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Background: Several studies indicate that smoking is one of themajor risk factors

for bladder cancer. Nicotine and its metabolites, the main components of

tobacco, have been found to be strongly linked to the occurrence and

progression of bladder cancer. However, the function of nicotine metabolism-

related genes (NRGs) in bladder urothelial carcinoma (BLCA) are still unclear.

Methods: NRGs were collected from MSigDB to identify the clusters associated

with nicotine metabolism. Prognostic differentially expressed genes (DEGs) were

filtered via differentially expression analysis and univariate Cox regression

analysis. Integrative machine learning combination based on 10 machine

learning algorithms was used for the construction of robust signature.

Subsequently, the clinical application of signature in terms of prognosis, tumor

microenvironment (TME) as well as immunotherapy was comprehensively

evaluated. Finally, the biology function of the signature gene was further

verified via CCK-8, transwell migration and colony formation.

Results: Three clusters associated with nicotine metabolism were discovered with

distinct prognosis and immunological patterns. A four gene-signaturewasdeveloped

by random survival forest (RSF) method with highest average Harrell’s concordance

index (C-index) of 0.763. The signature exhibited a reliable and accurate performance

in prognostic prediction across TCGA-train, TCGA-test and GSE32894 cohorts.

Furthermore, the signature showed highly correlation with clinical characteristics,

TME and immunotherapy responses. SuppressionofMKRN1was found to reduce the

migrationandproliferationofbladdercancercell. Inaddition,enhancedmigrationand

proliferation caused by nicotine was blocked down by loss of MKRN1.
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Conclusions: The novel nicotine metabolism-related signature may provide

valuable insights into clinical prognosis and potential benefits of

immunotherapy in bladder cancer patients.
KEYWORDS

nicotine metabolism, bladder cancer, machine learning, prognostic signature,
immunotherapy benefit
Introduction

Globally, bladder cancer is one of the ten most prevalent types

of carcinomas and poses a severe threat to health (1). Bladder cancer

can be categorized into two main types based on the extent of

invasion: muscle-invasive bladder cancer (MIBC) and non-muscle-

invasive bladder cancer (NMIBC). NMIBC is the most common

type of bladder cancer, accounting for approximately 75% of

bladder cancer. NMIBC is associated with a high risk of

recurrence and disease progression, with reported 5-year

recurrence rates of 50-70% and 10-30% of patients experiencing

disease progression within 5 years (2). It has been reported that 10-

15% of NMIBC may develop to MIBC, accompanying with an

elevated risk of metastasis and a relatively lower 5-year survival rate

(3). It has been proven that numerous biomarkers and scoring

systems have been used to predict the prognosis or progression of

bladder cancer patients (4, 5). The treatments for NMIBC patients

include transurethral resection of bladder tumor, intravesical

chemotherapy, intravesical immunotherapy and follow-up and

surveillance of NMIBC patients (6). On the other hand, MIBC is

treated with radical cystectomy, chemotherapy and radiotherapy

(7). Recently, immunotherapy has been gradually applied in bladder

cancer. However, the highly heterogeneous of pathogenesis and

clinical manifestation pose a threat to curative effect of

immunotherapy in bladder urothelial carcinoma (BLCA) (8, 9).

Therefore, it is critical to identify effective diagnostic and prognostic

biomarkers for predicting the sensitivity of immunotherapy.

Tobacco smoking is recognized as a significant contributing

factor to the development of bladder cancer, with an estimated

involvement in around 50-65% of annual new diagnoses (10).

Research has demonstrated that smoking significantly elevates the

likelihood of developing bladder cancer by a factor of three to four.

Nicotine, an addictive substance of tobacco, exists at high

concentrations in the bloodstream and urine of smokers (11).

Nicotine is metabolized in the liver, primarily by the liver

cytochrome P450 enzymes CYP2A6 and CYP2B6 to cotinine

(12). Moreover, nicotine and its metabolites including cotinine

show strongly tumor-promoting effects, such as cell proliferation,

angiogenic growth and cell survival. Continued smoking is highly

associated with a higher incidence and contributes to tumor

recurrence, progression, and acquired chemotherapy resistance in

bladder cancer. Yuge et al. discovered that nicotine promotes tumor
02
growth and leads to acquired chemoresistance through the

activation of PI3K/Akt/mTOR pathway in bladder cancer (13).

