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IL-6 and diabetic kidney disease
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Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes

associated with highmortality and disability rates. Inflammation has emerged as a

key pathological mechanism in DKD, prompting interest in novel therapeutic

approaches targeting inflammatory pathways. Interleukin-6 (IL-6), a well-

established inflammatory cytokine known for mediating various inflammatory

responses, has attracted great attention in the DKD field. Although multiple in

vivo and in vitro studies highlight the potential of targeting IL-6 in DKD treatment,

its exact roles in the disease remains unclear. This review presents the roles of IL-

6 in the pathogenesis of DKD, including immunoinflammation, metabolism,

hemodynamics, and ferroptosis. In addition, we summarize the current status

of IL-6 inhibitors in DKD-related clinical trials and discuss the potential of

targeting IL-6 for treating DKD in the clinic.
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1 Introduction

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease (ESKD)

worldwide and is the major contributor to diabetes mortality rate. Despite recent progress

in the development of new drugs for DKD, the residual risk still remains (1). Identifying

potential novel targets and therapeutic drugs for DKD is of great clinical significance.

Numerous studies have highlighted inflammation as a crucial factor in the occurrence and

progression of DKD (2, 3). DKD now is also acknowledged as an inflammatory disorder

(4). Rayego-Mateos et al. propose prioritizing anti-inflammatory interventions in the

management of DKD by 2030 (5).

Several important reviews highlight the critical role of inflammatory factors, especially

interleukin-6 (IL-6), in the development of type 2 diabetes mellitus (T2DM) and its

associated kidney diseases (2, 6). Research has demonstrated significantly elevated IL-6

levels in T2DM patients, which closely correlate with declining renal function (7). Several

large cohort studies have confirmed the direct relationship between high circulating IL-6

levels and reduced kidney function in patients with chronic kidney disease (CKD) (8, 9).

Compared to other cytokines such as interleukin-1 (IL-1) and tumor necrosis factor (TNF),

anti-IL-6 therapy is more effective in improving serum lipoprotein levels in patients with

rheumatoid arthritis (RA) (10). Additionally, IL-6 is more relevant to the 5-year all-cause
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1465625/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1465625&domain=pdf&date_stamp=2024-12-19
mailto:houliyan56789@sina.com
https://doi.org/10.3389/fimmu.2024.1465625
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1465625
https://www.frontiersin.org/journals/immunology


Zhang et al. 10.3389/fimmu.2024.1465625
and cardiovascular mortality risks in patients with CKD and ESKD

than TNF and fibrosis markers (11). Among patients with ESKD,

plasma IL-6 levels are more effective in predicting mortality risk

than IL-1, interleukin-18 (IL-18), and TNF (12). Based on these

findings, therapeutic strategies targeting IL-6 show significant

potential in the management of DKD. For instance, studies using

the IL-6 receptor blocker tocilizumab (TCZ) in mouse models have

demonstrated its ability to ameliorate the pathological changes

associated with DKD (13), further supporting the feasibility of

targeting IL-6. The fact that TCZ has been successfully utilized in

clinical settings for treating inflammatory diseases such as RA

suggests that targeting IL-6 could represent a promising strategy

for DKD. However, the exact physiological and pathological roles of

IL-6 in DKD remain unresolved. In this article, we summarize the

current understanding of IL-6 signaling in DKD to facilitate in-

depth studies of potential therapeutic strategies for targeting IL-6 in

the treatment of DKD in the future.
2 IL-6 and its signaling pathways

IL-6 plays a key role in multiple biological processes, including

immune responses, vascular diseases, developmental processes,

metabolic regulation. This pleiotropic activity has made it a focal

point of research, particularly in inflammatory pathological states.

When exploring the mechanisms of IL-6, it is important to

understand its receptor system. The IL-6 receptor system includes

both membrane-bound interleukin-6 receptor alpha chain (also

known as mIL-6R) and soluble forms of IL-6Ra (also known as sIL-

6R), with glycoprotein 130 (gp130, the IL-6Rb subunit) playing a

central role in signaling. IL-6Ra binds to IL-6, while gp130 is crucial

for transmitting the signal inside the cell.
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IL-6 actions are mediated by three distinct intracellular

signaling pathways, as illustrated in Figure 1 (drawn by Figdraw).

The first signaling pathway is the classical signaling pathway

mediated through mIL-6R. IL-6 binds to mIL-6R and induces the

homodimerization of the gp130 receptor chain, which recruits

Janus kinases (JAKs) that activate each other and trigger the

downstream signaling pathways, including the SHP-2/ERK

MAPK pathway and the JAK/STAT pathway (14). This classical

signaling pathway of IL-6 mainly occurs in a few types of cells,

primarily found in immune cells (neutrophils, macrophages and

CD4+ T cells) and resident cells (hepatocytes, pancreatic cells and

podocytes) (15–17).

The second is the sIL-6R-mediated signaling system, known as

IL-6 trans-signaling. sIL-6R is produced either by the proteolytic

shedding of mIL-6R mediated by metalloenzymes such as a

disintegrin and metalloprotease 10 (ADAM10) and a disintegrin

and metalloprotease 17 (ADAM17), or by the selective splicing of

IL-6R mRNA (18). sIL-6R binds to IL-6 to form a complex, which

further activates gp130 and transmits the signal. gp130 is a signal

transducer shared by all IL-6 family members, and theoretically, the

IL-6/sIL-6R complex is capable of activating all cells in the body

because of the widespread expression of gp130. However, this trans-

signaling is highly regulated by naturally occurring soluble gp130

(sgp130), which binds to the IL-6/sIL-6R complex with high affinity

and specifically blocks the IL-6 trans-signaling pathway, thus

constituting a physiological buffer for the IL-6 trans-pathway (19).

In cells lacking mIL-6R, the trans-signaling pathway of IL-6 is

their only signal transduction pathway. However, in cells expressing

mIL-6R, the situation becomes more complex. Typically, these cells

undergo parallel activation of both the classical and trans-signaling

pathways. sIL-6R can competitively bind to IL-6 with mIL-6R, and

the ratio of cell surface IL-6Ra/gp130 expression determines the
FIGURE 1

The signaling patterns of IL-6.
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strength of trans-signaling versus classical signal transduction (20).

Moreover, when the molar concentration of sIL-6R exceeds that of

IL-6, sgp130 can inhibit classical signal transduction (21).

