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Human amniotic epithelial cells (hAECs) have shown promising therapeutic

effects in numerous studies on various diseases due to their properties such as

low immunogenicity, immunomodulation, paracrine effect, and no teratoma

formation in vivo. Nevertheless, there are still many problems in archiving the

large-scale clinical application of hAECs, ranging from the vague definition of cell

properties to the lack of clarification of the motion of actions in cell therapies,

additionally, to the gap between cell quantities with limited proliferation capacity.

This review provides a detailed overview of hAECs in the aspects of the lineage

development of amniotic epithelial cell, cell characteristics and functional roles,

ex vivo cell cultivation and expansion systems, as well as their current status and

limitations in clinical applications. This review also discusses the advantages,

limitations and feasibility of hAECs, and anticipates their prospects as cell therapy

products, with the aim of further promoting their clinical applications.
KEYWORDS

human amniotic epithelial cells (hAECs), cell therapy, epithelial-mesenchymal plasticity
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1 Introduction

Human amniotic epithelial cells (hAECs) are derived from the amniotic ectoderm

which differentiates from the epiblast around day 8 after fertilization. The cell morphology

and transcriptome of amniotic ectoderm are distinctly different from epiblast. As the

differentiation and expansion proceed, amniotic ectoderm gradually gets apart from

epiblast, forming amniotic cavity filled up with amniotic fluids, and this structure is

called amniotic sac. Amniogenesis occurs prior to the formation of primitive streak, the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1466529/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1466529/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1466529/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1466529/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1466529&domain=pdf&date_stamp=2024-10-15
mailto:zyhe@tongji.edu.cn
mailto:wencheng.v.zhang@outlook.com
https://doi.org/10.3389/fimmu.2024.1466529
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1466529
https://www.frontiersin.org/journals/immunology


Yang et al. 10.3389/fimmu.2024.1466529
hallmark of the initiation of gastrulation, making amniotic

ectoderm cells one of the primordial extraembryonic cells. hAECs

are tightly packed as a monolayer, constituting the innermost layer

of amnion, directly in contact with amniotic fluid (1, 2). It has been

reported that pluripotency markers such as TRA1-60, TRA1-81,

SSEA3, and SSEA4 are expressed in hAECs isolated from early

gestational amnion, then are gradually lost over the pregnancy

period (3). Although many clinical studies have shown that hAECs

are of promising therapeutic potential in various diseases, the

specific cell biological features and mechanisms for the treatments

still remain elusive. In addition, it has been shown that hAECs have

limited proliferation capability due to the scarce telomerase activity,

impeding their development as a cellular product in the large-scale

clinical applications and their further industrialization. To address

these problems, it is critical to have a comprehensive understanding

of hAECs, including cellular properties, the intrinsic proliferative

capacity, and the therapeutic potentials.
2 Lineage maturation of human
amniotic epithelial cells

Amniotic epithelial cells are derived from epiblast around day

8 post fertilization. During the early embryogenesis, a zygote is a

totipotent cell having the potentials to develop into both

embryonic and extra-embryonic tissues. Once it forms, it

rapidly undergoes successive divisions including the 2-cell, 4-

cell, 8-cell, 16-cell (morula), and blastocyst stages. At the morula

stage, the cells exhibit differential division rates that faster-

dividing cells forming a non-polarized inner cell mass (ICM) in

the interior of embryo while the slow-dividing cells tightly

aligning in the exterior to encompass the ICM and eventually

differentiating into trophectoderm (TE), forming the blastocyst.

As the blastocoel expands, the ICM predominantly aggregates on

one side of the embryo, establishing an overall polarized embryo

(4, 5). The ICM further differentiates into epiblast and hypoblast

(primitive endoderm), forming the bilaminar disk. Amniotic

ectoderm, is believed as the primordial amniotic epithelial cells,

emerges during peri-implantation from the differentiation

of epiblast. Subsequently, the primitive streak will arise from

the derivation of the non-amniotic origin epiblast, which

represents the initiation of the three embryonic germ-layers and

organogenesis (Figure 1A).

The amnion, a crucial extraembryonic tissue, is an important

milestone in animals’ evolutionary transitions from aquatic to

terrestrial environment. Amnion provides mechanical protection

to the fetus and secretes cytokines and hormones, contributing to

the embryo development. Although the underlying mechanisms of

amniogenesis and amniotic epithelial lineage development are not

fully understood yet, the specifications of amniogenesis have been

reported with two different patterns: folding and cavitation (6). In

species such as bats, monkeys, and higher primates, the amnion

emerges by delamination from pluripotent epiblast around the peri-

implantation, followed by epithelialization and cavitation, forming

the amniotic sac (7, 8). In contrast, in mice, rabbits, Pteropodid bats,

dogs, pigs, cows, and lower primates, the amnion is formed by the
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folding of embryonic tissues during or shortly after gastrulation,

whereby the amniotic folds extend and merge to form a closed sac

(9–11). It is noteworthy that despite these different amniogenesis

patterns, the anatomical structures and functions of amnion are

similar across various species. Because of the ethical concerns, the

investigations of human amniotic epithelial cells lineage

development were restricted in the stage of formation of amniotic

ectoderm. The entire process remains unclear; therefore, the

substitute models using pluripotent stem cells in vitro have been

established to learn its lineage development and to comprehensively

understand the amniotic epithelial cells biological features and

therapeutic potentials as a promising cellular drug candidate.

Previous studies have employed single-cell transcriptome

sequencing (scRNA-seq) to analyze three stages of primate

embryonic development, including the cultured human pre-

gastrulation embryos, in vitro cultured Cynomolgus monkey

gastrulating embryos, and a human gastrulating embryo implanted

in utero. The integrated scRNA-seq analysis revealed that amniogenesis

occurred in two distinct waves of epiblast differentiation during early

embryonic development. The two waves occur independently and

develop in different routes, amniotic epithelial cells-early (AME-E) and

amniotic epithelial cells-late (AME-L), respectively. AME-E follows a

trophectoderm-like route and the amniotic cavity is formed during the

early wave, whereas AME-L follows a nonneural ectoderm-like

transcriptional program (9). Similar results were also observed in the

differentiation of human pluripotent stem cells (hPSCs) from different

states. The naïve and primed hPSCs could model the two waves of

amniogenesis (9).

