation of other immune

cells (27). However, macrophages can also be exploited by tumor

cells to facilitate tumor growth and metastasis (28). Tumor cells can

release signaling molecules that induce macrophages to polarize

into tumor-associated macrophages (TAMs) (29, 30), which

promote tumor cell proliferation, angiogenesis, and metastasis

through the release of growth factors, cytokines, and proteases

(31, 32). Thus, understanding the dual role of macrophages in

gliomas and exploring strategies to modulate macrophage activity is

crucial for enhancing therapeutic efficacy.

The protein encoded by the DAPK1 (Death-associated protein

kinase 1) gene is a serine/threonine kinase involved in various

biological processes, including apoptosis, cell cycle regulation, cell

motility, and cell adhesion (33, 34). DAPK1 is considered a

significant tumor suppressor gene, capable of inhibiting tumor

development by regulating apoptosis and the cell cycle (35).

Recently, DAPK1 has gained interest in research on neurological

disorders (36, 37). Elevated DAPK1 expression has been observed in
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Alzheimer’s disease (AD), where it may contribute to pathogenesis

by modulating apoptosis, inflammatory responses, and pathways

associated with neuronal synaptic damage (38, 39). In Parkinson’s

disease (PD) (40), DAPK1 hyperactivation is linked to neuronal

apoptosis and synaptic injury, exacerbating disease progression

(41). In stroke, DAPK1 may play a role in neuroprotection and

regeneration by regulating apoptosis, inflammation, and synaptic

reconstruction (42). Conversely, reduced DAPK1 expression is

reported in various cancers, such as lung, breast, colon, and

gastric cancers, highlighting its role in tumorigenesis and

progression (43). DAPK1 can regulate multiple apoptosis

pathways, including phosphorylation-mediated regulation of Bcl-2

family members, modulation of p53 activity, and activation of the

mitochondrial pathway. Dysregulation of these pathways can lead

to tumor cell evasion of apoptosis and tumor progression (44).

Additionally, DAPK1 influences cell cycle progression by

phosphorylating proteins such as p53, p21, and Cdc25, thereby

inhibiting tumor cell proliferation (45). DAPK1 also affects

signaling pathways involved in tumor initiation and progression,

such as Wnt/b-catenin, NF-kB, and MAPK pathways, impacting

tumor proliferation, invasion, metastasis, and drug resistance.

Although limited, some research suggests a relationship

between DAPK1 and macrophages. DAPK1 may modulate

macrophage function by influencing pathways related to

apoptosis, inflammatory responses, and autophagy, potentially

affecting macrophage roles in inflammation, infection, and the

TME. DAPK1 might also regulate macrophage polarization into

TAMs, which are associated with tumor growth, invasion, and

metastasis. Thus, investigating DAPK1’s specific mechanisms in

gliomas and its interaction with TAMs is crucial for advancing our

understanding and therapeutic approaches.
2 Methods

2.1 Data source

Single-nucleus RNA sequencing (snRNA-seq) data were

retrieved from the Gene Expression Omnibus (GEO) database

(accession number GSE141383), with a particular focus on

dataset GSE138794. The samples analyzed included GSM4119521

to GSM4119530. Furthermore, bulk RNA sequencing data were

obtained from The Cancer Genome Atlas (TCGA) via the

TCGA portal.
2.2 Data filtering and the standard process

The initial processing of the snRNA-seq data was carried out

using the Seurat package (version 4.3.0) in R (version 4.2.0). The

DoubletFinder package (version 2.0.3) was used to detect and

remove potential doublets according to its standard procedure.

Cells were filtered based on predefined quality control criteria:

300 < nFeature < 7,500, 500 < nCount < 100,000, mitochondrial
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gene expression < 20% of total cellular genes, and erythroid gene

expression < 5% of total cellular genes (46, 47). The data were

normalized, and the top 2,000 highly variable genes were identified

for subsequent analysis. To address batch effects, the Harmony R

package (version 0.1.1) was employed. Dimensionality reduction

was carried out using 30 principal components (PCs), followed by

clustering and visualization of cellular heterogeneity through the

UMAP method (48). Cell clusters were annotated using established

cell markers from the literature and the CellMarker database

(CellMarker database) (49–52), allowing for the determination of

cell type proportions within the dataset (53, 54).
2.3 Differentiation and enrichment analysis

Differential gene expression analysis within each cell cluster was

performed using the “FindAllMarkers” function in the Seurat

package, with the Wilcoxon rank sum test applied to identify

differentially expressed genes (DEGs). Genes with a log fold

change (logFC) > 0.25 and expression in more than 25% of the

cells within the cluster were considered significant. Functional

enrichment analysis of the DEGs was conducted using the

“clusterProfiler” R package (version 0.1.1), which enabled Gene

Ontology (GO) biological process (BP) and pathway enrichment

analysis. Enriched terms were visualized to interpret the biological

significance of the identified DEGs.
2.4 Subpopulation analysis of macrophage

To investigate macrophage heterogeneity, we isolated

macrophage cells and identified the top 2000 variable genes. Data

normalization and batch effect correction were carried out using the

Harmony method prior to principal component analysis (PCA).