Although smoking and nicotine are well-established triggers for

bladder cancer, the specific mechanisms by which nicotine and

nicotine metabolism-related genes (NRGs) induce bladder cancer,

promote recurrence and lead to treatment resistance are still

unclear. To better evaluate prognosis and provide individualized

therapy for patients with BLCA, a nicotine metabolism related

signature (NRS) was urgently developed.

In this study, three nicotine metabolism related-clusters were

identified with different prognosis and tumor immune

microenvironment (TME). A robust NRS with four NRGs was

developed based on machine learning combination, which was

highly correlated with clinical characteristics, TME and

immunotherapy responses. Our study may aid in the recognition of

high-NRS patients, guide the implementation of immunotherapy, and

further improve the survival outcomes for individuals with BLCA.
Results

Identification of three nicotine
metabolism-related clusters

To explore the impact of NRGs on the classification of BLCA

patients, unsupervised clustering analysis was performed based on

the expression of 63 NRGs. Significantly, BLCA patients were

classified into three nicotine metabolism related-clusters in the

Cancer Genome Atlas (TCGA), which maintained a relatively

stable modification pattern (Figure 1A). To disclose the

correlation between clusters and prognosis, Kaplan-Meier (K-M)

survival curve of overall survival (OS) was utilized to compare the

difference across three clusters. The results of K-M curve revealed

an obvious difference among three clusters, which cluster 2

exhibiting the highest OS rate and cluster 3 displaying the lowest

OS rate (Figure 1B). Additionally, the immune cell infiltration status

of three cluster was investigated via CIBERSORT algorithm

(Figures 1C–H). Cluster 1 had high infiltration of M1 and M2

macrophage. Cluster 2 showed the highest numbers of B cell,

activated dendritic cell, resting dendritic cell, monocytes. These

results reveal that the identified nicotine metabolism related-

clusters are highly associated with prognosis and TME.
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Integrative machine learning algorithms
developed an optimal NRS

To further investigate the gene expression profile in the three

distinct nicotine metabolism related-clusters modification patterns,

differential expression analysis was performed among the three

clusters. Then, all differentially expressed genes (DEGs) were

intersected and 651 DEGs were found after intersection. Afterwards, a

total of 331 genes were identified, exhibiting significant variations in

expression levels between BLCA and normal tissues. In order to

facilitate further analysis and prediction, we randomly divided the
Frontiers in Immunology 03
TCGA-BLCA cohort into two cohorts at a 1:1 ratio: TCGA-train and

TCGA-test cohorts. In TCGA-train cohort, 91 prognostic DEGs were

selected from 331 genes via univariate Cox regression analysis. The 91

prognostic DEGs were then submitted to the integrative machine

learning procedure to identify the optimal NRS with the highest

sensitivity and accuracy. As shown in Supplementary Figure S1A, a

total of 100 kinds of prognostic signatures were acquired in TCGA-train

cohort, and we further assessed the Harrell’s concordance index (C-

index) of each signature across TCGA-test and GSE32894 cohorts.

Obviously, the NRS developed by random survival forest (RSF) showed

a highest average C-index of 0.763. Simultaneously, the optimal NRS
FIGURE 1

Consensus clustering of NRGs in BLCA. (A) The clustering diagram for defining the three clusters. (B) K-M survival curve of the three clusters.
(C-H) The infiltration levels of naïve B cells (C), activated dendritic cells (D), resting dendritic cells (E), monocytes (F), macrophages M1 (G) and
macrophages M2 (H) among three clusters.
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identified by RSF contained 4 mRNAs, including AHNAK, MKRN1,

SFXN4 and ZMYND8 (Supplementary Figure S1B).
Evaluation of the prognostic value of NRS

Next, we further evaluated the prognostic value of the NRS

constructed by RSF. Each BLCA patient received an NRS score via

NRS and was then divided into high- and low-NRS groups based on
Frontiers in Immunology 04
the best cut-off value (Figure 2A). Low NRS score patients exhibited