Due to the “14-day rule”, referring to the International Society

for Stem Cell Research (ISSCR) recommendation that human

embryos created by in vitro fertilization, either frozen or

unfrozen, cannot survive outside the body beyond the 14th day

after fertilization without embryo transfer, and technological

constraints, the studies of embryonic development remain quite

limited, as well as a similarly scant comprehension to amniotic

development. The amnion is composed of epithelium, basement

membrane, the compact stromal layer, fibroblast layer, and the

intermediate spongy layer (Figure 1B). The amniotic epithelial layer

localizes at the innermost of amnion and directly contacts with the

amniotic fluid. The protein secreted by amniotic epithelial cells,

such as glycoproteins and collagens, constitute the underlying

basement membrane (12). Amniotic epithelial cells and amniotic

mesenchymal cells primarily reside in the epithelium and the

fibroblast layer, respectively (13). These two cell types have

distinct origins. Amniotic epithelial cells are derived from

amniotic ectoderm (14), in contrast, amniotic mesenchymal cells

originate from extra-embryonic mesoderm, which is developed

posterior to amniotic epithelial cells (15). As the two major cell

types derived from the amnion membrane, both cells have the

advantages of low immunogenicity, no tumorigenicity, and limited

ethical considerations. The characterized markers of hAECs and

human amniotic mesenchymal stem cells (hAMSCs) are listed in

Table 1. It has been demonstrated that the epithelial markers, such

as cytokeratins, E-cadherins, and CD9, are highly expressed in

hAECs but not in hAMSCs. Multiple mesenchymal markers like

CD90, CD29, and CD105 are also expressed in hAECs, indicating
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the spontaneous occurrence of epithelial-mesenchymal transition

(EMT) during the cell cultivation in vitro. Both of them low express

HLA-A, -B, -C, and are negative in the detection of hematopoietic

stem cell markers, representing their low immunogenic potential.

Although some pluripotency markers (SSEA4, OCT4, TRA1-60,

and REX1) have been detected in hAECs and hAMSCs, the

expression levels are extremely low compared with that of

induced pluripotent stem cells (iPSCs).
Frontiers in Immunology 03
Pluripotent stem cells, including embryonic stem cells (ESCs)

and iPSCs, have been often employed in the studies of early

embryonic development because of their differentiation potentials

to the three-germ layers. It has been demonstrated that PSCs

possess of the formative naive-to- primed transition in vitro. As

widely recognized, naive PSCs are akin to the pre-implantation

epiblast, having the differentiation potentials for both embryonic

and some extra-embryonic tissues, while primed PSCs are more like
FIGURE 1

Schematic representation of early embryonic development and the structure of human amniotic membrane. (A). A zygote goes through rapid
divisions. At the morula stage, the cells exhibit differential division rates, resulting in the formation of inner cell mass (ICM) and trophectoderm. ICM
further differentiates into epiblast and hypoblast, forming the bilaminar disk prior to the embryo implantation. Amniotic sac is instantly developed
during peri-implantation, which precedes the formation of primitive streak, the hallmark of gastrulation. Hypoblast develops into yolk sac to provide
nutrients for the early embryo development before the maturation of placenta. Trophectoderm, on the other side, forms trophoblast and then
eventually develops into placenta. a-d shows the stages of early embryonic development. (B). Human amniotic membrane is composed of 5 layers:
1) an epithelial monolayer, 2) a basement membrane layer, 3) a compact layer, 4) a fibroblast layer and 5) a spongy layer. hAECs are arranged on the
basement membrane which is mostly made up by collagen (type III, IV, V), fibronectin and laminin. The compact layer is the main fibrous skeleton
containing collagen (type I, III, V, VI) and fibronectin. Human amniotic mesenchymal cells locate in the fibroblast layer consisting of collagen (type I,
III, IV), fibronectin, laminin and nidogen. The spongy layer as the intermediates between amnion and chorion are mainly comprised collagen (type I,
III, IV) and proteoglycans.
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the post-implantation epiblast and differentially develop into the

embryonic tissues (16). Fu and his team established the first 3D

model of amniotic sac embryoid using microfluidic devices and

human PSCs, known as microfluidic platform for analysis of single

embryos (mPASE), to explore the early development of amniotic

sac, and found that the activation of BMP-SMAD signaling enabled

the self-organization of hPSCs into amniotic sacs (17).

In another study,Wu et al. likewise induced the organization of

hPSCs into structures resembling to the early embryos, termed

Blastoids, which expressed the amniotic genes, exhibiting the

morphological similarities to human blastocyst. Unlike mPASE,
which collapsed within 48h, Blastoids were able to be maintained

up to 4 days in vitro (18). Same results were also obtained using

iPSCs, named as iBlastoids (19). On the basis of the previous
Frontiers in Immunology 04
research, Qin and his associates upgraded the microfluidics

amniotic sac platform and exerted a perfuse-able microfluidic

device to fabricate an advanced 3D amnion microchip. The

constant-rate perfusion of culture medium prolonged the

presence and integrity of the amniotic sac-like structure to 20

days. It offers a great strategy and model to investigate human

amniotic development in mid-gestation (20).
3 Characterization and expansion
of hAECs

Although the therapeutic effects of hAECs have been evidenced

in many clinical studies, their applications are restricted by the
TABLE 1 Comparative analysis of the properties of hAECs and hAMSCs.

Cell
Type

Epithelial
Cell Markers

Mesenchymal
Stem

Cell Markers

Pluripotent
Stem

Cell Markers

Hematopoietic
Stem

Cell Markers

MHC and
Co-Stimulatory

Molecules References

Positive Positive Positive Negative Positive Negative

hAECs

Cytokeratin, E-cadherin CD29, CD166, CD90
OCT4, NANOG,
SSEA4, TRA1-60,
SOX2, REX1

CD34, CD45, CD31 HLA-ABC
HLA-DR,
HLA-DQ

Yang et al. (39)

CK19
CD29, CD44, CD73,

CD90, CD105
SSEA4,

OCT4, SOX2
CD31, CD34,
CD45, CD49d

N/A HLA-DR Wu et al. (125)

CK7, E-cadherin CD29, CD73, CD105
OCT4,

NANOG, SSEA4
CD34, CD45 HLA-ABC HLA-DR Liu et al. (126)

E-cadherin N/A

OCT4, SOX2,
NANOG, KLF4,
SSEA3, SSEA4,
TRA1-60, REX1

N/A N/A N/A
Castro

et al. (127)

E-cadherin,
CK7, EpCAM

Vimentin, CD44, CD90,
CD105, CD146,
CD29, CD49f

N/A CD31, CD45
HLA-

ABC, CD40

HLA-DP-DQ-
DR,

CD80, CD86

Pratama
et al. (128)

Cytokeratin N/A
SOX2, SSEA3,

SSEA4, TRA1-60,
OCT4, NANOG

CD34 N/A N/A
Evron

et al. (129)