The third pathway is cluster signaling pathway, primarily

occurring between dendritic cells (DCs) and T cells in

experimental mice (22). IL-6 binds to IL-6Ra on the surface of

DCs, forming a complex that subsequently interacts with gp130 on

the T cell membrane. This interaction induces gp130 dimerization,

activating IL-6 signaling and initiating the Th17 response. However,

its role in humans remains unconfirmed.

In summary, the IL-6 signaling system transmits information

between cells through different receptor forms and regulatory

mechanisms, thereby influencing disease progression. In recent

years, researchers have also explored the pleiotropic roles of IL-6

at molecular genetic level. For instance, an IL-6 meta-analysis of

genome-wide association studies (GWAS) identifies potential IL-6-

modulating genes, including the interleukin-1 receptor antagonist

gene (IL1RN), human leukocyte antigen (HLA), and IL-6R, which

have roles in immunity and inflammation (23). Another genetic

study links the IL6 single nucleotide polymorphism (SNP),

inflammation and its association with ESKD (24). Future research

on these novel aspects of IL-6 at the genetic level may help broaden

the understanding of new potential signaling pathways, thereby

elucidating the complex physiological functions of IL-6. In this

context, the exploration of the relationship between IL-6 and DKD

is of particular importance, as IL-6 plays a pivotal role in diabetes-

related inflammatory responses and may significantly affect kidney

structure and function.
3 The relationship between IL-6
and DKD

First, genetic studies focusing on immune responses, as well as

systematic reviews and meta-analyses of GWAS, have revealed that

IL-6 gene variants are associated with an increased risk of DKD

(25–27). Second, IL-6 is associated with kidney injury in DKD. IL-6

expression is significantly upregulated in the kidneys of rat models

with DKD (28, 29), and their kidney weight and proteinuria levels

are correlated with renal IL-6 levels (28). Several human studies

have indicated a marked increase in serum IL-6 levels among

individuals with DKD (30–32). Furthermore, there exists a direct

correlation between high glycated hemoglobin A1c (HbA1c) levels

(33) and early glomerular structural abnormalities (31) in patients

with T2DM in relation to serum IL-6 levels. Moreover, circulating

IL-6 levels in patients with DKD are elevated compared to those in

diabetic individuals without kidney disease (30, 32). IL-6 expression

is found to be increased in the kidneys of patients with CKD or

DKD (34, 35), particularly in areas of mesangial expansion, tubular

infiltration and atrophy (35). Additionally, infiltrating immune cells

in the damaged kidneys, including macrophages, T cells, and

basophils, exhibit elevated levels of IL-6 expression (36–38),

which further drives the progression of the inflammatory response.

More importantly, IL-6 emerges as a promising biomarker for

predicting the progression of DKD. Clinical studies have shown
Frontiers in Immunology 03
that plasma IL-6 is an independent predictor of mortality in

patients with advanced CKD (39), and plasma IL-6 levels in CKD

patients increase with the CKD stage. Elevated plasma IL-6 levels in

patients with T2DM are associated with deterioration in kidney

function, independent of baseline kidney function or proteinuria

(7). Several large cohort studies have confirmed a direct correlation

between IL-6 levels and kidney function, with high IL-6 levels

significantly associated with decreased kidney function in

individuals with or without CKD (8, 9).

The abnormal expression of IL-6 in animal models and human

studies of T2DM and DKD reveals its close relationship with these

diseases, highlighting the necessity of focusing on the key roles of

the inflammatory cytokine IL-6. Therefore, the potential

mechanisms by which IL-6 affects DKD are worthy of

further investigation.
4 Potential mechanisms of IL-6
Involvement in the regulation of DKD

The regulatory mechanisms of IL-6 in DKD are complex. Here,

we explore the effects of IL-6 in relation to immunoinflammation,

kidney cell function, glucolipid metabolism, renin-angiotensin-

aldosterone system (RAAS) activation, and iron homeostasis,

aiming to comprehensively elucidate the central role of IL-6 in

the development of DKD.
4.1 Inflammatory immune cells: IL-6
regulates the initial and resolution phases
of inflammation

From a pathological perspective, inflammation in DKD begins

with an immune response initiated by the immune system, which is

essential for the clearance of infectious factors. Once the threat

signals have been eliminated, it is vital to restrain this response to

prevent excessive tissue damage and reduce chronic inflammation

(40). CD45+ immune cells play an important role in this process, so

it is crucial to study the regulatory mechanisms of IL-6 on renal

CD45+ immune cells.

In normal kidneys, a small number of CD45+ immune cells are

detected; however, in the kidneys of DKD patients, these cells

increase in the early stages (41) and may decrease in the late

stages, leading to a dampened immune response and exacerbated

tissue damage (42). The types of infiltrating immune cells vary

across different renal regions: in diabetic glomeruli, macrophages

predominate (43), whereas in crescentic glomerulonephritis

(CGN), monocytes are prevalent within the glomeruli, and T

cells are primarily found in the surrounding areas (41, 44).

Monocytes (especially macrophages) and T cells play pivotal

roles in renal injury and fibrosis (41, 44–46). These infiltrating

immune cells, along with kidney cells, release various cytokines,

including IL-6, which regulates immune cell activation and

proliferation, modulates local inflammation, and participates in

tissue repair.
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Key events in the transition to the resolution phase include the

apoptosis and clearance of infiltrating neutrophils, the activation of

anti-inflammatory M2-type macrophages, and the differentiation of

regulatory T cells (Tregs) (40). Interestingly, IL-6 plays an

important role in both the initiation and resolution phases of

inflammation. In the initiation of inflammation, neutrophils are

the first to accumulate in tissues, followed by the release of sIL-6R,

which initiates trans-signaling in the intrinsic renal cells, promoting

the expression of inflammatory chemokines and intercellular

adhesion molecules (47). IL-6 transactivation plays an important

role in the regulation of neutrophil transport and clearance (48),

driving the transition of neutrophil recruitment to monocyte

recruitment, and inducing the shift from innate immunity to

adaptive immunity (49).