longer OS than patients with high NRS in TCGA-train cohort

(Figure 2B). Moreover, the results of K-M survival curve showed

BLCA patients with high NRS displayed lower survival rates in

TCGA-train cohort (Figure 2C). Similarly, survival analysis in the

TCGA-all, TCGA-test, and GSE32894 datasets confirmed the

robustness of the signature (Figures 2D–F). Moreover, we further

validated the prognostic value of NRS in GSE13507 and GSE31684

datasets, and similar results were observed (Supplementary Figure S2).
FIGURE 2

Evaluation of the prognostic value of NRS. (A) NRS scores of BLCA patients across TCGA-train cohort. (B) Survival status of BLCA patients across
TCGA-train cohort. (C-F) K-M survival curves of BLCA patients across TCGA-train (C), TCGA-all (D), TCGA-test (E) and GSE32894 (F) cohorts.
(G-I) Multi-index ROC curves of NRS and other clinical characteristics in 1-, 3- and 5-year. (J) The C-index of NRS and other clinical characteristics
in predicting the prognosis of BLCA patients in TCGA-train cohort.
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To further evaluate the superiority of the NRS than other clinical

characteristics, receiver operating characteristic (ROC) curves were

performed.The area under the curve (AUC) value ofNRS in 1-, 3-, and

5-year was 0.973, 0.981 and 0.982, higher than other clinical

characteristics (Figures 2G–I). In addition, C-index line chart

demonstrated that the NRS had a higher C-index value compared to

other clinical characteristics, indicating its strong prognostic value

(Figure 2J). It has been reported that a number of prognostic signatures

have been developed to predict the prognosis of BLCA patients. We

collected 6 published prognostic signatures for BLCA and calculated

the corresponding AUC and C-index values. Interestingly, the AUC

and C-index values of our NRS demonstrated a significant superiority

compared to other published signatures (Supplementary Figure S3).

Overall, these data indicate that ourNRSmay be a potential prognostic

predictor in BLCA.
Clinical correlation analysis and stratified
survival analysis

To analyze the association between NRS and clinical

characteristics, the distribution of NRS scores across different clinical

characteristics subgroupswas assessed. It was found that the change of

NRSwas highly correlatedwith age, gender,N stage, tumor stage andT

stage (Supplementary Figure S4). In addition, the stratified survival

analysis was further carried out to investigate the clinical applicability

of NRS. The results of Supplementary Figure S5 demonstrated that

low-NRS patients possessed a better survival probability than those

with high NRS in clinical subgroups of age > 65 years, age ≤65 years,

female, male, M0 stage, N0 stage, N1-3 stage, tumor stage I–II, tumor

stage III–IV, T1-2 stage and T3-4 stage.
Construction of nomogram

In the univariate Cox analysis, the NRS and clinical characteristics

(age, tumor stage, T stage and N stage) were considered as risk factors

for BLCA patients in TCGA-train cohort (Figure 3A). In addition, the

results ofmultivariate Cox regression analysis demonstrated that NRS

was proven as an independent prognostic factor (Figure 3B).

Subsequently, nomogram was developed based on risk factors (NRS,

age, tumor stage, T stage and N stage) for improvement of the

predictive performance in a patient’s prognosis (Figure 3C). Each

BLCApatient can obtain a total score for the prediction of 1-, 3- and 5-

year OS. The calibration plots indicated that this nomogram exhibited

a robust and independent predictive probability, which was closed to

the actual OS (Figure 3D). The decision curve analysis (DCA) further

demonstrated that nomogram showed an efficient net benefit in

predicting OS, implying its potential to improve OS prediction over

traditional prognostic markers (Figure 3E).
Evaluation of TME

TME, consisting immune and stromal cells, is highly involved in

the progression of BLCA (14). As shown in Figures 4A-C, high-NRS
Frontiers in Immunology 05
patients had higher immune score, stromal score and estimate score

comparedwith low-NRSgroup.Next, a bubblechart revealed thatNRS

processed high correlation with the abundance of immune cells via 7

immune algorithms (Figure 4D). It was obvious that NRS was

positively associated with the level of cancer associated fibroblast

(CAF), macrophage, monocyte, plasmacytoid dendritic cell, NK cell,

Th2 cell, immune score, stroma score, microenvironment score and

cytotoxicity score (coefficient > 0.2). Meanwhile, NRS showed a

negative correlation with central memory CD4+ T cell, eosinophil

and plasma B cell (coefficient < −0.2). Moreover, the distribution of

immune function scores between high- and low-NRS groups was

conducted. Figure 4E indicated that the high-NRS group displayed

elevated levels of immune functions, except for type II IFN response.