The top 30 PCs were used for clustering and downsampling, and

macrophage subpopulations were visualized using the

UMAP method.
2.5 InferCNV identifies malignant cells

Copy number variation (CNV) analysis was conducted using

the inferCNV algorithm to identify malignant cells among non-

tumor cells. Vascular endothelial cells were used as a reference, and

subpopulations exhibiting significant CNV variability were

classified as glioma cells.
2.6 Difference analysis and enrichment
analysis of cell subpopulations

Differential expression analysis within each cell subpopulation

was performed using the “FindAllMarkers” function in conjunction

with the Wilcoxon rank sum test. Enrichment analysis of Gene

Ontology Biological Processes (GO-BP) was conducted using the

clusterProfiler package.
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2.7 Trajectory analysis

Cell differentiation trajectories in oligodendrocyte subpopulations

were analyzed using the cytoTRACE, Monocle R (version 2.24.0), and

Slingshot (version 2.6.0) software tools. Trajectories were

reconstructed using the DDRTree algorithm, and cell lineage was

inferred through minimum spanning trees (MSTs) to track

developmental progression along the identified paths.
2.8 Cell communication

In terce l lu lar communica t ion wi th in GBM tumor

subpopulations and microenvironmental cells was analyzed using

the CellChat R package (version 1.6.1) and the CellChatDB.human

database for ligand-receptor interactions. Signaling pathways and

receptor-ligand interactions were assessed to understand

coordinated signaling across different cell types.
2.9 Prognostic modeling of glioma-
associated cells

Prognostic gene signatures for glioma were identified using

univariate Cox analysis and Lasso regression (55–58). A

multivariate Cox model integrated key genes (59, 60) to compute

risk scores, which were validated using survival analysis and

receiver operating characteristic (ROC) curves at 1, 3, and 5

years (61).
2.10 Assessment of tumor-infiltrating
immune cells

Immune-related scores were calculated using the CIBERSORT,

ESTIMATE, and xCell algorithms to assess the immune

microenvironment. CIBERSORT analysis identified 22 immune

cell types across various groups, and correlated these with risk

scores, model genes, and overall survival (OS). Additionally, TIDE

scores and AODRA2A expression were evaluated.
2.11 Differential and enrichment analysis of
bulk data

Differential expression analysis in high- and low-risk groups

was performed using the DESeq2 R package, with enrichment

analysis conducted using GO, KEGG, and GSEA for identified

DEGs with |logFC| > 2 and p-value < 0.05 (62, 63).
2.12 Somatic mutation analysis

TCGA somatic mutation data were used to identify highly

mutated genes and compare mutational patterns with control

genes. TMB-based stratification and Kaplan-Meier analysis were
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employed to assess survival differences, while CNV patterns of

target genes were also evaluated (64, 65).
2.13 Drug sensitivity analysis

The pRRophetic R software was used to project IC50 values for

chemotherapeutic agents and evaluate sensitivity across categories.
2.14 Cell culture

The LN229 and U-251 cell lines were obtained from American

Type Culture Collection (ATCC, Manassas, VA, USA). Cells were

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco,

Cat. No. 11965092), supplemented with 10% fetal bovine serum

(FBS, Gibco, Cat. No. 10099141) and 1% penicillin-streptomycin

(Gibco, Cat. No. 15140122). Cultures were maintained in a 37°C

incubator with 5% CO2. For passaging, cells were detached using

0.25% trypsin-EDTA (Gibco, Cat. No. 25200056), counted, and

reseeded at a density of 1 × 10^5 cells per flask. Cultures were

monitored regularly for mycoplasma contamination and

subcultured when they reached 80-90% confluency.
2.15 Cell transfection

For siRNA transfection targeting DAPK1, Lipofectamine 3000

was utilized. The siRNA sequences, synthesized by Ribobio, were

used for subsequent experimental procedures. Detailed sequences

targeting NUSAP1 are provided in Supplementary Table 1.
2.16 RT-qPCR analysis

RNA was isolated using TRIzol reagent, and cDNA synthesis

was conducted using the PrimeScript™ RT kit. Gene expression

was analyzed with SYBR qPCR Master Mix on a Roche LightCycler

480 system. GAPDH served as the internal control. Gene expression

levels were quantified using the 2−DDCt method. Primer sequences,

sourced from Tsingke Biotech (Beijing, China), are listed in

Supplementary Table 1.
2.17 The experiment of cell-cunting-kit-
8 assay

Cell proliferation was assessed using the Cell Counting Kit-8

(CCK-8) assay (Dojindo Molecular Technologies, Cat. No. CK04)

following the manufacturer’s instructions. LN229 and U251 cells

were seeded in 96-well plates at a density of 5 × 10^3 cells per well

in 100 μL of complete culture medium and incubated at 37°C with

5% CO2 for 24, 48, 72, and 96 hours. At each time point, 10 μL of

CCK-8 solution was added to each well, and the plates were

incubated for 2 hours at 37°C. The absorbance at 450 nm was

measured using a microplate reader (BioTek, Synergy H1) to
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evaluate cell viability. The relative cell proliferation rate was

calculated as the absorbance value of the experimental group

divided by the absorbance value of the control group. All

experiments were performed in triplicate.
2.18 The experiment of colony formation

The colony formation assay was performed to evaluate the

proliferative capacity of LN229 and U251 cells. Cells were seeded in

6-well plates at a density of 500 cells per well in complete culture

medium and incubated at 37°C with 5% CO2 for 10–14 days to

allow colony formation. The culture medium was changed every 3

days. After the incubation period, the cells were fixed with 4%

paraformaldehyde (Sigma-Aldrich, Cat. No. P6148) for 15 minutes,

followed by staining with 0.1% crystal violet (Sigma-Aldrich, Cat.