Enhanced renal macrophage infiltration is evident throughout

all stages of DKD. Macrophages exhibit two activation phenotypes:

pro-inflammatory M1 and the anti-inflammatory M2. It has been

demonstrated that M1 and M2 macrophages primarily infiltrate the

glomeruli and interstitium of diabetic kidneys (41). In the early

stages of DKD, M1-type macrophages are first recruited and then

proliferate in the kidneys (50). Subsequently, IL-6 activates the IL-

6Ra on the surface of M1 macrophages, inhibiting M1 proliferation

while promoting the polarization of M2 macrophages. This process

alleviates renal inflammation and facilitates tissue repair (51). The

classical IL-6 signaling pathway may a potential therapeutic strategy

to improve DKD, as its activation enhances the repair of

inflammatory renal injuries (51, 52). However, in the late stages

of DKD, M2 macrophages may transform into fibroblasts,

contributing to fibrosis in chronic kidney disease, including DKD

(53, 54). Thus, a deeper investigation into the phenotypic changes of

macrophages and their roles at various stages of DKD is essential for

optimizing treatment strategies.

DCs are essential antigen-presenting cells in the adaptive

immune response, with IL-6 playing multiple roles in their

regulation. IL-6 inhibits DC development (55) and maintains

them in an immature state (56), thereby limiting their capacity

for antigen presentation and T cell activation. However, under

certain conditions, IL-6 can promote DC maturation and further

enhance T cell responses (57). Additionally, IL-6 secreted by DCs

induces the production of Th17 cells, promoting adaptive immune

responses (58, 59).

T cells play a crucial role in the progression of DKD,

particularly CD4+ T helper cells (Th). Effector CD4+ T helper

cells can be classified into four primary subsets: Th1, Th2, Th17,

and Treg. Studies have shown that the decreased Treg/Th17 ratio is

an essential facilitator of worsening kidney function in diabetic

patients (60, 61). IL-6 plays a significant role in regulating the Th17/

Treg balance. Early studies suggest that IL-6 induces pathogenic

Th17 responses in synergy with TGF-b while also suppressing Treg

differentiation, ultimately resulting in tissue inflammation and

damage (62). However, recent research indicates the duality of IL-

6 action in vivo. The expression of mIL-6R is predominantly found

in peripheral naive CD4+ or central memory T cells, whereas at

inflammatory sites, IL-6 trans-signaling becomes essential for

activated and memory T cells due to the downregulation of mIL-

6R expression (63). At the initiation stage of inflammation,
Frontiers in Immunology 04
activation of the classical IL-6 pathway in naive CD4+ T cells

leads to the development and functional maintenance of Th17

cells (64). At inflammatory sites, T cells rely on IL-6 trans-

signaling to facilitate Th17 differentiation and recruitment (63,

65, 66) while simultaneously inhibiting apoptosis, which leads to

persistent infiltration (67, 68). In the resolution phase of

inflammation, the classical activation of IL-6 promotes Treg

differentiation and their trafficking to the kidneys, aiding the

repair of damaged kidneys (69). Several studies have emphasized

that interference with the classic IL-6 pathway reduces M2

macrophages and enhances Th17 responses, worsening renal

injury (51, 52). Further research has indicated that M2

macrophages regulate adaptive immune responses through

various mechanisms, including promoting Treg differentiation,

enhancing their ability to suppress Th17 cells, and facilitating the

migration of Tregs to sites of renal inflammation (70–72), which

indirectly inhibits Th17 cell activity. Based on these findings,

selective interference with the IL-6 trans-signaling may exert

better therapeutic effects on chronic inflammatory injury, but

effects on initial immune responses must be carefully considered.

Global inhibition of IL-6 signaling enhances pro-inflammatory

Th1 and Th17 responses in mouse kidneys, exacerbating tissue and

functional damage (51). This is consistent with the dual

mechanisms of IL-6, indicating that IL-6 may have a protective

role under certain circumstances. In CGN models, elevated

circulating sIL-6R levels are closely associated with the

aggravation of renal injury (52). During advanced disease,

inhibitors of the IL-6 pathway, especially those targeting IL-6

trans-signaling, significantly inhibit the recruitment of M2

macrophages, CD4+ T cells in mouse kidneys (73, 74), thereby

alleviating renal fibrosis. These studies confirm the effectiveness of

selective inhibition of IL-6 trans-signaling in controlling

kidney inflammation.

IL-6 plays a complex and multifaceted role in the inflammatory

process of DKD, participating in both the initiation and resolution

of inflammation. In these processes, IL-6 exerts both pro-

inflammatory and anti-inflammatory effects, with its specific

actions related to the signaling patterns involved. Further studies

should be conducted to elucidate the specific mechanisms of IL-6 in

various types of cells and stages to develop more precise and

effective therapeutic strategies. Moreover, attention should also be

paid to the potential impacts of the dual roles of IL-6 for effective

inflammation control.
4.2 Effects of IL-6 on renal cells: good
or bad?

The kidney consists of renal parenchyma and interstitium, with

the renal parenchyma serving as the primary functional component,

encompassing the glomeruli, renal tubules, and renal vasculature.

The expression levels of IL-6R mRNA and protein in the renal

parenchyma are very low, thus impeding the transduction of IL-6

classical signaling in the kidneys (75). However, podocytes have

been demonstrated to express membrane-bound IL-6R, allowing

for the transduction of both classical and trans-signaling pathways
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of IL-6, while other renal cells predominantly transduce IL-6 trans-

signaling (76). The analysis of differences in the effects of IL-6

signaling pathways among key kidney cell types, including

podocytes, renal endothelial cells (RECs), mesangial cells (MCs),

renal tubular epithelial cells (RTECs), and renal fibroblasts, will

enhance the understanding of the “good or bad” effects of IL-6 on

these cells, thereby uncovering the intrinsic relationship between

IL-6 and DKD. The IL-6 signaling pathway in various kidney cells is

depicted in Figure 2.

4.2.1 Podocytes and RECs
Podocytes and RECs are essential components of the

glomerular filtration barrier. IL-6 plays a significant role in

regulating the structure and function of both podocytes and

RECs. As shown in Table 1, under diabetic conditions, high

glucose induced podocytes to secrete IL-6, which activated the IL-

6/gp130/PGC-1a and IL-6/gp130/JAK2/STAT3 signaling
Frontiers in Immunology 05
pathways, potentially leading to podocyte apoptosis (77),

hypertrophy (78), and cytoskeletal disruption (79). Baseline IL-6

may exert a protective effect on podocytes, as IL-6-deficient mice

develop acute kidney injury (AKI) with podocyte dysfunction (80).