Based on CIBERSORT algorithm, the correlation among the

infiltration levels of 22 immune cell types were calculated

(Figure 4F). Meanwhile, we found that the coefficients of NRS and

signature genes with almost immune cells were significant.
Immunotherapy response

Recently, immunotherapy has been proven effective in the

treatment of virous solid tumors (15). Considering the roles of

immune checkpoints in immunotherapy, we investigated the

association between NRS and immune checkpoint genes. As

shown in Figure 5A, there was positive correlation of NRS and

AHNAK with majority immune checkpoints. By contrast, MKRN1,

SFXN4 and ZMYND8 had remarkably negative correlation with

almost immune checkpoints. The majority of immune checkpoints,

especially PD-1, PD-L1 and CTLA4, exhibited increased expression

levels in the high-NRS group compared to the low-NRS group

(Figure 5B). Additionally, the predictive value of NRS in

immunotherapy was validated in the IMvigor210 cohort. In the

IMvigor210 cohort, the low-NRS group had a good performance in

OS than high-NRS group (Figure 5C). Moreover, we found that the

NRS score in non-responders (stable disease or progressive disease

[SD/PD]) was remarkably higher versus responders (complete

response or partial response [CR/PR]) (Figure 5D).
Function enrichment analysis

GeneOntology (GO), Kyoto Encyclopedia ofGenes andGenomes

(KEGG) and gene set variation analyses (GSVA) analyses were

conducted to further disclose the NRS-related potential molecular

mechanisms. In the results of GO enrichment, the DEGs between the

two subgroups were mainly associated with the interaction of various

molecule (such as receptor/ligand activity, cytokine activity,

chemokine activity, glycosaminoglycan binding and G protein-

coupled receptor binding) and the development of tissue cell

(epidermis development, skin development, epidermal cell

differentiation and keratinocyte differentiation) (Figures 6A, B).

KEGG revealed significant enrichment of cytokine/cytokine receptor

interaction, chemokine signaling pathway, PI3k-Akt signaling

pathway and IL-17 signaling pathway (Figures 6C, D). In addition,

the correlation of KEGG pathways with NRS scores/signature genes
frontiersin.org
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were explored (Figure 6E). MAPK signaling pathway, JAK-STAT

signaling pathway, chemokine signaling pathway and calcium

signaling pathway were highly associated with NRS score.
Validation of signature genes expression
patterns through scRNA-seq analysis and
in vitro experiment

To further validate the particular cell types expressing the

signature genes in the NRS within the TME, the scRNA-seq
Frontiers in Immunology 06
dataset of BLCA_GSE130001 was conducted to monitor the

expression of the 4 signature genes via the Tumor Immunization

Single Cell Center (TISCH) online tool (Figure 7A). It was found

that SFXN4 and ZMYND8 displayed low expression levels in

tumorigenic cells. AHNAK and MKRN1 were predominantly

expressed in tumorigenic cells, especially epithelial cells.

Previously, AHNAK has been recognized as a novel candidate

biomarker for BLCA (16). However, the biology role of MKRN1

has not been explored in BLCA. Therefore, we selected MKRN1 for

the further experimental verification. To examine whether MKRN1

participates in bladder cancer progression, bladder cancer cells were
FIGURE 3

Construction of nomogram. (A, B) Independent prognostic analysis via univariate Cox analysis and multivariate Cox regression analysis.
(C) Nomogram. (D) Calibrations curves for predicting 1-, 3-, and 5-year OS. (E) DCA curves.
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treated with sh-MKRN1 to silence MKRN1 level. Clearly, MKRN1

was significantly reduced by sh-MKRN1-1 and sh-MKRN1-2 in two

human bladder cancer cell lines (5637, TCCSUP) (Figures 7B, C).

After knocking down MKRN1, the cell proliferations of bladder

cancer cells were significantly decreased (Figure 7D). The results of

colony formation assays showed that MKRN1 knockdown reduced

clone survival rate (Figures 7E, F). Moreover, silencing MKRN1 led

to the inhibition of bladder cancer cell migration (Figures 7G, H).

Subsequently, we further validated whether nicotine mediates the

progression of bladder cancer through MKRN1. Interestingly, the
Frontiers in Immunology 07
proliferation and migration abilities were enhanced in nicotine-

treated bladder cancer cell, while this effect was blocked down by

loss of MKRN1 (Figure 8).
Discussion

Tobacco smoking is an addictive behavior and epidemiological

research has established a correlation between smoking and various

types of cancer, including bladder cancer (17). Tobacco smoking is
FIGURE 4

Evaluation of TME in NRS. (A-C) Comparisons of immune score, stromal score and estimate score between high- and low-NRS groups.
(D) Correlation analysis of NRS scores with diverse immune cells. (E) Distribution of immune function scores varied NRS subgroups. (F) Correlation
analysis of NRS scores and four signature genes expressions with immune cells. *P<0.05; **P<0.01; ***P<0.001.
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an important risk factor for bladder cancer. Nicotine, the complex

carcinogens among tobacco, can be excreted into urine, leading to

the development of bladder cancer via urothelial cell proliferation.