CD9
CD29, CD104, CD105,

CD44, CD90,
CD10, CD49f

SSEA3, SSEA4,
TRA1-60, TRA1-

81,
OCT4, NANOG

CD34, CD45
HLA-

ABC, CD40

HLA-DR,
CD80,

CD86, CD40l

Banas
et al. (130)

N/A CD90
SSEA3, SSEA4,
TRA1-60, TRA1-

81, REX1
CD34 N/A N/A Miki et al. (26)

CK19, E-cadherin CD29, CD44, CD90
OCT4,

SOX2, SSEA4
CD34, CD45 N/A N/A Wu et al. (131)

E-cadherin, CD9, CD24 CD29, CD49f

ABCG2, SSEA3,
SSEA4, TRA1-60,

TRA1-81,
OCT4, NANOG

CD34, CD133 N/A N/A Miki et al. (24)

N/A
CD90, CD44, CD73,
CD166, CD105, CD29,

STRO-1
SSEA4 CD34, CD45 N/A N/A

Dia-Prado and
Sugiura et al.
(132, 133)

(Continued)
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current in vitro culture expansion systems. The yield and biological

characteristics of primary hAECs are affected by various factors like

the physical condition of parturients, placental size and quality,

origins from different amnion regions, gestation stages, isolation

and preservation procedures (3, 21, 22). The average quantity of

hAECs isolated from an amnion is approximately 1 × 108, whereas a

single treatment typically requires the amount in the range of

0.5~1×108, leading to the homogenous cells might not be

sufficient for multiple treatments in one patient. Therefore, the

requirement to obtain adequate hAECs complying with Good

Clinical Laboratory Practice (GCLP) standards has become an

absolute challenge. Developing a system that is sufficient to

expand hAECs in vitro requires understanding the properties of

hAECs, as well as their proliferation mechanisms. However,

regardless of the extensive clinical studies of hAECs in various

diseases, the lack of typical markers and standard production

process for the quality control of hAECs still are the most urgent

issues to be addressed.
3.1 Cellular markers of hAECs

Unlike the other parts of the placenta, hAECs lineage

development occurs prior to the formation of primitive streak.

Therefore, it is reasonable to speculate that a certain proportion of

hAECs may retain the biological properties of pre-gastrula

embryonic cells. Indeed, recent studies have shown that the
Frontiers in Immunology 05
pluripotency factors NANOG, OCT4, and SOX2 are not

completely silenced in hAECs, as their promoters are only

partially methylated. hAECs exhibit similar epigenetic profiles

compared to hiPSCs, and their post-transcriptional expression is

regulated by specific miRNAs (23). Although these stem cell

markers are lost over time, a few hAECs may still partially retain

them in the full-term amnion, and the expression of these

pluripotency markers varies at different cell passages and different

culture conditions (24–26). Other than the pluripotency markers,

hAECs also low express classical HLA class I molecules (-A, -B, and

-C) and non-classical HLA-I molecules (-E, -F, and -G) (27–29).

Co-cultivation of hAECs and allogeneic peripheral blood

mononuclear cells (PBMC) or T lymphocytes did not stimulate T

lymphocytes proliferation. Instead, they reduce the proliferation

and activation of T and B lymphocytes and inhibit the functions of

active NK cells and T lymphocytes, thus exerting systemic immune

regulation (30, 31). Moreover, transplantation of hAECs into

human and mice via either the direct injection or intravenous

infusion has not resulted into significant occurrences of immune

rejections (32, 33), suggesting that hAECs have the low

immunogenic property and eminent immunomodulatory effect.

Furthermore, hAECs also secrete a variety of soluble immune

regulatory factors, such as macrophage migration inhibitory

factor (MIF), Transforming growth factor-b (TGF-b), interleukin
(IL)-10, prostaglandin E2 (PGE2) and hepatocyte growth factor

(HGF), inhibiting the chemotactic migration activities of

neutrophils and macrophages (30, 31).
TABLE 1 Continued

Cell
Type

Epithelial
Cell Markers

Mesenchymal
Stem

Cell Markers

Pluripotent
Stem

Cell Markers

Hematopoietic
Stem

Cell Markers

MHC and
Co-Stimulatory

Molecules References

Positive Positive Positive Negative Positive Negative

hAMSCs

N/A
CD29, CD44, CD49d,
CD73, CD90, CD105

SSEA4,
OCT4, SOX2

CD31, CD34, CD45 N/A HLA-DR Wu et al. (125)

N/A
CD29, CD73,
CD90, CD105

OCT4,
NANOG, SSEA4

CD34, CD45, HLA-ABC
HLA-DR,
CD80,

CD86, CD40
Liu et al. (134)

N/A
CD29, CD73,
CD90, CD105

OCT4,
NANOG, SSEA4

CD34, CD45, CD133 HLA-ABC
HLA-DR,
CD80,

CD86, CD40
Li et al. (135)

N/A
CD44, CD90,
CD105, CD146

OCT3/4, REX1 CD45, CD34 HLA-ABC HLA-DR
Bacenková
et al. (136)

N/A
CD90, CD44, CD73,
CD166, CD105, CD29,

CD271, STRO-1
SSEA4 CD34, CD45 N/A HLA-DR

Diaz-Prado
et al. (132)

N/A
CD90, CD44, CD73,
CD166, CD105, CD29,

CD271, STRO-1
SSEA4 CD34, CD45 N/A HLA-DR

Sugiura
et al. (133)

N/A
CD29, CD105, CD73,
CD90, CD13, CD44,
CD166, STRO-1

OCT3/4, SSEA4,
SOX2,

NANOG, REX1
CD34, CD45, CD31

HLA-A,
HLA-DQB1

CD80,
CD86, CD40

Mihu
et al. (137)

N/A
CD44, CD73, CD90,
CD105, Vimentin

OCT3/4, c-Myc,
SOX2, NANOG,
SSEA3, SSEA4

CD34, CD45 N/A HLA-DR
Nogami

et al. (138)
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Other studies are also striving to use scRNA-seq and in vitro

models of embryonic development to discover more markers that can

specifically characterize hAECs. By integrating existing sequencing

data, including transcriptome and proteome sequencing, and

combining them with the studies on amniotic cell phenotypic

properties to establish a specific database for amnion-derived cells,

these works would facilitate the understandings of hAECs and

provide more specific markers when preparing cells for their

therapeutic application in disease treatments.
3.2 In vitro culture systems for hAECs