Under certain conditions, IL-6 secreted by podocytes promoted the

expression of suppressor of cytokine signaling 3 (SOCS3) in RECs,

thereby inhibiting IL-6 signaling and reducing neutrophil

recruitment (81). However, these effects were not observed in co-

cultures with human umbilical vein endothelial cells. This indicates

the tissue-specific actions of IL-6. As the only renal cells expressing

IL-6R, podocytes are studied to explore their specific signaling

patterns. It has been shown that both classical and trans-signaling

pathways of IL-6 are harmful to podocytes under high glucose

conditions (76). More studies are needed to further elucidate the

underlying mechanisms involved.

In addition, high glucose stimulates the secretion of IL-6 by

RECs (82), inducing an inflammatory phenotype in RECs with
FIGURE 2

The IL-6 signaling pathway in kidney cells. The pink boxes in the panel denote the damaging effects, whereas the blue-green boxes represent the
protective effects. HG, high glucose; PGC-1a, peroxisome proliferator-activated receptor gamma coactivator 1 alpha; TNFR1, tumor necrosis factor
receptor 1; CXCL5, C-X-C motif chemokine ligand 5; GLP-1R,glucagon-like peptide-1 receptor; miR-34, microRNA-34; AngII, angiotensin II; MCP-1,
monocyte chemoattractant protein-1; DNMT1, DNA methyltransferase 1; FOXO3a, forkhead box O 3a; HO-1, heme oxygenase-1; Ref-1, redox
effector factor 1; VE-cadherin,vascular endothelial-cadherin; MLC, myosin light chain; COL IV, collagen type IV.
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increased levels of oxidative stress and fibrosis markers (83). Long-

time exposure to IL-6 results in the loss of typical markers of RECs,

contributing to renal fibrosis (84). In immunoglobulin A

nephropathy, IL-6 suppressed the expression of vascular

endothelial cadherin through trans-signaling pathway, causing

increased permeability of RECs (85).

4.2.2 MCs
The persistent activation of the IL-6 pathway in MCs is an

important mechanism of the early glomerulopathy in DKD. As an

autocrine signal, IL-6 induces the expression of chemokines such as

monocyte chemoattractant protein-1 (MCP-1) in MCs and

influences immune cells through paracrine effects, thereby

exacerbating immune-inflammatory damage in the glomeruli

(86). Furthermore, studies have shown that the activation of Axl

receptor tyrosine kinase (Axl) is closely associated with early

glomerular hypertrophy in DKD (87), with the IL6/STAT3/

miRNA-34a pathway playing a significant role in this process

(88). In a hyperglycemic environment, the elevation of IL-6 in

MCs led to cell apoptosis (89) and promoted cell proliferation,

inflammation and fibrotic changes through the IL-6/JAK2/STAT3

pathway, thereby hastening the progression of DKD (90).

IL-6 trans-signaling plays an important role in regulating the

inflammatory response of MCs. Its activation markedly induced

MCP-1 synthesis in MCs, leading to glomerular inflammation

(91). However, IL-6 may exhibit tissue-specific anti-inflammatory

and pro-inflammatory effects under different conditions. For

example, in RTECs, IL-6 induced increased expression of

extracellular matrix (ECM) proteins, whereas it inhibited ECM

protein expression in MCs (92). The pro-inflammatory fibrotic

effect observed in RTECs cannot be simply defined as detrimental,

as initial fibrosis can promote wound healing. More studies are
Frontiers in Immunology 06
needed to clarify the physiological significance of the differential

effects of the IL-6 trans-signaling pathway in various tissues of the

same organ.

4.2.3 RTECs and renal fibroblasts
Activation of renal fibroblasts and phenotypic conversion of

RTECs are key factors in tubulointerstitial fibrosis (TIF). The

activation of the IL-6 trans-pathway is closely associated with

TIF. High glucose activated the IL-6/JAK2/STAT3 signaling

pathway in RTECs, leading to inflammatory damage and cell

apoptosis (93). Increased IL-6 induced epithelial-mesenchymal

transition of RTECs (94) through the downstream STAT3 and

DNMT1/FOXO3a/Wnt/b-catenin axis, promoting renal fibrotic

lesions in AKI (95, 96). Furthermore, IL-6 released by RTECs

promotes the proliferation of adjacent fibroblasts and the

excessive production of fibrotic matrix (97, 98), accelerating renal

fibrosis progression. Although IL-6 promotes renal injury in AKI

(95, 99, 100), its trans-signaling also limits oxidative stress and

promotes kidney repair (75), underscoring the dual role of IL-6 in

tissue injury. This dual role may protect local tissues and organs

from damage caused by acute inflammatory stimuli.

Animal studies further confirm the role of IL-6 in renal fibrosis

and diabetic kidney injury. IL-6 knockdown markedly reduces renal

fibrosis in type 1 diabetic mice (101). In type 2 diabetic nephropathy

models, IL-6 neutralization inhibits nod-like receptor family pyrin

domain-containing 3 (NLRP3) inflammasome and downstream

JAK2/STAT3 signaling, thereby alleviating oxidative stress and

fibrotic injury (13, 90). Additionally, IL-6 elevates serum

fibroblast growth factor 23 (FGF23) levels via sIL-6R (99),

promoting the development of acute and chronic renal failure. In

models of unilateral ureteral obstruction and ischemia reperfusion,

specific blockade of IL-6 trans-signaling attenuates inflammation

and fibrosis in renal tissues (74, 102). Consequently, the up-

regulation of IL-6 trans-signal is closely associated with the

progression of DKD.
4.3 Complexity of IL-6 regulation of
glycolipid metabolism

Although IL-6 theoretically has the potential to regulate

metabolism, adverse effects such as dyslipidemia have been

observed with IL-6 inhibitors (e.g., TCZ) in clinical trials (103).

This prompts us to revisit the complex roles of IL-6 in metabolic

regulation. Therefore, we review the literature related to glycolipid

metabolism, focusing on energy metabolism, T2DM models, and

clinical trials, to explore the specific mechanisms by which IL-6

regulates glycolipid metabolism.