Chen et al. proved that nicotine stimulates the cell proliferation of

bladder cancer cells via the activation of Stat3 and ERK1/2 pathway

(18). In addition, nicotine is closely related to tumor immunity and

plays an important role in immunosuppression of both innate and

adaptive immune systems (19). Tyagi et al. confirmed that nicotine-

recruited N2 neutrophils induce MET (Mesenchymal-to-Epithelial

Transition) conversion in breast cancer cells via the release of

LCN2, thereby promoting cancer cell metastasis to the lungs (20).

Growing evidence suggests that tobacco-smoking lung cancer

patients exhibit elevated PD-L1 expression levels (21) and better

responses to PD-1/PD-L1 inhibitors than nonsmokers (22).

Moreover, nicotine mediates the up-regulation of PD-L1

expression and promotes the proliferation and migration of

melanoma cell (23). Therefore, the immune status of tumor cell

may be related with nicotine. In recent years, with the development

of high-throughput sequencing technologies and the continuous

expansion of databases, an increasing number of prognostic

signatures have been constructed for predicting the tumor

prognosis (24, 25). To investigate the influence of nicotine in

bladder cancer, a robust NRS with four mRNAs was developed

via machine learning algorithm to predict the prognosis and

immunotherapy response of BLCA. The NRS demonstrated a

reliable and accurate predictive capabilities for clinical outcomes

and functioned as an independent prognostic factor in BLCA.
Frontiers in Immunology 08
The signature contained four genes: AHNAK, MKRN1, SFXN4

and ZMYND8. Neuroblast differentiation-associated protein

AHNAK is classified as a giant protein of 700 kDa and is

localized in the plasma membrane, cytoplasm, and nucleus (26).

Li et al. revealed that the increased expression of AHNAK

contributes to the diagnosis of BLCA (16). It has been reported

that AHNAK is significantly expressed in mast cells and is involved

in TLR4-mediated mast cell activation signaling pathway (27).

Studies have found that NAT10 promotes cisplatin resistance in

bladder cancer by enhancing AHNAK-mediated DNA damage

repair (28). Sideroflexin4 (SFXN4) belongs to the nuclear-

encoded mitochondrial proteins family (29). Mutations in SFXN4

are associated with a mitochondrial disease, characterized by

macrocytic anemia and a deficiency in complex I of the

mitochondrial electron transport chain (30). Previous studies

have demonstrated that SFXN4 may serve as a tumor promoter

in ovarian cancer by the abnormal synthesis of Fe-S clusters and the

active repair of DNA sequence (31). Zinc finger MYND-type

containing 8 (ZMYND8), a chromatin reader protein recognizing

histone H3 and H4, involves in the epigenetic regulation including

modulation of chromatin integrity and DNA repair (32–35). Qiu

et al. reported that ZMYND8 is regulated by E3 ubiquitin ligase

FBXW7 and remarkably elevates the proliferation and invasiveness

ability in BLCA cell (36). ZMYND8 is found to involve in

macrophage-mediated inflammatory responses, and its knockout

suppresses the expression of pro-inflammatory genes, such as Ccl2,

Il1b, Il6, Cxcl10, and Nos2 (37). Wang et al. disclosed that
FIGURE 5

Immunotherapy benefits of NRS. (A) Correlation heatmap of NRS scores and four signature genes expressions with immune checkpoints
expressions. (B) Boxplot of immune checkpoints expression across varied NRS groups. (C) K-M survival analysis across varied NRS groups in
IMvigor210 cohort. (D) Distribution of NRS scores between CR/PR and SD/PD. *P<0.05; **P<0.01; ***P<0.001.
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ZMYND8 inhibits cytotoxic T cell-mediated anti-tumor immunity