Ever since the first report of the isolation and cultivation of

hAECs by C. A. Akle (34), considerable effort has been invested in the

area of hAECs isolation and in vitro expansion culture systems. The

quantity, quality, and biological properties of hAECs are technically

challenged by various factors, such as parturient individual

heterogeneity (35), size and mass of placenta (36), regional area of

placenta (37), and gestational age (21). The effects of these parameters

on cell phenotype andmarker expression profiles have been discussed

in detail (38). To ensure sterility and quality, the placenta has to be

obtained from C-section, HBV, HCV, HIV infection and pre-

diagnosed genetic abnormalities are excluded. Furthermore, it is

crucial to scrape off chorion and the residual blood from amniotic

membrane prior to the tissue digestion steps. With a view to the

clinical applications, an optimized culture system using xeno-free

culture media has been studied and adapted to medical-applied

bioproduction of hAECs (39).
Frontiers in Immunology 06
However, there is no consolidated protocol adopted in diverse

laboratories till now, and the difference ranges from the basal

medium, nutrient supplements to cell density and culture

conditions (2, 26). On the basis of the numerous studies

focusing on refining the in vitro cultivation for hAECs, a

comprehensive analysis of the outcomes in these studies reveals

common issues, including the low cell-matrix adherence activity

of primary hAECs, rapid aging, transformation of cells via EMT,

and a relatively low cell proliferation coefficient (1, 40). Given the

needs of hAECs in the clinical transitional research and

applications, an optimized strategy for hAECs large-scale

expansion is urgently needed. Although several commercialized

products of hAECs have been marketed (Table 2), their

methodological issues, like exogenous serum, cryopreservation

conditions, and the unknown cultivation procedures, have

greatly confined their medical translations.

To improve hAECs in vitro expansion efficiency and acquire

abundant cells for clinical therapies, a few innovative approaches

have been employed, such as 3D cultivation, cell reprogramming,

iPSCs differentiation, and gene editing (41–43). In recent research,

multiple biomimetic microcarriers have been constructed and

applied to hAECs expansion cultivation in vitro. The proliferative

capacity of hAECs was better maintained and the amplification was

significantly improved. Moreover, the intrinsic mechanisms in the

regulation of cell proliferation in hAECs were explored in depth via

transcriptome sequencing. The critical pathways involved in hAECs

proliferation were then manipulated to achieve cell reprogramming.

On the other side, utilizing iPSCs to differentiate into hAECs has

also been investigated.
TABLE 2 Currently available commercial products of hAECs.

Product Brand Cat. Info. Cultivation

HAEpiC Innoprot P10957 · HAEpiC were cryopreserved at passage one and delivered
in frozen.

Collagen type I-coated vessel.

HAEpiC ScienCell 7110 · HAEpiC were cryopreserved at passage one and delivered
in frozen.

Poly-L-lysine-coated culture vessel (2 mg/cm2.
Epithelial Cell Medium (EpiCM, Cat. #4101):
EpiCM consists of 500 ml of basal medium, 10
ml of fetal bovine serum (FBS, Cat. No. 0010), 5
ml of epithelial cell growth supplement
(EpiCGS, Cat. No. 4152), and 5 ml of Antibiotic
Solution (P/S, Cat. No. 0503).

Human
Amniotic
Epithelial
Stem Cells

BIO TREND HAEC-
100

· Human Amniotic Epithelial (HAE) Cells were isolated from the
surface layer of the amniotic membrane of fresh placentas.

HyClone media and supplements:
cat. SV30103.01.

Human
amnion–
derived

multipotent
progenitor
(AMP)

Noveome
Biotherapeutics,

Inc.

N/A · A novel, cultured cell population derived from AECs, termed
human amnion–derived multipotent progenitor (AMP) cells, secrete
numerous cytokines and growth factors that enhance tissue
regeneration and reduce inflammation. This AMP cell secretome,
termed ST266.

N/A

Human
Placental
Epithelial
Cells

(HPlEpC)

Creative
bioarray

PCELL-
0123

· Human Placental Epithelial Cells (HPlEpC) were derived from the
inner surface of amniotic membrane and have physiology related to
fetal development and neurogenesis.
· 500,000 HPlEpC (primary culture) frozen in Basal Medium w/10%
FBS, 10% DMSO

Cryovial frozen HPlEpC (230-05), Growth
Medium (215-500), Subcltr Rgnt Kit (090K)
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3.3 The proliferative mechanisms of hAECs

The primary hAECs isolated from termed-pregnancy amnion are

known of lacking the telomerase activity. Typically, telomerase

activity is exhibited in stem cells, reproductive cells, and tumor

cells. Telomeres and telomerase activity are often implied to cell

proliferative capacity. Interestingly, although hAECs do not express

TERT, a critical catalytic subunit of telomerase (39, 44), and cannot

undergo unlimited proliferation, they are involved in regulating the

telomerase activity of human corneal endothelial cells through Wnt/

b-catenin pathway, promoting their proliferation (45). Besides,

hAECs have relative long-length telomeres compared to bone

marrow-derived mesenchymal stem cells (BM-MSCs), but it is less

than human embryonic stem cells (hESCs) (46). Exogenously

overexpressing TERT would enhance hAECs proliferative capacity

but was not enough for the unlimited growth. Down-regulating the

expression of p16INK4a and p53, along with activating telomerase, is

necessary to establish an immortalized hAECs cell line (42). These

indicated that hAECs might achieve cell proliferation via a

telomerase-independent mechanism.

The studies revealed that during the limited expansion in vitro,

hAECs expressed both epithelial and mesenchymal markers, and

were considered in pEMT (Partial epithelial mesenchymal

transition, pEMT) state (39, 47), suggesting that hAECs might
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achieve the proliferative capacity via regulating their EMT states

(48). EMT refers to the biological process where epithelial cells

transform into cells with mesenchymal phenotypic characteristics

through a specific program. While pEMT, or EMP (Epithelial

mesenchymal plasticity) refers to the intermediate state during

EMT process (49, 50). It manifests as cells partially owning both

epithelial and mesenchymal characteristics. Recent studies in the

field of cancer have found that cells in pEMT, rather than cEMT

(complete EMT), are more closely related to cancer stem cells (51).

Similarly, the stem cell properties of trophoblast cells also have been

reported to be associated with pEMT (52, 53).