4.3.1 IL-6 regulates metabolism in a tissue-
specific manner

IL-6 exhibits inconsistent effects among different peripheral

target tissues of insulin, primarily including the liver, adipose

tissue, and muscle, indicating the tissue-specific effects of IL-6 on

metabolic regulation. The IL-6R on hepatocytes allows the
TABLE 1 Effects of IL-6 on kidney cells.

Cell type Role of IL-6 Refs

Podocyte Promoted proliferation, apoptosis, and
growth arrest, stimulation of
hypertrophy, induction of excessive
motility and functional disruption,
protection of podocytes in AKI models

(76–79, 175)

Endothelial cell Induction of inflammatory phenotype,
induction of endothelial-mesenchymal
transition and fibrosis, increased
permeability, inhibited neutrophil
recruitment to inflamed cells

(81, 83–85)

Mesangial cell Promotion of proliferation, enhanced
chemokine expression,
induction of apoptosis and fibrosis,
reduced abundance of fibronectin and
type IV collagen

(86, 88–92, 176)

Tubular
epithelial cell

Induction of apoptosis, mesenchymal
transition and fibrosis, promotion of
immune cell accumulation, attenuated
oxidative stress damage

(75, 93–96, 177)

Renal fibroblast Increased ECM production, activation
of the transition to myofibroblasts

(97, 98, 160)
AKI, acute kidney injury; ECM, extracellular matri.
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intracellular classical signaling pathway that is essential for

preventing metabolic changes and inflammation (104).

Administration of IL-6-neutralizing antibodies to mice aggravates

methionine-choline-deficient diet-induced hepatic steatosis (105),

while hepatocyte-specific IL-6Ra deficiency leads to liver

inflammation and reduced insulin sensitivity (106). In chronic

liver disease, the downregulation of mIL-6R expression in

hepatocytes favors the transduction of the IL-6 trans-signaling

pathway, ultimately resulting in liver cirrhosis (107, 108).

Increased plasma concentrations of IL-6 trans-signaling

components show a clear correlation with HbA1c levels in

patients with diabetes concomitant chronic liver disease (107).

These studies suggest that the classical pathway mediated by

hepatic IL-6R may maintain metabolic homeostasis in the early

stages of the disease, but as the disease progresses, IL-6 trans-

signaling predominates, leading to metabolic disturbances

and inflammation.

IL-6 is strongly associated with lipid metabolic changes in both

obese individuals and those with T2DM (109, 110), and adipose

tissue is the primary source of IL-6 in vivo. Adipocytes

predominantly transmit IL-6 trans-signaling (111), although there

are also studies indicating the presence of IL-6R on adipocytes and

suggesting its role in mediating liraglutide-induced hypoglycemic

effects (112). Acute increases in IL-6 in adipose tissue have been

shown to improve metabolism and blood glucose levels in obese

mice (113), whereas prolonged elevations of IL-6 may contribute to

increased lipolysis and leptin production, as well as insulin

resistance (114). Moreover, IL-6/sIL-6R signaling pathways

activated by high-fat diets have been found to exacerbate

inflammation in adipose tissue of mice (115). Inhibition of IL-6

signaling in adipose tissue has been associated with reduced SOCS3

expression in hepatocytes and improved insulin sensitivity in mice.

Selective inhibition of IL-6 in adipose tissue decreased SOCS3

expression in hepatocytes, thereby improving insulin sensitivity in

mice (116). Thus, the chronic elevation of IL-6 in adipose tissue of

obese patients is linked to metabolic deterioration.

Recent studies have indicated a connection between the classical

IL-6 pathway and the metabolic benefits brought about by exercise.

During exercise, IL-6, released by muscle tissue, stimulates the

uptake and breakdown of glucose and fatty acids in muscle fibers

through an osteocalcin-dependent mechanism by activating the IL-

6 classical pathway in osteoblasts to optimize motor function (117).

Moreover, IL-6 produced by muscles acts through IL-6R to support

the retention and functional enhancement of Tregs in muscles,

thereby improving muscle mass (118).

In addition to peripheral tissues (liver, adipose, and muscle), IL-

6 is also involved in central metabolic regulation. Several studies

have confirmed that central IL-6 activation can prevent high-fat-

diet-induced obesity and insulin resistance in mice (119–121).

Central IL-6 is closely related to body energy expenditure (120,

122). IL-6 trans-signaling plays a dominant role in its central effects.

The trans-signaling of IL-6 in the paraventricular nucleus of the

hypothalamus is essential for inhibiting feeding behavior and

enhancing glucose homeostasis in mice (121).
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4.3.2 IL-6 in models of T2DM
Patients with T2DM or DKD are usually accompanied by

elevated circulating IL-6 levels. This chronic elevation of IL-6

similar to those observed in chronic inflammation, tends to

disrupt the organismal metabolic homeostasis. TCZ treatment

notably improved circulating glucagon, glucose and HbA1C levels

in rhesus monkeys with spontaneous obesity or T2DM (123).

In contrast to chronic IL-6 actions, it is interesting to note that

acute IL-6 infusions (at physiological concentrations) may improve

the metabolism of patients with T2DM. In experimental designs,

acute or intermittent IL-6 injections are often used to mimic the

acute elevation of IL-6 post-exercise. Acutely elevated IL-6 has been

shown to improve glucose tolerance in rodents and postprandial

glucose in healthy volunteers (113, 124). In T2DM patients, acute

infusions of IL-6 (up to the concentration after acute exercise),

while not altering glucose turnover or postprandial glucose in

patients, both notably reduced insulin levels in blood, implying

an enhancement of insulin sensitivity (110, 124). This insulin-

sparing effect may help to retain the function of pancreatic b-cells
in diabetic patients. A single IL-6 injection improved insulin

sensitivity in obese and type 2 diabetic mice, but failed to increase

insulin secretion after pancreatic b-cell destruction in mice (113). It

appears that the improvement of insulin sensitivity by IL-6 in

T2DM patients is dependent on the preservation of pancreatic b-
cell function. Furthermore, acute infusions of IL-6 can enhance fatty

acid metabolism and systemic energy metabolism in elderly

participants with T2DM (125), which emphasizes the lipolytic

effects of IL-6 and may contribute to weight loss in them.

The pathological microenvironment induces changes in cell

phenotypes, and the beneficial effects of IL-6 on metabolism

observed in healthy volunteers cannot be simply extrapolated to

diabetic patients. In healthy volunteers, acute IL-6 infusions delay

gastric emptying and lower postprandial glucose levels. However, in

patients with T2DM, IL-6 infusions delay gastric emptying but do

not considerably reduce postprandial blood glucose levels (124).