No. C3886) for 30 minutes. Colonies were counted under a light

microscope (Leica, DM3000). Colonies consisting of more than 50

cells were considered positive. The colony formation efficiency was

calculated as the number of colonies formed divided by the number

of seeded cells, expressed as a percentage. All experiments were

conducted in triplicate.
2.19 The experiment of wound healing

To assess cell proliferation and migration capacity, a wound

healing assay was performed using LN229 and U251 cells. Cells

were seeded in 6-well plates (Corning, Cat. No. 353046) and

cultured in complete medium until 90% confluence. A uniform

“scratch” was made using a 200 μL pipette tip, creating a cell-free

gap. The medium was replaced with serum-free medium (Gibco,

Cat. No. 31603-029) to prevent cell proliferation during the

migration phase. The cells were then cultured in a 37°C incubator

with 5% CO2. Images were captured at 0 and 24 hours post-scratch

using a light microscope (Leica, DM3000). Migration ability was

quantified by measuring the gap distance using ImageJ software

(National Institutes of Health). The results were expressed as the

percentage of wound closure, calculated as:

Wound closure percentage

= Gap at 0 hours − Gap at 24 hours� 100

Experiments were performed in triplicate to ensure reproducibility.
2.20 The experiment of transwell

The migration and invasion abilities of LN229 and U251 cells

were assessed using a Transwell assay. For the migration assay, cells

were suspended in serum-free medium (Gibco, Cat. No. 31603-029)

at a density of 1×10^5 cells/mL and added to the upper chamber of

a Transwell insert (Corning, Cat. No. 3422) with a pore size of 8 μm.

The lower chamber was filled with complete medium containing

10% fetal bovine serum (FBS, Gibco, Cat. No. 10099-141) to serve as

a chemoattractant. After incubating for 24 hours at 37°C and 5%
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CO2, non-migrated cells were removed from the upper surface

using a cotton swab. Migrated cells were fixed with 4%

paraformaldehyde (Sigma-Aldrich, Cat. No. 158127) for 15

minutes and stained with 0.1% crystal violet (Sigma-Aldrich, Cat.

No. C3886) for 30 minutes. The number of migrated cells was

counted in five random fields per membrane using a light

microscope (Leica, DM3000).
2.21 Apoptotic rate assessed through flow
cytometric analysis

Apoptosis in LN229 and U251 cells was assessed using an

Annexin V-FITC Apoptosis Detection Kit (BD Biosciences, Cat.

No. 556547) and flow cytometry. Briefly, cells were cultured in 6-

well plates (Corning, Cat. No. 353046) and treated with the

appropriate experimental conditions. After treatment, cells were

harvested and washed twice with phosphate-buffered saline (PBS,

Gibco, Cat. No. 10010-023). The harvested cells were resuspended

in binding buffer (BD Biosciences, Cat. No. 556454), and 5 μL of

Annexin V-FITC reagent and 5 μL of propidium iodide (PI, BD

Biosciences, Cat. No. 556463) were added to each sample. The cells

were incubated at room temperature for 15 minutes in the dark.

After incubation, the cells were analyzed using a flow cytometer

(BD FACSCalibur, BD Biosciences). The Annexin V-positive/PI-

negative population was considered to be early apoptotic, while the

Annexin V-positive/PI-positive population was considered to be

late apoptotic. Data were analyzed using FlowJo software (FlowJo,

LLC, Version 10).

The experiment was performed in triplicate, and apoptosis rates

were calculated as the percentage of apoptotic cells (early and late

apoptosis) relative to the total cell population.
2.22 Statistical analysis

Statistical analysis was performed using SPSS software (version

26.0, IBM Corp., Armonk, NY) and R software (version 4.0.3, R

Foundation for Statistical Computing, Vienna, Austria). Data are

presented as mean ± standard deviation (SD) for normally

distributed variables and median with interquartile range (IQR)

for non-normally distributed variables. The normality of data was

assessed using the Shapiro-Wilk test. Comparisons between two

groups were made using the Student’s t-test for normally

distributed data or the Mann-Whitney U test for non-normally

distributed data. For comparisons among multiple groups, one-way

analysis of variance (ANOVA) followed by post hoc Tukey’s test was

used. The correlation between variables was assessed using

Pearson’s or Spearman’s correlation coefficient, as appropriate.

Survival analysis was performed using the Kaplan-Meier method,

and differences in survival rates were compared with the log-rank

test. Univariate and multivariate Cox regression analyses were used

to identify independent prognostic factors. A p-value < 0.05 was

considered statistically significant.
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3 Results

3.1 snRNA sequencing reveals major cell
types during GBM progression

Single-nucleus RNA sequencing (snRNA-seq) was performed

on tumor samples from ten glioma patients to profile cellular

populations. Following rigorous quality control and filtering,

22,392 cells were analyzed using dimensionality reduction

clustering, resulting in the identification of 32 distinct cell clusters

(Figure 1A, top left). These clusters were annotated into ten cell

types: T cells (1234 cells), neutrophils (8467 cells), microglia (54,289

cells), endothelial cells (5025 cells), B/plasma cells (1308 cells), glia/

neuroglia (903 cells), mural cells (1342 cells), macrophages (38,746

cells), proliferating macrophages (2442 cells), and microglial/

macrophages (12,833 cells) (Figure 1A, upper right). Cells were

further categorized based on their origin within the tumor core

(63,833 cells) versus the tumor periphery (62,756 cells) (Figure 1A,

bottom left). Analysis of cell cycle phases showed distribution ratios

of S phase (41,662 cells), G1 phase (46,150 cells), and G2M phase

(38,777 cells) (Figure 1A, bottom right). Marker gene analysis

identified the top ten markers for each cell type, which were

visualized through bubble plots (Figure 1B). Proportional

distributions of cell types between the tumor core and peripheral

tissues across four cases were illustrated using histograms,

highlighting inter-patient variability (Figure 1C). Differential

expression patterns across experimental groups were depicted

with box plots (Figure 1D). Uniform Manifold Approximation

and Projection (UMAP) plots were employed to visualize

distributions of key parameters (nCount_RNA, nFeature_RNA,

G2M score, and S score) across all cells (Figure 1E). Gene

Ontology Biological Process (GO-BP) enrichment analysis

highlighted specific biological processes associated with each cell

type, represented by heatmaps (Figure 1F). Volcano plots illustrated

differential gene expression among cell types (Figure 1G).
3.2 Displaying the intracellular
heterogeneity of macrophages

Dimensionality reduction clustering identified four distinct

macrophage subpopulations. Using the inferCNV algorithm, cells

with high genomic copy number variation (CNV) were classified as

GBM cells (Supplementary Figure 1). The macrophage

subpopulations were C0 RGS16+ Macrophages (15,867 cells), C1

DAPK1+ Macrophages (13,796 cells), C2 VCAN+ Macrophages

(6,258 cells), and C3 CXCL3+ Macrophages (2,825 cells)

(Figure 2A, upper left). UMAP plots visualized the distributions

and proportions of these subpopulations based on cell cycle staging,

subpopulation identity, and patient sample sources (Figure 2A).