The typical features of EMT are the reduced expression of cell

adhesion molecules (such as E-cadherin), transformation of

keratin cytoskeleton into a vimentin, and cell morphologic

changes. During EMT process, cells exist in three different states:

epithelial (E) state, intermediate (E/M) state, and mesenchymal

(M) state (Figure 2). As cells transition from epithelial state to

mesenchymal state, they sequentially lose apical-basal polarity and

cell-cell adhesion, gain anterior-posterior polarity and enhanced

cell-matrix adhesions. As a result, they acquire increased abilities of

migration, invasion, anti-apoptosis and extracellular matrix

degradation (54, 55). The scratch assays have demonstrated that

hAECs undergo EMT to migrate, further promote cell proliferation

and would healing (56).
FIGURE 2

Signaling pathways involved in epithelial-mesenchymal transition (EMT). EMT is a biological process that allows an epithelial cell to undergo
phenotypic and biochemical transitions that enable it to present a mesenchymal cell phenotype, losing the interaction with basement membrane
while gaining the characteristics like migratory capacity and invasiveness. MET is, on the other side, an exact reversed process. The epithelial and
mesenchymal cell markers commonly used are listed. Co-expression of the two sets of distinct markers during EMT indicates an intermediate/hybrid
state, termed as EMP. Recent studies have shown that during embryogenesis and epithelia homeostasis, certain epithelial cells appear to be plastic
and thus able to move back and forth between epithelial and mesenchymal states via the processes of EMT and MET. The activation of TGF-b
signaling has been proved to induce the initiation of EMT.
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Interestingly, the same mechanism and phenomenon have also

been revealed in vivo. Previous studies indicated that there is an age-

related inflammation caused cellular senescence of hAECs.

Especially when the gestation is closed to the termination, the

inflammatory environments will promote the amniotic cell

senescence and the happening of an irreversible EMT, leading to

the loss of amniotic structure integrity and fetus delivery, which

further reconfirmed the importance of EMT during the

proliferation and senescence of hAECs (57, 58).
4 Current landscape of cell therapies

Stem cell-based therapy has recently emerged as a key player in

regenerative medicine. The commonly used cell types include

pluripotent stem cells, extraembryonic tissue-derived cells and adult

stem cells. Among those stem cell-based clinical applications,

hematopoietic stem cells (HSCs) transplantation takes the leading

position, and the second place goes to mesenchymal stem cell (MSC)-

based studies. Autologous or allogeneic HSC transplantation is a

revolutionary life-saving procedure after irradiation or

chemotherapy. The first bone marrow transplantation was reported

in 1957 and it currently has become the most effective treatment for

leukemia. However, HSCs extraction requires the invasive procedures

to human bodies. More severely, post-operative complications are

often occurred to patients. As per the statistic study of a retrospective

analysis over 11 years after HSCs transplantation, of all patients,

74.2% suffered of early or late compilations, including infections,

graft-versus-host disease (GVHD), CNS disorders and cardio-

vascular complications, etc (59).

Human pluripotent stem cells (hPSCs) are defined as self-

renewable cell types conferring the ability to differentiate into

various cellular phenotypes of the human body, including three

germ layers, and have gained significant interest and attention in

regenerative medicine field. Multiple clinical trials using hPSC-

derived cells have been launched (clinicaltrials.gov). The therapeutic

potential of hPSCs is tremendous, but there are still some challenges

that need to be overcome. One of them is the teratoma formation

because of their potential for infinite proliferation. Another

challenge is the need for standardization. hPSCs, especially iPSCs,

are greatly heterogeneous due to their origins and preparation

methods. On that account, a set of critical quality procedures and

evaluation systems have to be established.

MSCs are multipotent progenitor cells possessing self-renewal

ability (limited in vitro) and differentiation potential into

mesenchymal lineages, according to the International Society for

Cell and Gene Therapy (ISCT). To date, a total of 12 MSCs products

have received regulatory approval for commercial use worldwide,

including autologous and allogenic, to be used for spinal cord injury,

osteoarthritis, GVHD, acute myocardial infarction, and Crohn’s

disease. MSCs are commonly derived from umbilical cord blood,

bone marrow, and adipose tissue. The cell sources are relatively

limited, and their cell isolation requests higher technical skills.

Compare to all the stem cells motioned above, hAECs are

morphological epithelial cells, possessing low immunogenicity,

immunomodulatory and anti-inflammatory effects. Moreover,
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sustainable cell divisions, making them have a low risk of

tumorigenicity. Consequently, hAECs have been considered a

promising candidate for cell therapy (Figure 3). Despite of some

uncertainty about the molecular mechanisms by which hAECs act

effective on diseases, whether they are in vivo engrafted and

differentiated or they modulate the biochemical reactions and

cellular responses to injuries, the work of Wallace team has clear

demonstrated that hAECs can exert a reparative effect without the

need for engraftment or differentiation (60). They suggested that the

primary mechanism of hAECs for lung injury repair was likely to be

paracrine signaling to the surrounding tissues to reduce

proinflammatory and profibrotic mediators. Similar results were

also found in the studies in brain ischemia, Parkinson’s disease,

spinal cord injury and wound healing (61–64). Furthermore, the

transcriptome sequencing results have revealed that hAECs

transplantation lead to the upregulation of several angiogenesis

and inflammation molecules, such as interferon regulatory factor 7

(IRF7), Mx dynamin-like GTPase 1 (Mx1), vascular endothelial

growth factor receptor 1 (VEGFR1) and VEGFR2 (65). Coculture of

hAECs and freshly isolated human blood neutrophils significantly

attenuated the level of oxidative burst of neutrophils (66), but

directly inhibited the proliferation of naïve CD4 T cells and the

production of Th1 and Th17 cytokines (67). All these cellular

properties have led hAECs ideal candidate cells for various

disease cell therapies.
5 Studies of hAECs “From Bench
To Bedside”

In 1981. Akle, C.A., et al. firstly isolated primary hAECs and

transplanted subcutaneously into the upper arms of 7 volunteers.

Four weeks later, it was observed that none of the participants

exhibited detectable HLA antibodies in their blood samples, and no

lymphocyte reaction was shown in 2 of the participants, indicating

the transplantation of hAECs would not cause acute immune

rejection (34). Since then, cell therapy using hAECs has become

an emerging treatment for diseases (68–70). Since then many

studies have shown satisfactory effects of hAECs in the pre-

clinical treatments, however, very little outcomes were revealed

on the clinical research (71, 72). As of January 2024, there are 25

clinical trials listed in the database (ClinicalTrials.gov,

Anzctr.org.au, etc.) using “human amniotic epithelial cells” as

biological interventions for the treatments of various diseases

(Table 3), most promising include neurological disorders,

immune diseases and tissue repairs.
5.1 Neurological disorders

Many studies have shown that hAECs have certain biochemical

characteristics of neurons and, although suspicious, are of the

potential to differentiate into neural cells (26, 73). Most common

accepted perspectives of hAECs in the treatment of neurologic

diseases are associated with their paracrine signals. hAECs are
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proven to be capable of synthesizing and secreting neurotrophic

factors, growth factors and neurotransmitters such as catecholamine

and dopamine, which are functional in promoting the regeneration of

damaged neural cells (74, 75). hAECs also secrete anti-inflammatory

factors, contributing to reducing neuroinflammation, improving the

cellular microenvironment, and alleviating the progressive course of

diseases (64, 76). Mounting evidence has shown that hAECs

administration in the animal model of neurological diseases can

reduce cell apoptosis, repair damaged neurons, and re-establish

damaged neural connections (77–81). It is suggested that hAECs

could be a promising candidate for cell-based therapy of neurological

diseases. Here, we will focus on the studies of hAECs in Parkinson’s

disease and Alzheimer’s disease.