The underlying mechanisms of these differences remain unknown.

It has been clearly demonstrated that individuals with T2DM show

reduced responsiveness of myotubes to IL-6. While skeletal muscle

cells from healthy volunteers can increase glucose uptake in

response to IL-6 stimulation, myotubes from individuals with

T2DM only respond to insulin in vitro, not to IL-6 (126).

Activation of the classical pathway of IL-6 may be important for

improving metabolic disorders in patients with T2DM. Individuals

with elevated serum levels of sIL-6R and/or sgp130 are at an increased

risk of metabolic syndrome (127, 128). Prolonged exercise training can

reduce plasma sIL-6R levels (129), thereby shifting the IL-6 signaling

axis toward the classical IL-6 signaling mode. In addition, the

researchers construct a novel compound, IC7Fc, which preserves the

metabolic benefits of IL-6R. This compound improves hyperglycemia

and glucose tolerance levels, while also reducing body weight and liver

cirrhosis as well as promoting muscle and bone mass (130). Although

blocking the trans-signaling pathway of IL-6 improves ATM

accumulation induced by a high-fat diet, it does not alleviate

systemic insulin resistance (131). Therefore, modulation of the IL-6
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signaling pathway toward the classical model may be more effective in

correcting metabolic disorders than simply blocking the trans-

signaling pathway.

In the development of IL-6 agents, attention should also be paid

to the potential impact of IL-6 blockade on the beneficial outcomes

of exercise. A small-scale, double-blind clinical trial demonstrated

that IL-6 blockade led to decreases in acute post-exercise and

postprandial active GLP-1 concentrations among obese and type

2 diabetic individuals, albeit with a transient rather than sustained

effect (132). Apart from that, another study showed that TCZ

abolished exercise-induced reduction in visceral fat and increases

circulating cholesterol levels in obese subjects (133).

4.3.3 Metabolic effects of IL-6 inhibitors observed
in clinical trials

RA and diabetes share common pathogenic mechanisms, which

involve chronic inflammation, autoimmunity, and insulin

resistance and beyond. In recent years, research on RA has been

shifting focus towards its complications of diabetes. Currently, the

number of clinical trials investigating IL-6 inhibitors for diabetes

treatment is limited. Therefore, large-scale clinical trials of TCZ in

RA patients aid in the assessment of the metabolic effects of IL-6.

As shown in Table 2, beneficial effects on glucose metabolism

and muscle mass are observed with TCZ therapy. In non-diabetic

RA individuals, TCZ treatment notably improves insulin sensitivity

and enhances muscle mass (134–136). In RA patients with T2DM,
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TCZ demonstrates a notable reduction in HbA1c levels and a

decrease in daily prednisolone doses (137). Despite a case report

also exists where RA patients developed type 1 diabetes after 17

months of TCZ treatment (137), the precise underlying mechanism

remains unclear. Considering the genetic background of strong

susceptibility genes in the patient, it is also possible that TCZ may

delay the onset of type 1 diabetes.

During treatment with anti-IL-6 therapy, elevations in total

cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and

triglyceride levels have been observed during TCZ treatment for RA

(138). This phenomenon has triggered a deeper investigation into

the metabolic effects of TCZ. Although elevated lipid levels are

usually considered indicators of increased risk for metabolic

diseases, the situation seems to be different in the context of TCZ

treatment. The raised lipid levels induced by TCZ do not seem to

result in increased cardiometabolic risks, but instead may lower the

risk of cardiovascular events. This paradox can be explained by

multiple factors.

First, the anti-inflammatory effects of TCZ may partially

mitigate the potential risks associated with elevated lipid levels.

TCZ leads to changes in different lipoproteins with a comparable

gain, thus not affecting the atherogenic index (139), and potentially

even alleviating arterial stiffness in patients (140). Importantly, the

key pathogenic factor of atherosclerosis (small dense LDL) is not

influenced by TCZ (141). Also, the increase in the levels of high-

molecular-weight (HMW) adiponectin during TCZ treatment
TABLE 2 Metabolic effects of IL-6 inhibitors observed in RA clinical trials.

Year Diseases/
Patients (n)

Interventions Major results Refs

2004 RA
(n=164)

MRA Elevation in TC, LDL-C, and triglyceride levels,
mild liver disease, transient decrease in white blood cell counts

(138)

2011 RA with T2DM
(n=10)
RA without T2DM
(n=29)

TCZ T2DM patients: significant reduction in HbA1c
Non-T2DM patients: slight decrease in HbA1c, no hypoglycemia observed

(137)

2011 RA
(n=22)

TCZ Elevated TC and HDL levels, decreased arterial stiffness (140)

2013 RA with T2DM
(n=50)

TCZ Decrease in insulin/glucose ratio, improved insulin sensitivity (134)

2015 RA
(n=132)

TCZ Elevation of TC, LDL-C, and triglyceride levels,
no change in small dense LDL

(141)

2015 RA
(n=21)

TCZ Weight gain, alterated fat distribution, increased muscle mass (135)

2018 RA
(n=40)

TCZ Comparable increases in different lipoproteins, no change in atherogenic index (139)

2019 RA
(n=50)

TCZ Decrease in serum insulin levels and insulin/glucose ratio, improved insulin sensitivity (134)

2020 RA
(n=107)

TCZ Increased total adiponectin and HMW adiponectin, increased body mass index and
waist circumference but no parallel change in waist-to-hip ratio, no change in fat
mass, increased muscle mass

(136)
RA, rheumatoid arthritis; TCZ, tocilizumab; MRA, a Humanized anti-IL-6 receptor antibody; HMW, high molecular weight; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol;
T2DM, type 2 diabetes mellitus; HbA1c, glycated hemoglobin A1c.
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serves as a positive indicator for the improvement in metabolic

diseases (136), suggesting that TCZ may play an important role in

metabolic regulation.