Further UMAP plots detailed G2M scores, nCount_RNA, S scores,

and CNV scores across subpopulations (Figure 2B). Proportional

distributions of subpopulations between tumor core and peripheral

tissues were compared (Figure 2D). While a higher proportion of
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FIGURE 1

snRNA sequencing reveals major cell types in neuroblastic tumor. (A) UMAP plot showing the 32 clusters of cells in glioma patients and the number
of cells in each cluster (top left); UMAP plot showing the 10 major cell types (top right); UMAP plot showing the distribution of the tumor core and
tumor peripheral tissue for the 10 cell types (bottom left); and UMAP plot showing the distribution of different cell cycle phases (lower right).
(B) Bubble plot showing differential expression of Top10maker genes in glioma cells across cell types. The color of the bubbles is based on the
normalized data and the size indicates the percentage of genes expressed in the subpopulation. (C) Bar graph showing the percentage of the 10 cell
types in the tumor core group versus tumor peripheral tissue group. (D) Box line plot depicting the percentage of the 10 cell types in the tumor core
group versus tumor peripheral tissue group. (E) The UMAP plot showcases the distribution of the following relevant features: nCount_RNA,
nFeature_RNA,S.score, and G2M.score. (F) GO-BP enrichment analysis demonstrating biological processes associated with the 10 cell types.
(G) Volcano plot demonstrating differential gene expression in 10 cell types.
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FIGURE 2

Visualization of macrophage subpopulations. (A) UMAP diagram demonstrating the 4 cell subpopulations of tumor cells in glioma patients and the
number of cells in each subpopulation (top left); UMAP diagram demonstrating the percentage of different cell cycles in the 4 cell subpopulations
(top right); UMAP diagram demonstrating the distribution of the tumor core group versus tumor peripheral tissue group in the 4 cell subpopulations
(bottom left); and UMAP diagram demonstrating the patient origin of the 4 cell subpopulations (lower right). (B) Bubble plot showing differential
expression of Top10maker genes in 4 cell subpopulations. The color of the bubbles is based on the normalized data and the size indicates the
percentage of genes expressed in the subpopulation. (C) UMAP plot visualizing the relevant features of the 4 cell subpopulations: G2M.score,
nCount_RNA,S.score,CNVscore. (D) Bar graph demonstrating the percentage of the 4 cell subpopulations in the tumor core group versus tumor
peripheral tissue group. (E) Box line graph depicting the percentage of the 4 cell subpopulations in the tumor core group versus tumor peripheral
tissue group. (F) Volcano plot demonstrating the expression of differential genes in the 4 cellular subpopulations. (G) GO-BP enrichment analysis
demonstrating biological processes associated with the 4 cell subpopulations.
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C1 DAPK1+ Macrophages was observed in the tumor core,

statistical analysis did not reveal significant differences

(Figure 2E). Volcano plots depicted differential gene expression

patterns (Figure 2F). Bubble plots highlighted the top ten marker

genes distinguishing macrophages from GBM cells (Figure 2C).

GO-BP enrichment analysis of differentially expressed genes within

subpopulations was visualized using heatmaps (Figure 2G).
3.3 Visualization of macrophage and GBM
cell subpopulations for time-series analysis

Trajectory analysis using CytoTRACE revealed differentiation

relationships among macrophage and GBM cell subpopulations

(Figures 3A, B). Bar graphs compared proportions of

subpopulations between tumor core and peripheral tissues,

highlighting distinct distributions across cell cycle stages

(Figure 3C). Distribution percentages across trajectory

differentiation states were depicted in Figure 3D. Detailed cell

percentage distributions within cell cycle stages and trajectory

states were provided (Figure 3E). Trajectory analysis indicated

continuous differentiation among subpopulations, revealing

branching points and developmental stages (Figures 3F, G).

Scatter plots visualized pseudotime series of selected genes

specific to subpopulations (Figure 3H).
3.4 Pseudotemporal trajectories of
macrophage and GBM cell subpopulations

Slingshot analysis delineated pseudotemporal trajectories of

macrophage and GBM cell subpopulations, revealing continuous

distribution and differentiation into distinct lineages (Figure 4A).

Pseudotemporal sequences were estimated at the cellular level

(Figures 4B, C). GO-BP enrichment analysis highlighted

biological processes associated with pseudotemporal trajectories

(Figure 4D). Scatter plots visualized differentiation trajectories

across pseudotime series (Figure 4E).
3.5 Intercellular cell interactions and IL-10
signaling pathway visualization

Quantification of cellular interactions involved measuring

interaction frequency between different cell types (represented by

line thickness) and the strength of these interactions (indicated by

line weight) (Figure 5B). CellChat analysis elucidated intercellular

communication networks and signaling pathways, emphasizing IL-

10 signaling pathways mediated by C1 DAPK1+ Macrophages

(Figure 5A). Heatmaps depicted signal intensity of intercellular

interactions (Figure 5C). Pathway visualization revealed

mechanisms of IL-10 signaling (Figure 5D). Violin plots

illustrated cell-cell interactions, emphasizing IL-10 signaling in C1

DAPK1+ Macrophages (Figure 5E). The IL-10 signaling pathway’s

interactions were visualized, showing IL-10 release and reception by
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different cell types (Figure 5F left). Cell interaction plots detailed the

receptor-ligand profiles of the C1 DAPK1+ Macrophage

subpopulation with other intercellular receptors (Figure 5F right).