5.1.1 Parkinson’s disease
Parkinson’s disease (PD) is an age-related neurodegenerative

disorder. To date, PD is still incurable, and the currently available

clinical treatments aim to slow down the course of disease

progression and alleviate the motor symptoms. In the past

decades, besides the traditional treatments of medication and

surgery, an increasing number of novel therapies have been used

for PD. The cell therapies have played an important role in those

therapies and shown remarkable outcomes.

Many animal studies have illustrated the promising therapeutic

potential of hAECs for PD treatment. In the 1990s, Kakishita

transplanted hAECs into the striatum of PD rats and found that

hAECs were able to alleviate the rat’s motor deficits, prevent the loss
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of dopaminergic neurons in substantia nigra pars compacta (SNpc)

(82, 83). It has also been revealed that hAECs can effectively prevent

the loss of TH-positive cells and dopamine in SNpc when they were

transplanted into PD rats, along with ameliorating the behavioral

deficits (84, 85). Studies carried out by Zhang et al. revealed that

hAECs stereotactic transplantation into PD mice striatum

facilitated the outgrowth of neurites and axonal fibers and

inhibited the apoptosis of damaged dopaminergic neurons,

contributing to the maintenance of the biological function of

neuronal cells (64). Meanwhile, hAECs conditional medium could

also improve the outgrowth of neurite in vitro, suggesting that

hAECs might enhance the self-repair of neural cells through

secreting neurotrophic factors.

Although many studies have shown that hAECs are able to

relieve PD symptoms, the underlying mechanisms are not yet

clearly understood. Neurotrophic factors, such as Brain-derived

neurotrophic factor (BDNF), Glial cell line-derived neurotrophic

factor (GDNF), Ciliary neurotrophic factor (CNTF), Oncostatin M

(OSM) and Granulocyte-macrophage colony-stimulating factor

(GM-CSF), secreted by hAECs, have been illustrated to promote

the survival and regeneration of neural cells in the aspects of

neurites outgrowth, axonal growth, synaptic plasticity, and neural

cell phenotype (86, 87). Besides, hAECs were also considered to be

beneficial to neuroinflammation, another main pathological feature

of PD. The postmortem examinations of PD patients showed that

microglia and astrocytes in the midbrain were highly activated, and

a large amount of pro-inflammatory factors were detected (88, 89).
FIGURE 3

Pre-clinical and clinical studies of hAECs on diseases treatment. A schematic overview of hAECs on various diseases treatment and the underlying
potential mechanisms.
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Similar results were also found in PD animal models. hAECs grafts

could reduce the occurrence of neuroinflammation by inhibiting

microglia activation and lowering the level of TNFa and IL-1b in

the PD mice striatum, additionally, hAECs secreted IL-1ra, one of

the IL-1 receptor antagonists, involving in the regulation of

neuroinflammation (64).

Many studies suggested that apoptosis and neuroinflammation

would result into the production of oxidative stress in neural cells,

further impairing neurons and exacerbating the disease progression

(90, 91). Excessive amount of reactive oxygen species (ROS) was

detected in substantia nigra region of PD mice, strikingly, hAECs

transplantation significantly reduced the production of ROS in

SNpc. In addition, the co-culture of hAECs also distinctly

decreased the intracellular ROS of isolated neural cells from the

midbrain of PD mice. Conversely, the intracellular ROS in hAECs

levels were elevated, suggesting that hAECs to some extent might be
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that hAECs are promising to be a novel therapeutic approach for

PD. However, more studies are still needed to reveal the specific

molecular mechanisms of hAECs for the treatment.

5.1.2 Alzheimer’s disease
Alzheimer’s disease (AD) is an age-related progressive

neurodegenerative disorder associated with memory loss and

cognitive impairment. The pathogenesis and causes of AD have not

been fully understood. The prevailing proposal in the field suggests

that the progressive accumulation of Amyloid beta (Ab) might trigger

a complicated cascade of reactions eventually leading to nerve death,

synaptic deficits, and cholinergic neurotransmitter loss, which is

widely known as “amyloid hypothesis” (92, 93). Ab is produced

through the proteolytic processing of amyloid precursor protein

(APP) by b- and g-secretases. The misfolding of the extracellular
TABLE 3 Summarized registrations of clinical trials utilizing human amniotic epithelial cells as biological interventions.

Category Registration Number Disease Nation

Ophthalmology NCT00344708 Corneal Epithelial Dystrophy United States

Gynecology

NCT02912104 Primary Ovarian Insu ciency China

NCT03223454 Asherman’s Syndrome 1 China

NCT03207412 Premature Ovarian Failure China

NCT03381807 Intrauterine Adhesion China

NCT04676269 Thin Endometrium Infertile Indonesia

Neurology

NCT02961712 HTLV-1 Associated Myelopathy China

NCT03107975 Spastic Cerebral Palsy 1 China

NCT04414813 Parkinson’s Disease China

NCT05435755 Parkinson’s Disease China

NCT05691114 Parkinson’s Disease China

ACTRN12618000076279 Ischemic Stroke Australia

ACTRN12622000588796 Ischemic Stroke Australia

Pneumology

NCT02959333 Bronchial Fistula China

ACTRN12614000174684 Bronchopulmonary Dysplasia Australia

ACTRN12618000920291
Bronchopulmonary Dysplasia,
Extremely Preterm Birth

Australia

ACTRN12620000676910
COVID-19-Related
Respiratory Failure

Australia

Orthopedics NCT03031509 Nonunion Fracture China

Others

NCT03764228 Acute Graft-Versus-Host Disease China

ChiCTR2000039821 Acute Graft-Versus-Host Disease China

NCT06164288 Acute Graft-Versus-Host Disease China

NCT03759899
Allogeneic Hematopoietic Stem
Cell Transplantation

China

ACTRN12616000437460 Cirrhosis, Liver Fibrosis Australia

ACTRN12618001883202 Crohn’s Disease, Perianal Fistulas Australia

NCT04728906 Myocardial Infarction Indonesia
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Ab protein forming senile plaques, concomitant with the intracellular

deposition of misfolded tau protein in neurofibrillary tangles cause

memory loss and confusion and result in personality and cognitive

decline over time (92). There is no definitive cure for AD yet, and the

current available therapeutic interventions could not reverse, or even

stop, the progressive course of AD.