by suppressing the release of IFN-b from breast cancer cells, causing

breast cancer cells to escape immune surveillance and promote

tumorigenesis (38). Makorin ring finger protein 1 (MKRN1) is an

E3 ubiquitin ligase involving the mediation of tumor progression

and metabolic disorders by ubiquitinating substrates (39, 40). Due

to the influence of environmental factor, expression level and target

substrates, MKRN1 may have a tumor-promoter or suppressor

function (41). Zhang et al. revealed that MKRN1 is overexpressed in
Frontiers in Immunology 09
colorectal cancer and promotes the TGF-b signaling activity via the

ubiquitination and degradation of SNIP1 to induce EMT

(Epithelial-to-Mesenchymal Transition) process of colorectal

cancer cell (42). However, there is no research available on the

biology role of MKRN1 in bladder cancer. Our study first reported

that MKRN1 was a tumor-promoter factor in bladder cancer, and

the knockdown of MKRN1 obviously suppressed the cell

proliferation and migration in bladder cancer cell. Moreover, we

observed that the bladder cancer cells with the treatment of nicotine
FIGURE 6

Functional enrichment analysis. (A, B) GO analysis. (C, D) KEGG analysis. (E) Correlation heatmap of NRS scores and four signature genes expressions
with GSVA scores of KEGG pathways. *P<0.05; **P<0.01; ***P<0.001.
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exhibited enhanced proliferation and migration abilities. However,

this effect was blocked down by loss of MKRN1, indicating that

nicotine may promote the proliferation and migration of bladder

cancer cells via MKRN1.

In our study, the NRS demonstrated good performance in

predicting overall survival rate of bladder cancer patients. NRS

functioned as an independent prognostic factor for OS. The results

of ROC curve and C index chart showed that the AUC and C-index

values of NRS were higher than tumor stage, suggesting the
Frontiers in Immunology 10
potential prognostic value of NRS. Stratified survival analysis

indicated that NRS exhibited robust prognostic predictive

capability across various clinical subgroups. Furthermore, our

NRS suggested superior accuracy and effectiveness compared to

published prognostic signatures for bladder cancer, as indicated by

higher AUC and C-index values. This confirmed the robustness of

our NRS using an integrated machine learning procedure.

Increasing evidences suggested that recent developments in

immunotherapy have demonstrated increasing potential for the
FIGURE 7

Biology role of MKRN1 in bladder cancer. (A) Expressions of AHNAK, MKRN1, SFXN4 and ZMYND8 in diverse cell types of single cell data (BLCA-
GSE130001). (B, C) Validation of the efficiency of MKRN1 knock-down. (D) CCK-8 assay. (E, F) Colony formation assay. (G, H) Transwell migration
assay. *P<0.05; **P<0.01; ***P<0.001.
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treatment of a variety of cancers, with particular promise observed in

bladder cancer (43). In recent years, immune checkpoint inhibitors

(ICIs), specifically anti-PD-1/PD-L1, have been applied for the

treatment of metastatic urothelial carcinoma, and their role in

bladder cancer is rapidly expanding. However, only a fraction of

patients can benefit from immunotherapy due to low response rate

and acquired resistance (44). Therefore, it is urgent to find biomarkers

that predict response to immunotherapy. In this study, we assessed the

performance of NRS from the perspective of prognosis and

immunotherapy response in ICI-treated dataset. The BLCA patients

with lowerNRS scores had a better prognosis and higher response rate

from immunotherapy, suggesting NRS may act as an indicator for

predicting immunotherapy benefit. Previous studies have proven that

immune checkpoint promotes tumor immune evasion by binding to

the specific receptor on T cells, which inhibits T cell activation and

proliferation, thereby reducing their anti-tumor activity (45). High

expression of immune checkpoints may indicate that patients could

respond to immunotherapy. In this study, we found that NRS scores

were positivity associated with the expression levels of immune

checkpoints. However, the survival rates and response rates to

immunotherapy in the high-NRS group were not satisfactory.

Numerous studies have demonstrated that the effectiveness of

immunotherapy is not only affected by the level of immune

checkpoint expression, but also hindered by presence of an

immunosuppressive microenvironment. Therefore, we hypothesize

that the uniqueTME in the high-NRSgroupmay contribute to its poor

response to immunotherapy.
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Several studies indicated that TME is closely related to the

initiation, progression, metastasis, and treatment response of

bladder cancer (46, 47). TME is a complex entity comprising

immune cells, stroma cells, blood vessels, extracellular matrix and

cytokines (48). These cell components can collaborate in enabling

tumor cells to evade immune surveillance and survive treatment

(14). In the analysis of immune cell infiltration, CAF was

predominantly abundant in high-NRS group. CAF is a key cell

type within the TME and exhibits pro-tumor activities in various

cancer types. It has been reported that inflammatory CAF is closely

associated with poor prognosis in patients with bladder cancer (49).