Scatter plots detailed cellular communication patterns in IL-10

signaling pathways (Figure 5G).
3.6 Prognostic modeling and validation

Univariate Cox analysis identified 19 genes associated with

patient prognosis, with 8 genes constituting the DAPK1+

Macrophage risk score through lasso regression (Figures 6A, B).

Survival analysis stratified patients based on DAPK1+ Macrophage

risk scores, revealing significant prognostic implications (Figure 6C,

D). TCGA-GBM dataset analysis validated negative prognostic

impacts associated with higher DAPK1+ Macrophage risk scores

(Figure 6E). Correlation analysis demonstrated a negative association

between overall survival (OS) and DAPK1+ Macrophage risk scores,

with TCF12 exhibiting significant negative correlation. Scatter plots

illustrated the relationship between the model genes, risk scores, and

OS (Figure 6F). ROC curves assessed predictive accuracy for survival

outcomes (Figure 6G). Scatter plots visualized the relationship

between model genes and risk scores (Figure 6H), while expression

levels of the 8 genes varied between high and low-risk groups

(Figure 6I). Multifactorial Cox regression confirmed the DAPK1+

Macrophage risk score as an independent prognostic factor

(Figure 6J). Nomogram diagrams predicted survival probability

integrating clinical and pathological factors (Figure 6K). Internal

validation via cross-validation demonstrated the nomogram’s

accuracy (Figure 6L).
3.7 Immune infiltration patterns between
high and low DAPK1+ macrophage risk
score groups

Heatmaps visualized distinct immune infiltration patterns

between high and low DAPK1+ Macrophage risk score groups

(Figure 7A). The CIBERSORT algorithm estimated proportions of

immune cell types, highlighting differences in immune cell

composition (Figure 7B). Bar graphs correlated immune

infiltrating cells with macrophage subpopulation scores

(Figure 7C). Heatmaps identified correlations between model

genes and immune cells (Figure 7D). Stromal scores, immune

scores, and ESTIMATE scores were elevated in high-risk groups

(Figure 7E). Tumor purity was lower in high DAPK1+ Macrophage

risk score groups (Figure 7F).
3.8 Analysis of variance and enrichment

Volcano plots depicted differentially expressed genes between

high and lowDAPK1+Macrophage risk score groups (Figures 8A, B).

GO and KEGG enrichment analyses highlighted biological processes

and pathways associated with these differentially expressed genes
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FIGURE 3

Visualization of proposed time series analysis of macrophage subpopulations by cytotrace and monocle. (A) The differentiation of macrophage
subpopulations is analyzed using cytotrace and displayed in a 2D graph. The color can represent the level of differentiation. The figure on the right
represents the cytotrace results displayed according to different macrophage subpopulations. The colors represent different cell subpopulations.
(B) Box line plot showing the visualization results of cytotrace analysis of macrophage subpopulations. (C) The occupancy of relevant features in
different pseudotime stages of 4 cell subpopulations was visualized: the occupancy of 4 cell subpopulations in the tumor core group versus tumor
peripheral tissue group(top); the occupancy of 4 cell subpopulations in different cell cycles (bottom). (D) Bar charts illustrating the proportions of
different pseudotime stages (state1-state6) within the four cell subgroups. (E) Bar graph demonstrating the expression of the 4 cell subpopulations in
different phases (top) vs. different states(bottom), respectively. (F) Demonstrating the derivation process of macrophage subpopulations. Left: UAMP
plot of the proposed temporal trajectory showing the 4 cell subpopulations; Middle: UMAP plot showing the pseudotime trajectory of macrophage
subpopulation, starting from the lower right, are divided into two branches, one of which differentiates upward to the right and the other to the left
followed by two branches, one of which differentiates upward to the left, and the other down and left;Right: UMAP plot showing the distribution of 5
states on the proposed temporal trajectory plot. (G) Split-plane plots of the proposed temporal trajectories of macrophage subpopulations showing
the distribution of different cell subpopulations on the proposed temporal trajectories, respectively. (H) Scatter plot showing the changes of 4 cell
subpopulations of macrophage subpopulations with the proposed chronological sequence; proposed chronological sequence UMAP plot showing
the changes of the cell subpopulations corresponding to the 4 named genes with the proposed chronological sequence; and the expression of the
4 named genes of cell subpopulations (RGS16, DAPK1, VCAN, CXCL3) on the pseudotime trajectory.
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FIGURE 4

Slingshot analysis of the pseudotime trajectories of macrophage subpopulations. (A) UMAP plot showing the distribution of two differentiation
trajectories of macrophage subpopulation fitted by the pseudotime order in all cells. (B) UMAP plot demonstrating the change of Lineage1 with the
fitted temporal order (left); UMAP plot demonstrating the differentiation trajectory of Lineage1 on the fitted temporal order (right). (C) UMAP plot
demonstrating the change of Lineage2 with the fitted temporal order (left); UMAP plot demonstrating the differentiation trajectory of Lineage2 on
the fitted temporal order (right). (D) GO-BP enrichment analysis demonstrating the biological processes corresponding to the two proposed
chronological trajectories of macrophage subpopulation. (E) Scatterplot demonstrating the trajectories of the named genes of the four cell
subpopulations of macrophage subpopulation obtained after slingshot visualization.
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FIGURE 5