Furthermore, studies in obese patients and those intolerant to

statins have shown that anti-inflammatory therapy with IL-6

inhibitors plays a positive role in improving metabolism and

disease progression in these patients. In a cohort study involving

1,153 obese participants, serum lipoprotein(a) (Lp(a)), a severe

independent risk factor for cardiovascular diseases, was significantly

associated with IL-6 levels. After TCZ treatment, Lp(a) levels were

considerably reduced in patients (10), a change attributed specifically

to the inhibition of IL-6 rather than to the suppression of

inflammatory immune responses. The latest follow-up study of

13,970 statin-intolerant high-risk cardiovascular patients

demonstrates that inflammation has a greater predictive value than

LDL-C for future cardiovascular events and mortality (142),

highlighting the significance of anti-inflammatory therapies in

ameliorating metabolic disorders and reducing cardiovascular risk.

In conclusion, the clinical trials discussed above suggest that the

improvements in insulin sensitivity and inflammation levels

resulting from IL-6 blockade may lead to clinical benefits that

outweigh the risks associated with elevated lipid levels.
4.4 IL-6 regulates the RAAS

The overactivation of the RAAS leads to progressive renal

damage. Angiotensin II (AngII) is the primary effector of RAAS,

generated from angiotensin I under the action of angiotensin-

converting enzyme. Studies have shown that IL-6 is necessary for

the renal damage caused by aberrant activation of RAAS.

IL-6 plays a key role in AngII-induced renal damage and

fibrosis. Studies have shown that AngII stimulates IL-6 secretion

from renal tubular cells (97) and elevates IL-6 expression in rat

kidneys (143). In the absence of IL-6, AngII was unable to induce

phosphorylation of JAK2/STAT3 in RTECs (144) and in murine

kidneys (145). And IL-6 blockade inhibited mesangial cell

proliferation induced by AngII (146). In IL-6 knockout mice,

AngII-induced hypertension and urinary albumin excretion were

lessened (145, 147), accompanied by a notable reduction in vascular

endothelial inflammatory injury and oxidative stress (148).

Moreover, L-6 deficiency decreased AngII-induced expression of

renal fibrotic genes in mice (34, 149), thereby mitigating chronic

kidney lesions. Multiple studies have shown that IL-6 further

amplifies intrarenal AngII action by elevating the expression of

renal angiotensinogen (AGT) (144, 150, 151), creating a vicious

cycle that ultimately results in progressive renal function decline.

The mechanism by which IL-6 mediates the effects of AngII has

attracted considerable interest. Multiple studies confirm the critical

role of IL-6-mediated JAK2/STAT3 signaling in AngII-induced

kidney injury (144, 145, 152). Furthermore, JAK-STAT signaling

also underlies the increase in AGT levels induced by IL-6 (144, 153).

JAK2/STAT3 activation in the kidney has been identified as a

facilitator of AngII-induced kidney injury in diabetic patients

(154). Thus, it is possible that the IL-6/JAK/STAT signaling
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pathway is a key downstream signal in RAAS-induced

kidney injury.
4.5 IL-6 regulates renal iron homeostasis

Ferroptosis, a form of iron-dependent cell death characterized

by lipid peroxidation, has been increasingly recognized for its close

association with the onset and progression of DKD (155).

Ferroportin (FPN) and hepcidin play key roles in mammalian

iron homeostasis. The activation of the IL-6/Ca axis has been

shown to enhance the presence of FPN on the plasma membrane

of human embryonic kidney cells, which promotes iron efflux, and

removes Fpn from the membrane via upregulation of hepcidin to

restore iron homeostasis (156).

IL-6 is recognized as an inducer of ferroptosis involved in

intervertebral disc degeneration and mastitis diseases (157, 158).

Epitope-mimicking peptides are believed to be effective in

mimicking antibody binding sites, inducing active immunity

(159). In kidney diseases, the specific epitope mimics of TCZ

were found to increase ferritin level, decrease lipid oxidation

levels and renal cell apoptosis, attenuating kidney fibrosis (73).

Besides, IL-6 mediates signaling crosstalk between ferroptotic

kidney cells and surrounding fibroblasts, accelerating renal

fibrosis (160). In autoimmune kidney diseases, IL-6 helps

immune cells evade ferroptosis, promoting excessive activation of

immune cells and worsening kidney disease. Blockade of IL-6

promotes ferroptosis in B cells and shows therapeutic effects in

lupus nephritis (161). These findings highlight the intricate

involvement of IL-6 in the regulation of ferroptosis and suggest

that the impacts of IL-6 on ferroptosis are context-dependent.
5 The current status of IL-6 inhibitors
in clinical trials related to DKD

The intrinsic relationship between IL-6 and DKD has been

substantiated through various aspects in the aforementioned

laboratory studies. In the process of translating targeted IL-6

therapy for DKD into clinical application, relevant clinical trials

are being gradually conducted. Current IL-6 inhibitors in clinical

trials for kidney disease mainly consist of TCZ, clazakizumab (an

anti-IL-6R antibody), ziltivekimab (an IL-6 ligand inhibitor), and

baricitinib (a JAK inhibitor). As shown in Table 3, the majority of

studies evaluate the safety and efficacy of anti-IL-6 therapy in pre-

and post-kidney transplant pat ients (NCT01594424,

NCT03444103, NCT00106639, NCT00658359, NCT04561986,

NCT03859388, NCT04779957, NCT03867617, NCT03380962,

NCT03380377). According to the available data, IL-6 inhibitors

effectively reduce immune rejection in post-kidney transplant

patients with good tolerability (162–166).

In addition, anti-IL-6 therapy also effectively improved

inflammatory markers and proteinuria levels in patients with

kidney disease, leading to a reduction of kidney inflammation.

Previous results from a phase 2b clinical trial indicate that
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TABLE 3 IL-6 inhibitors in DKD-related clinical trials.