Recent studies have demonstrated that CAFs secrete a variety of

cytokines and products that enhance the expression of immune

checkpoint and diminish T cell activity, contributing to immune

evasion and tumor progression (50). CAF-derived CXCL12

enhances the immune evasion of bladder cancer by inhibiting P62-

mediated autophagic degradation of PD-L1, thereby promoting the

growth of bladder cancer cells (51). Elevated levels of CAF may

interfere with the functions of various immune cells, thereby

reducing the effectiveness of immunotherapy (52). It has been

verified that CAF can lead to reduced infiltration of CD8+ T cells

within tumors and result in immune checkpoint blockade resistance

(53). Therefore, the infiltration of CAF in the high-NRS group may

account for thepoorprognosis and failed immunotherapy inour study.

Functional enrichment analysis was performed to elucidate the

potential mechanisms underlying the differences in prognosis, TME,

immunotherapy response between high- and low-NRS groups in
FIGURE 8

Nicotine promoted the proliferation and migration of bladder cancer cells via MKRN1. (A, B) Colony formation assay. (C, D) Transwell migration
assay. *P<0.05; **P<0.01; ***P<0.001.
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BLCA. Multiple signaling pathways were found to be associated with

NRS, such as cytokine-cytokine receptor interactions, PI3k-Akt

signaling pathway and IL-17 signaling pathway. Cytokine-cytokine

receptor interactions has been reported to contribute to the

progression of multiple tumors. Cytokines are pivotal in shaping the

TME and have increasingly been utilized as monotherapy or in

combination with other immunotherapy drugs for bladder cancer

(54–56). Activation of PI3k-Akt signaling pathway is widely proven to

be involved in the EMT process of bladder cancer (57). IL-17 is a

cytokine known for its pro-inflammatory properties and antitumor

immune responses. It has been highlighted in research for its

substantial involvement in the initiation and progression of bladder

cancer (58). Our analyses further demonstrate that NRS may mediate

the progression of BLCA via these pathways.

There are some limitations in our study. The construction and

validation of NRS are based on public database. Clinical samples

and information are need to assess the effectiveness and feasibility of

NRS. Moreover, the lack of in vivo experiments limits a more

comprehensive exploration of the mechanism of MKRN1 in

bladder cancer. Further research should focus on elucidating the

role of MKRN1 in the progression of bladder cancer and its

underlying molecular mechanisms.
Conclusions

In conclusion, this study discloses a novel NRS via integrative

machine learning analysis in BLCA. Our NRS provides valuable

insights for predicting the prognosis and potential immunotherapy

benefits in BLCA patients.
Materials and methods

Datasets sources

Bulk RNA-seq data of BLCA with survival time were acquired

from TCGA and Gene Expression Omnibus (GEO) databases:

TCGA-BLCA (n = 400) and GSE32894 (n = 308). TCGA-BLCA

was randomly divided into TCGA-train and TCGA-test cohorts at a

1:1 ratio. TCGA-train cohort was used for the construction of

signature. The validation cohorts for the analysis included TCGA-

all, TCGA-test, and GSE32894. The IMvigor210 immunotherapy

datasets (n = 298) was applied for the evaluation of immunotherapy

benefits in signature. Single cell expression data of BLCA-

GSE130001 was analyzed in online website TISCH. The selection

of NRGs was collected from MSigDB (Supplementary Table S1).
Identification of the nicotine
metabolism clustering

Based on the expression of NRGs, consensus clustering

was conducted to determine the optimal clusters via

ConsensusClusterPlus package. The survival differences between

clusters were evaluated via K-M survival curve. The CIBERSORT
Frontiers in Immunology 12
algorithm was employed to calculate the levels of immune cell

infiltration in the identified clusters.
Development and evaluation of a
prognostic NRS