Cellchat results presentation. (A) Outcoming contribution bubble plots and incoming contribution bubble plots showing the expression of cellular
communication patterns between each cell subpopulation and other cells in the macrophage subpopulation. (B) Circle plot showing the number
(left) and strength (right) of interactions between all cells. (C) Heatmap showing afferent and efferent signal intensities of all cell interactions.
(D) Interaction of cells in the IL-10 signaling pathway shown by heatmap. (E) Violin plot of cellular interactions in the IL-10 signaling. (F) Interactive
bubble diagram of IL-10 macrophage.The color of the dots indicates varying degrees of functional strength and the size of the dots indicates the
number of cells. p-value < 0.01, statistically different. (G) IL10 Macrophage as a receiver interaction ligand diagram.Hierarchical diagram of
macrophage subpopulations interacting with other cells in the IL-10 signaling pathway.IL10 Macrophage as a receiver interaction ligand diagram.
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FIGURE 6

Development of a prognostic model associated with DAPK1+ Macrophage scores. (A) Forest plot showing univariate cox analysis of genes constituting
C1 DAPK1+ Macrophage risk score. Null line HR=1, HR<1 protective factor, HR>1 risk factor. (B) 8 genes that constitute DAPK1+ Macrophage scores.
screened by lasso regression (top); Lambda plot of genes that constitute DAPK1+ Macrophage scores (right). (C) Survival analysis status of the screened 8
genes constituting DAPK1+ Macrophage scores. in both high and low DAPK1+ Macrophage scores. groups. (D) Survival analysis plot of the 8 genes
constituting the high and low DAPK1+ Macrophage scores. groups. (E) Curve plots showing hazard scores in the high and low DAPK1+GBM score
groups (top); scatter plot illustrates survival status variations between high and low DAPK1+ Macrophage scores. groups(middle);heatmaps showing gene
expression of genes constituting the high and low DAPK1+ Macrophage scores. groups, with color scales based on normalized data (bottom). Green
indicates the low DAPK1+ Macrophage scores. group and red indicates the high DAPK1+ Macrophage scores. group. (F) Correlation analysis between
DAPK1+ Macrophage scores.s, overall survival (OS), and genes used in model establishment. Red indicates positive correlation, blue indicates negative
correlation, and color shades indicate high or low correlation. (G) AUC scores for 1, 3, and 5 years are shown by ROC plot. AUC(1-year): 0.687, AUC(3-
year):0.703, AUC (5-year):0.599. (H) Scatter plot showing the correlation analysis of the genes constituting DAPK1+ Macrophage scores. with DAPK1+
Macrophage scores. (I) Peak and box plot showing the difference in expression of the eight genes constituting DAPK1+ Macrophage scores. in the high
and low DAPK1+GBM score groups. (J) Forest plot showing multivariable Cox regression analysis of DAPK1+ Macrophage scores. in conjunction with
other clinical factors. Null line HR=1, HR<1 protective factor, HR>1 risk factor. (K) Nomogram plots predicting OS (overall survival) at 1, 3, and 5 years
based on age, high and low DAPK1+ Macrophage scores. subgroups, and stage. (L) Box line plot for internal cross validation of AUC scores at 1, 3, and 5
years. **:p<0.01, ***:p<0.001.
Frontiers in Immunology frontiersin.org12

https://doi.org/10.3389/fimmu.2024.1463747
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2024.1463747
(Figures 8C, D). GSEA scoring visualized enrichment scores across

pathways (Figure 8E).
3.9 Mutation analysis

Comprehensive mutation analysis illustrated gene mutations

and their associations within the tumor microenvironment (TME),

revealing differences in mutation load and copy number variation

(CNV) between high and low DAPK1+ Macrophage risk score

groups (Figures 8F–H). Heatmaps displayed the correlation of

mutation profiles among the genes comprising the DAPK1+

Macrophage risk score (Figure 8I). Violin plots depicted mutation

loads and their correlation with DAPK1+ Macrophage risk scores
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(Figure 8J). A scatter plot demonstrated the statistically significant

correlation (p < 0.05) between mutation load and DAPK1+

Macrophage risk score (Figure 8K). Survival analysis correlated

mutation load and DAPK1+ Macrophage risk scores with patient

outcomes (Figure 8L).
3.10 Drug sensitivity analysis

Violin plots compared drug sensitivity between high and low

DAPK1+ Macrophage risk score groups (Figure 8M), highlighting

potential differences in therapeutic responses.

To explore the functional implications of DAPK1 in glioma, we

conducted DAPK1 gene knockdown experiments, validating
FIGURE 7

Patterns and differences in immune infiltration between high and low DAPK1+ macrophage risk score groups in GBM patients. (A) Heatmap
visualization of distinct expression patterns of immune infiltration between patients with high and low DAPK1+ Macrophage risk scores.
(B) Estimation of immune cell proportions using the CIBERSORT algorithm in GBM patients from the TCGA database. Top: Predicted composition of
various immune cell subpopulations in the high and low DAPK1+ Macrophage risk score groups. Bottom: Differences in the predicted abundance of
five immune cell types between the two groups. (C) Bar graph illustrating the correlation between immune infiltrating cells and macrophage
subpopulation labeling scores, indicating positive correlations in red and negative correlations in blue. (D) Heatmap presentation of the relationship
between the eight model genes and immune cells, showing positive correlations in red and negative correlations in blue. (E) Evaluation of stromal
scores, immune scores, and ESTIMATE scores in the high versus low DAPK1+ Macrophage risk score groups, demonstrating elevated levels in the
high-risk group compared to the low-risk group. (F) Assessment of tumor purity in the high versus low DAPK1+ Macrophage risk score groups,
revealing lower tumor purity in the high-risk group compared to the low-risk group. ***:p<0.001.
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FIGURE 8