Interventions Patients studied Status/major
outcomes

Enrollment Phases Trial
registration

Study
completion
date

Tocilizumab HS patients awaiting RT Reduced antibody-mediated
immune
response, improved
transplant success
rate

10 1/2 NCT01594424 2015-05

Patients with obesity
and T2DM

Reversible reduction of meal-
and
exercise-induced GLP-1

56 Not
applicable

NCT01073826 2016-06

KTR with inflammation Increase in Treg frequency,
decrease
in T-effector cell
cytokine responses

33 2 NCT02108600 2018-12-16

KTR Active, not recruiting 12 1/2 NCT03867617 2029-06

KTR Recruiting 50 3 NCT04561986 2027-12

KTR Active, not recruiting 10 Not
applicable

NCT03859388 2024-12-31

Patients before or after
graft nephrectomy

Recruiting 18 2 NCT04779957 2024-10

Clazakizumab ESRD patients with diabetes
or atherosclerosis

Reduction in
inflammation markers

2310 2/3 NCT05485961 2028-12

Patients with ABMR after RT Completed, but results
not disclosed

10 1/2 NCT03380377 2024-04-16

KTRwith late ABMR Decrease in donor-specific
antibodies,
improved eGFR decline

20 2 NCT03444103 2020-06-30

KTR Unmet Expectations 194 3 NCT03744910 2024-04-08

HS Patients Awaiting RT Active, not recruiting 20 1/2 NCT03380962 2025-07-30

Ziltivekimab ESRD patients Improvement in multiple
inflammatory
markers and
thrombotic biomarkers

264 2 NCT03926117 2020-06-26

people with CVD, CKD
and inflammation

Recruiting 6200 3 NCT05021835 2026-01-29

Chinese people with kidney
disease and inflammation

Active, not recruiting 24 1 NCT05379829 2024-05-27

Baricitinib DKD patients Reduction in proteinuria
levels,
Alleviated renal inflammation

130 2 NCT01683409 2014-11

CKD patients
with hypertension

Recruiting 75 2 NCT05237388 2026-03-31

DKD patients with
severe albuminuria

Recruiting 20 2 NCT05897372 2025-06-01

lupus nephritis Recruiting 80 2/3 NCT05686746 2023-08-01

lupus nephritis Active, not recruiting 60 3 NCT05432531 2023-04-01

Tofacitinib Patients after RT Inhibition of acute rejection 61 2 NCT00106639 2006-07

5 year of follow-up on post-
RT patients

Long-term
renoprotective effects

178 2 NCT00658359 2015-06
F
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KTR, kidney transplant recipient; ABMR, antibody-mediated rejection; RT, renal transplantation; HS, highly-HLA sensitized; CVD, cardiovascular disease; DKD, diabetic kidney disease; CKD,
chronic kidney disease; ESKD, end-stage kidney disease; T2DM, type 2 diabetes mellitus; GLP-1, glucagon-like peptide-1; eGFR, estimated glomerular filtration rate.
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clazakizumab reduces serum inflammatory markers related to

cardiovascular events in participants with ESKD complicated by

diabetes or atherosclerosis (NCT05485961) (167). A Phase 3 trial is

currently ongoing.

Furthermore, ziltivekimab shows improvements in multiple

inflammatory markers and thrombotic biomarkers in ESKD

patients with high cardiovascular risk (NCT03926117) (168).

Trials are currently recruiting to assess the impact of ziltivekimab

on cardiovascular risk in patients with cardiovascular disease,

chron ic k idney disease , and sys temic inflammat ion

(NCT05021835). The anti-inflammatory effects of TCZ have been

evaluated in patients with post-kidney transplant inflammatory

responses (164) (NCT02108600). Baricitinib has shown efficacy in

reducing proteinuria levels and alleviating renal inflammation in

T2DM patients with kidney diseases (169) (NCT01683409).

Furthermore, studies are planned to evaluate the effect of

baricitinib on urine protein in CKD (NCT05237388) patients and

its impact on hard kidney endpoints in DKD patients with severe

albuminuria (NCT05897372). Several studies (NCT05686746,

NCT05432531) are planned to evaluate the effectiveness of

baricitinib for lupus nephritis.

Overall, the results of these clinical trials provide robust

evidence supporting the strategy of targeting IL-6 for treating DKD.
6 Conclusion

The current indications for IL-6 inhibitors have expanded from

the initial rheumatoid arthritis, to more recent giant cell arteritis,

and systemic sclerosis-associated interstitial lung disease (170, 171).

Targeting IL-6 has shown significant potential for the development

of treatments for immune-mediated inflammatory diseases. With

the new concept of immunometabolism and the growing

understanding of the crosstalk among immunity, iron metabolism

and hemodynamics in preclinical studies, immunotherapy is highly

likely to be a new breakthrough in treating DKD. The latest clinical

trials are assessing the efficacy of IL-6 inhibitors on inflammatory

markers relevant to cardiovascular and renal diseases.

In the investigation of targeted therapy strategies with anti-IL-6

agents for DKD, there are two points of concern. Firstly, further

investigation is needed into the molecular mechanisms underlying

the functions of the classical and trans-IL-6 signaling pathways.

Both pathways transmit signals through the shared mediator gp130,

but they can elicit distinct or even opposing effects. Thus, additional

research at the molecular levels is necessary to elucidate the key

mechanisms of this precise control and differential action, which

would significantly advance the development of precision medicine

for DKD. Some recent studies have focused on this. For example,

Xu et al. have revealed the crosstalk between energy metabolism and

IL-6 signaling, elucidating the molecular mechanisms underlying

the distinct actions associated with reprogramming of glucose

metabolism (172). Another study has demonstrated that changes

in the binding parameters of the IL-6-gp130 receptor complex can

lead to biased signaling (173). Specifically, modified cytokine-
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receptor binding dynamics can attenuate the pleiotropic effects of

IL-6, thus mitigating potential side effects associated with IL-6-

targeted treatments.

Secondly, in the development of IL-6-targeted therapy for DKD

treatment, how to modulate the balance between the classical and

trans-signaling pathways of IL-6 is also a challenging task. IL-6

trans-signaling-specific inhibitor olamkicept has been developed for

treating ulcerative colitis with promising results in phase II clinical

trials (174). An increasing number of studies are being redirected to

the development of drugs that selectively inhibit IL-6 trans-

signaling without affecting classical signaling. However, due to the

diverse pathological manifestations in different diseases, targeting

only the IL-6 trans-signaling pathway in DKD may not be the most

effective approach, as demonstrated by the inefficacy of sgp130Fc in

ameliorating insulin resistance induced by a high-fat diet in mice

(131). In contrast, the recombinant IC7Fc, which is constructed

with consideration of tuning of the balance between the two

primary IL-6 pathways, has exhibited multiple beneficial effects in

the context of type 2 diabetes. Therefore, in comparison to global

inhibition of IL-6 or simply inhibition of the IL-6 trans-pathway,

developing drugs that modulate the balance between IL-6 classical

and trans-signaling pathways may be a more rational therapeutic

strategy for DKD.
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