Differential expression analysis was performed among the

clusters with the criterion of |log2 fold change (FC)| > 1 and P <

0.05. Then, intersected DEGs with remarkably different expression

levels between BLCA and normal tissues were identified via limma

package. Univariate Cox regression analysis was utilized to search

for prognostic DEGs. To obtain an accurate and stable prognostic

prediction signature, these prognostic DEGs were subjected to 100

integrative machine learning combination via 10 distinct machine

learning algorithms (stepwise Cox, random survival forest [RSF],

elastic network [Enet], supervised principal components [SuperPC],

partial least squares regression for Cox [plsRcox], CoxBoost,

survival support vector machine [survival-SVM], Lasso, Ridge

and generalized boosted regression modeling [GBM]). The

process of the integrative machine learning analysis was based on

the R scripts (https://github.com/Zaoqu-Liu/IRLS) from previous

studies. We constructed the NRS using following steps (1):

Univariate Cox regression analysis was performed to search for

prognostic genes in TCGA-train cohort. (2) Then, the prediction

signature with 100 integrative machine learning combination was

conducted in TCGA-train cohort. (3) All machine learning

combination were detected in TCGA-test and GSE32894 cohorts.

(4) C-index was calculated across all cohorts and the signature with

the highest mean C-index was considered as the optimal NRS.

Further detail about machine learning algorithms was shown in

Supplementary Methods. The best cut-off value was calculated via

the “surv_cutpoint” function within the survminer package to

stratify BLCA patients into high- and low-NRS groups. K-M

survival curve and ROC curve analyses were conducted to assess

the predictive capability of NRS in predicting OS. Univariate and

multivariate Cox analyses were employed to discover the important

risk factor for the prognosis of BLCA. The predictive nomogram

was constructed based on NRS and clinical characteristics using

rms package.
Immune infiltration analysis

To explore the correlation between NRS and TME, immune

infiltration analysis was conducted via the XCELL, TIMER,

QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and

CIBERSORT algorithms. The ImmuneScore, StromalScore and

ESTIMATE score for BLCA patients were computed via

ESTIMATE package.
Immunotherapy response analysis

To identify the correlation between NRS and immunotherapy

response, the expression levels of immune checkpoints were
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estimated across different NRS groups. The predictive value of NRS

in immunotherapy was further assessed in IMvigor210 cohort.
Functional enrichment analysis

To elucidate the potential molecular mechanisms associated

with NRS, functional enrichment analysis, including GO, KEGG

and GSVA were performed between high- and low-NRS groups.

GO and KEGG enrichment analyses were performed via

clusterProfiler and org.Hs.eg.db packages. The GSVA values of

KEGG pathway, calculated by GSVA package, were used to

screen pathways highly correlated with NRS scores.
Cell culture and transfection

Two human bladder cancer cell lines, 5637 and TCCSUP, were

obtained from the American Type Culture Collection (ATCC).

5637 and TCCSUP cell lines were all maintained in RPMI-1640

medium containing 10% fetal bovine serum (FBS), 100 U/ml

penicillin, and 100 mg/mL streptomycin in the cultivation

environment of 5% CO2 and 37°C. MKRN1 inhibitors and its

negative controls (NC) were produced from GenePharma company.
CCK-8 assay

A CCK-8 kit was conducted for the measurement of

proliferation abilities following the downregulation of MKRN1 in

bladder cancer cells. In brief, the cells were inoculated into 96-well

plates at a concentration of 3 × 103 cells per well. At 0, 24, 48, 72 h

after plating, 10 mL of CCK8 solution was added to each well for 3 h

incubation in the dark. Finally, an enzyme labeling instrument was

utilized to monitor the absorbance at a wavelength of 450 nm.
Colony formation assay

Colony formation assay was executed to determine the cell

colony formation rate. 5637 and TCCSUP cells were seeded into

each well of a 6-well plate. Following a 14-day culture period, cell

colonies were treated with 4% glutaraldehyde and subsequently

stained using crystal violet.
Cell migration assay

Transwell plates were used for the cell migration assay in

accordance with the manufacturer’s protocol. Transfected cells

were placed into Transwell filter membrane chambers with a

serum-free medium. Meanwhile, 1 mL medium containing 20%

FBS was supplemented into the lower chambers to serve as a

chemoattractant. Following 36 h of incubation, the cells migrated

to lower chambers were mixed with 4% paraformaldehyde for

20 min and were stained with crystal violet solution for 15 min.
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Statistical analysis

Statistical analyses and visualization were employed by R

software and GraphPad Prism. Student’s t-test or one-way

ANOVA was used to evaluate the differences between or among

groups. Spearman’s test was employed to calculate the correlation

coefficients. Data were presented as the mean ± standard deviation.

P < 0.05 was deemed as statistically significant value.
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