Analysis of variance, enrichment, mutation analysis, and drug sensitivity analysis in GBM patients stratified by DAPK1+ macrophage risk score. (A) Volcano
plot illustrating the expression of differentially expressed genes between the high and low DAPK1+ Macrophage risk score groups. (B) Heatmap visualization
of the expression patterns of differentially expressed genes between the high and low DAPK1+ Macrophage risk score groups. (C) Bar graphs depicting the
results of Gene Ontology (GO) enrichment analysis, highlighting associations with chemokine activity, chemokine receptor binding, chemokine-mediated
signaling pathway, and response to chemokine. (D) Bar graphs presenting the results of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis, showing significant enrichment of pathways including Viral protein interaction with cytokine and cytokine receptor, Cytokine-cytokine receptor
interaction, Chemokine signaling pathway, and IL-17 signaling pathway. (E) GSEA scoring of GO-BP-enriched entries of differentially expressed genes,
demonstrating the enrichment scores of genes on different pathways. (F) Visualization of cellular mutation data depicting mutations in eight genes. (G)
Comparison of the top 30 genes with the highest mutation frequency in two cohorts of mesenchymal cells. (H) Bar graphs illustrating chromosomal copy
number variation (CNV) gain and loss. (I) Heatmaps displaying the correlation of mutation profiles among genes comprising the DAPK1+ Macrophage risk
score. (J) Violin plot showing the disparity in mutation load between the high and low DAPK1+ Macrophage risk score groups. (K) Scatter plot
demonstrating the statistically significant correlation between mutation load and DAPK1+ Macrophage risk score. (L) Survival analysis curves depicting
outcomes based on mutational load and DAPK1+ Macrophage risk score. (M) Violin plots depicting variations in drug sensitivity between the high and low
DAPK1+ Macrophage risk score groups, with distinct responses to specific drugs observed. *:p<0.05, **:p<0.01, ***:p<0.001.
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transfection efficiency through RT-qPCR (Supplementary Figure 2).

Knockdown of DAPK1 significantly inhibited glioma cell

proliferation, migration, and metastatic potential, as confirmed by

colony formation assays, migration assays, CCK-8 assays, and

apoptosis assays (Figure 9).
3.11 Knockdown of DAPK1 inhibits cell
proliferation, migration, and induces
apoptosis in glioma

To investigate the role of DAPK1 in glioma cell proliferation,

migration, and apoptosis, we performed a series of functional assays

following DAPK1 knockdown in U251 and LN229 glioma cell lines.

Colony formation assays revealed a significant reduction in colony

size in the si-DAPK1 groups compared to the negative control

(NC), suggesting that DAPK1 knockdown impairs the proliferative

capacity of glioma cells (Figures 9A, B). The CCK-8 assay further

confirmed these findings, showing a notable decrease in cell viability

in the DAPK1 knockdown groups (Figures 9F, G). Scratch and

transwell assays were conducted to assess the migratory potential of

glioma cells. Representative images from both assays indicated that

DAPK1 silencing resulted in impaired migration (Figure 9C).

Quantification of the migration assays revealed a significant

reduction in the migratory ability of both U251 and LN229

glioma cells upon DAPK1 knockdown, supporting the notion that

DAPK1 is essential for glioma cell migration (Figures 9D, E). To

examine the effect of DAPK1 knockdown on apoptosis, flow

cytometry was performed. The results demonstrated that DAPK1

silencing significantly enhanced apoptosis in both U251 and LN229

glioma cell lines, indicating that the loss of DAPK1 promotes cell

death in these tumor cells (Figures 9H, I). Together, these data

suggest that DAPK1 knockdown inhibits glioma cell proliferation,

migration, and enhances apoptosis, highlighting its potential role as

a modulator of glioma cell survival and progression.
4 Discussion

The treatment of glioma remains a significant challenge due to

its aggressive nature, high recurrence rate, and poor prognosis (66).

Despite advancements in surgical techniques, radiotherapy, and

chemotherapy, the therapeutic options for glioma patients are still

limited, underscoring the need for novel therapeutic strategies (67).

In recent years, immunotherapy has emerged as a promising avenue

for glioma treatment, with growing interest in understanding how

immune mechanisms contribute to glioma progression (68).

However, the pace of research in this area has been relatively slow,

particularly in elucidating the complex interactions between glioma

cells and the immune microenvironment (69). Studies have shown

that the tumor microenvironment, including immune cells, plays a

pivotal role in shaping glioma behavior, yet the precise immune-

modulatory mechanisms remain poorly understood (70). The role of

DAPK1 (Death-associated protein kinase 1) in glioma has garnered
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attention for its involvement in regulating apoptosis, cell migration,

and invasion. DAPK1’s function in glioma development is

increasingly recognized as being linked to its modulation of

immune responses (71). Recent studies suggest that DAPK1 can

influence glioma progression through immune mechanisms,

particularly by affecting immune cell infiltration and cytokine

production. However, there is still a gap in our understanding of

how DAPK1 interacts with the immune system to modulate glioma

growth and treatment responses. To accelerate progress in this area,

single-cell technologies offer a powerful tool to unravel the complex

cellular heterogeneity of glioma and its immune microenvironment.

Single-cell RNA sequencing (scRNA-seq) enables the high-

resolution analysis of individual cell types within tumors, allowing

for a more precise mapping of immune cell interactions and the

identification of novel therapeutic targets. By integrating single-cell

data with immune profiling, researchers can gain deeper insights

into the dynamic interplay between glioma cells and the immune

system, ultimately advancing the development of more effective

immunotherapies for glioma patients (72).

In this study, we employed single-nucleus RNA sequencing

(snRNA-seq) to comprehensively characterize the cellular

heterogeneity within the glioblastoma (GBM) microenvironment.