Similar as it is for PD, hAECs have shown a good therapeutic

effect on animal models of AD. It has been reported that hAECs

transplantation into the lateral ventricle of AD mice models (Tg

transgenic mice) via either stereotactic injection or IV injection could

significantly improve their behavioral performance, along with the

attenuated spatial memory deficits, the growth of cholinergic neurons

in the hippocampal region of the forebrain, and the elevation of

acetylcholine production. Furthermore, hAECs transplantation

reduced the plaques formed by Ab deposition and lowered the

beta-secretase enzyme (BACE) activity, which is critical in

regulating the production of Ab40 and Ab42 (94, 95). A ChIPseq

analysis has demonstrated that hAECs treated with verbenalin would

highly express AD- related gene sets and the genes involved in

neurogenesis (96). Verbenalin has neuroprotective effects against

Ab induced neurotoxicity and has sleep-promoting and antioxidant

effects (96). Similarly, hAECs in combination with lycopene (LYCO)

could effectively reduce the neuroinflammatory factors, such as TNF-

a and IL-1b, in cerebrospinal fluid and hippocampus tissue of AD

rats, concomitant with the increased level of anti-inflammatory

factors, IL-10 and TGF-b1. This united therapy significantly

improved the cognitive impairments of AD rats. Importantly, it

inhibited the upregulation of TLR4 and NF-kB caused by Ab1-42
in the choroid plexus. TLR4 and NF-kB could affect the immune

regulatory ability of the choroid plexus (97). These studies indicated

that hAECs would be a promising candidate drug for AD treatment.
5.2 Immunological disorders

hAECs have immunomodulatory properties. They express low

levels of major histocompatibility complex (MHC) class I surface

antigens and barely express MHC class II antigens or costimulatory

molecules, such as CD80 (B7-1), CD86 (B7-2), and CD40, regardless of

the presence or absence of interferon gamma (IFN-g). hAECs express
neither programmed cell death receptor 1 (PD-1), an inhibitory

receptor normally expressed on activated T and B cells, nor its two

ligands, programmed death ligands 1 and 2 (PD-L1, PD-L2) under

IFN-g stimulation (30). Moreover, the expressions of immune

inhibitory receptors, immunoglobulin-like transcript receptors 2, 3,

and 4 (ILTR-2, ILTR-3, and ILTR-4) were also undetectable (30),

indicating hAECs might be tolerogenic to immunological rejection.

Therefore, hAECs are expected to expand their therapeutic potential in

clinical applications of immunological diseases. In our previous work,

transplantation of hAECs into the acute GVHD mouse models, which

were established through injecting human PBMC in NCG mice,

significantly reduced the infiltration of inflammatory cells into target

organs and organ lesions, improved the mice survival rate, and

prolonged their life span. Based on these animal studies, in 2022, the

first application of Investigation of New Drug (IND) of hAECs for

aGVHD treatment was approved by Center for Drug Evaluation
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China and a phase I clinical trial was initiated in Nov. 2023. The

outcome of this phase I clinical study will enforce the application

potential of hAECs for the treatment of other immunological disorders.

Numerous studies have demonstrated the diverse

immunomodulatory and anti-inflammatory properties of hAECs

and hAECs conditional medium (hAECs-CM). They secrete

various anti-inflammatory factors, such as MIF, TGF-b, IL-10,
and PGE2, therefore, hAECs can effectively inhibit T cell

proliferation and activation, reducing pro-inflammatory cytokines

productions (31, 67). Furthermore, hAECs prevent the

differentiation of monocyte to dendritic cells through cell direct-

contact, and significantly decrease the oxidative stress of

neutrophils (98). Similarly, hAECs-CM can also inhibit the

chemotactic activity of neutrophils and reduce the proliferation of

T cells and B cells after mitotic stimulation (66).

hAECs have been employed in a variety of immune-mediated

inflammatory diseases, such as autoimmune uveitis, Hashimoto’s

thyroiditis, systemic lupus erythematosus, diabetes, and Multiple

sclerosis (MS) (99–102). Transplantation of hAECs inhibited

myelin oligodendrocyte glycoprotein (MOG)-induced experimental

autoimmune encephalomyelitis (EAE), an animal model widely used

to study the pathogenesis of MS by inducing symptoms of paresthesia

and CNS demyelination associated with perivascular single nucleated

cell infiltration. TGF-b and PGE2 secreted by hAECs could effectively
inhibit the proliferation of splenocytes. Notably, splenocytes isolated

from hAECs-treated mice generated more IL-5 than the untreated

group. These results indicate that hAECs may treat MS through their

immunosuppression effects (103). Intradermal injection of hAECs

into diabetic mice significantly accelerated diabetic wound healing

and granulation tissue formation, in the meanwhile, hAECs could

modulate macrophage phenotype toward M2 macrophage, promote

switch from proinflammatory status to pro-healing status of wounds,

and increase capillary density in diabetic wounds, which suggested

hAECs could promote diabetic wound healing, at least partially,

through paracrine effects to regulate inflammation and promote

neovascularization (104).
5.3 Tissue injuries and repairing

With respect to hAECs biological functions, that is to prevent

the fetus from mechanical damages and to secrete hormones and

factors, supporting embryonic development, hAECs might also be

favorable to tissue repair. The studies about the use of hAECs in

tissues repair are abundant, including the injuries in uterus, ovary,

kidney, cornea, liver, and lung. Clinical research about hAECs as

biological interventions in tissue repair is also ongoing in the areas

of intrauterine adhesion (NCT03381807), Asherman’s syndrome

(NCT03223454), primary ovarian insufficiency/premature ovarian

failure/Infertility (NCT02912104, NCT03207412), bronchial fistula

(NCT02959333), spastic cerebral palsy (NCT03107975), and non-

union fracture (NCT03031509). In a clinical study of persistent

corneal epithelial defects (PEDs), hAECs have been found to

promote the regression of PEDs when in combination with

collagen shields. Complete resolution of PEDs was seen after two
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cycles of hAECs-seeded collagen shield in one case, and four cycles

in two cases, from 7 to 12 weeks following treatment in all patients.

No loss of visual acuity was reported, and clinical improvement was

maintained in all cases, with a mean follow-up of 6.3 months (105).

Animal studies have been further conducted to expand the

therapeutic application potential of hAECs in other tissue injuries.

hAECs transplantation has been reported to functionally repair the

uterine injury and collagen degradation of the scar. Following

transplantation into the rats with uterine scars, hAECs induced

the upregulation of VEGF1 and matrix metalloproteinase-8 (MMP-

8), which facilitated angiogenesis and collagen degradation,

respectively. Moreover, hAECs promoted the recovery of

myometrium and endometrium (106), as well as improved the

condition of intrauterine adhesion (IUA) in rats and mice models.

These results showed hAECs effectively restored the facts of

pregnancy and the number of fetuses, additionally, they increased

the endometrial thickness and endometrial glands, reconstituted

capillary regeneration, promoted stromal cell proliferation and

reduced tissue fibrosis (107, 108).

In the treatment of primary ovarian insufficiency (POI), hAECs

were found having an effect on regulating steroid biosynthesis and

follicular development, promoting angiogenesis and reducing

inflammation. In the rat models, post hAECs transplantation, the

irregular estrous cycles tended to be normal, follicle stimulating

hormone (FSH) level was decreased while anti-Mullerian hormone

(AMH) and the count of mature follicles were increased, and rats’

body weights and ovaries sizes were also raised (65). It has been

demonstrated that intravenously injected hAECs in mice with

chemotherapy-induced ovarian damage were able to migrate to

damaged locations and differentiated into granulosa cells,

facilitating the recovery of follicle generation (109, 110).

Interestingly, hAECs were found to be able to suppress the

systemic inflammation and maintain renal endothelial integrity in

septic mice (111). Therefore, systemic administration of hAECs can

improve mortality and renal function in ischemic-reperfusion injury-

induced acute kidney injury (IRI-AKI) mice and reduce the number

of apoptotic cells (112, 113). hAECs have nephroprotective effects

against cisplatin-induced acute kidney injury (cisplatin-AKI) without

compromising the anti-tumor activity of cisplatin (114).

Other than the applications in the conditions above, hAECs

have exhibited therapeutic potentials to myocardial infarction (115,

116), cerebral hemorrhage (117), retinal degeneration (118, 119),

alveolar defects (120), lung injury (121), chronic liver failure (122),

gland injury (123), inner ear injury (124), and more. All these are

required for future clinical research before their transformation into

a therapeutic product to help the patients.
6 Conclusions and future challenges

Despite recent advances in stem cell-based therapies for various

disease, including ESCs, iPSCs, and MSCs, there are many unclear

questions and unsolved issues regarding to their potency, stability,

oncogenicity, immune response, cell sources, and ethics. The major

concerns for their therapeutic potentials are the high risk of

tumorigenicity and invasive extraction procedures. hAECs are
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derived from the human amnion, which as a medical waste are

readily available and under less ethical dispute, and have no

tumorigenic and low immunogenic potential. The applications of

hAECs on various diseases have been studied and relevant

underlying mechanisms have also been explored, making them a

better alternative cell source for diseases.

Although hAECs have exhibited a good efficacy in various clinical

studies, their limited intrinsic capacity of proliferation lets the

expansion in vitro and industrial manufacture challenging. Another

common question about hAECs in clinical applications is the

shortness of comprehensive knowledge of cell properties.

Therefore, cell quality assessment for therapeutic effectiveness could

not be controlled, which might lead to inconsistent outcomes

in treatments.

These issues can be addressed by establishing optimized in vitro

expansion strategies. Simultaneously, it is crucial to establish a

complete and standardized evaluation system for cell properties and

qualities. In the studies of hAECs lineage development and

therapeutical mechanisms, by adopting new analytical methods

such as single-cell transcriptome sequencing, machine learning,

etc. Numerous research has looked into the deep insights of hAECs

composition, as well as, cell fates and attributes during

development, fundamentally solving the challenges in developing

cell therapy products. On the other hand, by exploring new

methods, such as combined therapy, and gene editing, the

therapeutic potential of hAECs has been enhanced. In future

research, the exploration of the functional features of hAECs will

be the prime work to better target the disease treatment.
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Glossary

AME-E amniotic epithelial cells-early
Frontiers in Immunol
AME-L amniotic epithelial cells-late
AD Alzheimer’s disease
AMH anti-Mullerian hormone
BDNF brain-derived neurotrophic factor
BM-MSCs bone marrow-derived mesenchymal stem cells
BACE beta-secretase enzyme
CDE Center for Drug Evaluation
CNTF ciliary neurotrophic factor
ESCs embryonic stem cells
EMT epithelial mesenchymal transition
pEMT partial epithelial mesenchymal transition
cEMT complete epithelial mesenchymal transition
EAE experimental autoimmune encephalomyelitis
EMP epithelial-mesenchymal plasticity
FSH follicle stimulating hormone
GDNF glial-cell-line-derived neurotrophic factor
GM-CSF granulocyte-macrophage colony-stimulating factor
GVHD graft-versus-host disease
GCLP good clinical laboratory practice
hAECs human amniotic epithelial cells
hAECs-CM hAECs conditional medium
HSCs hematopoietic stem cells
hAMSCs human amniotic membrane mesenchymal stem cells
HGF hepatocyte growth factor
HSCs hematopoietic stem cells
iPSCs induced pluripotent stem cells
ICM inner cell mass
IFN-g interferon gamma
IL10 interleukin-10
ILTR-2 immunoglobulin-like transcript receptors 2
ILTR-3 immunoglobulin-like transcript receptors 3
ILTR-4 immunoglobulin-like transcript receptors 4
IND Investigation of New Drug
IUA Intrauterine adhesion
IRF7 interferon regulatory factor 7
IRI-AKI ischemic-reperfusion injury-induced acute kidney injury
LYCO lycopene
MIF macrophage migration inhibitory factor
MHC major histocompatibility complex
MOG myelin oligodendrocyte glycoprotein
MS multiple sclerosis
MSC mesenchymal stem cell
Mx1 Mx dynamin-like GTPase 1
NMPA National Medical Products Administration
OSM Oncostatin M
PSCs pluripotent stem cells
ogy 17
PBMC peripheral blood mononuclear cell
PGE2 prostaglandin E2
PD Parkinson’s disease
PD-1 programmed cell death receptor 1
PD-L1 programmed death ligands 1
PD-L2 programmed death ligands 2
POI primary ovarian insufficiency
PEDs persistent corneal epithelial defects
mPASE microfluidic platform for analysis of single embryos
ROS reactive oxygen species
scRNA-seq single-cell transcriptome sequencing
SNpc substantia nigra pars compacta
TE trophectoderm
TGF-b transforming growth factor-b
VEGFR1 vascular endothelial growth factor receptor 1
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