Our analysis revealed 32 distinct cellular clusters, categorized into 10

major cell types including T cells, neutrophils, microglia, endothelial

cells, B/plasma cells, astrocytes, pericytes, macrophages, proliferative

macrophages, and microglia/macrophages. We observed significant

variations in the distribution of these cell types between the tumor core

and peripheral tissues, as well as their differential representation across

the cell cycle. Marker gene analyses provided insights into the distinct

functional roles and heterogeneous distributions of these cell types

within GBM tumors. Notably, our findings underscored the dynamic

interplay and functional diversity among different cell populations in

the context of GBM pathogenesis. Furthermore, we conducted detailed

intratumoral heterogeneity analyses focusing on macrophages,

leveraging copy number variation (CNV) analysis to distinguish

between normal and cancerous cells within GBM tissues. This

approach identified four distinct macrophage subgroups, with one

subgroup exhibiting elevated DAPK1 gene expression levels. Utilizing

advanced computational methods including UMAP plots, we

visualized the distribution patterns of these macrophage subgroups

across various parameters such as cell cycle stages, cellular subtypes,

and patient samples. Our analysis further highlighted differential gene

expression profiles and enriched biological processes within these

macrophage subgroups, providing deeper insights into their

functional specialization and potential roles in GBM progression. To

elucidate the developmental trajectories and differentiation patterns of

macrophage and GBM cell subgroups, we employed pseudotime

analysis, revealing continuous differentiation trajectories and

developmental stages across pseudotime sequences. These findings

shed light on the temporal dynamics of cellular differentiation within

the GBM microenvironment, suggesting potential developmental

milestones and critical points in tumor evolution. Importantly, our

study investigated the clinical relevance of identified cell types,

particularly focusing on the high DAPK1+ macrophage subgroup,
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through comprehensive survival analysis and prognostic modeling.We

established a robust multivariable Cox regression model that identified

the DAPK1+ macrophage risk score as an independent prognostic

factor, correlating significantly with patient survival outcomes. Our
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findings underscored the prognostic implications of high DAPK1+

macrophage risk scores in GBM, emphasizing their potential as

predictive biomarkers in clinical settings. Furthermore, we explored

immune infiltration patterns between high and low DAPK1+
FIGURE 9

Impact of DAPK1 knockdown on glioma cell proliferation, migration, and apoptosis. (A) Representative images of colony formation assays conducted
on U251 and LN229 glioma cells in the negative control (NC) and si-DAPK1 groups. (B) Quantification of colony size indicating the inhibitory effect
of DAPK1 knockdown on glioma cell proliferation. (C) Representative images of scratch and transwell assays performed to assess the migration
capability of U251 and LN229 glioma cells upon DAPK1 knockdown. (D, E) Quantification of scratch and transwell assay results demonstrating
reduced migration capability following DAPK1 knockdown. (F, G) Cell viability assessed by CCK-8 assay indicating the inhibitory effect of DAPK1
knockdown on glioma cell proliferation. (H, I) Apoptosis assay results showing enhanced apoptosis in U251 and LN229 glioma cell lines upon DAPK1
downregulation. **:p<0.01, ***:p<0.001.
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macrophage risk score groups, revealing distinct immune cell

compositions and interactions within the tumor microenvironment.

This analysis highlighted significant correlations between immune cell

subtypes and macrophage subgroup markers, implicating intricate

immune-modulatory roles of DAPK1+ macrophages in

GBM pathophysiology.

Finally, our drug sensitivity analysis demonstrated differential

responses to therapeutic agents between high and low DAPK1+

macrophage risk score groups, suggesting potential implications for

personalized treatment strategies targeting DAPK1-associated

pathways in GBM (73, 74). In conclusion, our study provides a

comprehensive characterization of cellular heterogeneity within the

GBM microenvironment, highlighting the critical roles of

macrophage subpopulations, particularly those with elevated

DAPK1 expression. These findings not only deepen our

understanding of GBM pathogenesis but also offer novel insights

into potential therapeutic targets and prognostic markers for

improved patient management. Future investigations should

further elucidate the mechanistic underpinnings of DAPK1-

mediated pathways in GBM and explore their clinical

implications in therapeutic interventions.

The findings from our functional assays underscore the critical

role of DAPK1 in regulating glioma cell proliferation, migration,

and apoptosis, consistent with previous studies implicating DAPK1

as a key modulator of cancer cell behavior. DAPK1, a pro-apoptotic

kinase, has been shown to influence various cellular processes,

including cell survival, motility, and death, through its

involvement in signaling pathways such as the MAPK and PI3K/

Akt pathways. In line with our results, a number of studies have

reported that the downregulation of DAPK1 leads to reduced cell

proliferation and migration, along with increased apoptosis, in

several cancer types, including glioma. For instance, loss of

DAPK1 expression in glioma cells has been associated with

enhanced tumorigenicity and resistance to apoptosis, further

supporting its role as a tumor suppressor. Additionally, DAPK1’s

influence on mitochondrial dynamics and autophagic processes has

been suggested to be a key mechanism underlying its ability to

regulate glioma progression. The impaired migratory capacity

observed in our study is also consistent with findings that DAPK1

promotes cell adhesion and migration, potentially through its effects

on actin cytoskeleton remodeling. Collectively, these results

reinforce the notion that DAPK1 serves as an important regulator

of glioma cell survival and migration, and its downregulation may

contribute to tumor aggressiveness. Therefore, targeting DAPK1 or

its downstream signaling pathways may offer promising therapeutic

strategies for glioma treatment.
5 Conclusions

In summary, models incorporating DAPK1-related parameters

offer robust patient stratification for prognostic evaluation and

immunological profiling in glioblastoma. Our findings contribute

significant insights into the diagnosis, therapeutic strategies, and

mechanistic investigations of gliomas.
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SUPPLEMENTARY FIGURE 1

Discrimination of glioblastoma (GBM) cells from normal cells based on

genomic copy number variation (CNV) analysis. The intercnv algorithm was
utilized to analyze single-cell data and identify cells with high CNV levels,

classifying them as GBM cells.

SUPPLEMENTARY FIGURE 2

DAPK1 gene transfection knock-down low efficiency verification. Compared

with untransfected cells, the mRNA level of DAPK1 gene was significantly

decreased in the transfected knockdown group.
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