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the erythroid cells
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Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing, China
Erythroid cells are themost abundant cells in the human body. In addition to their

established function in gas-transportation, erythroid cells at various stages of

differentiation have recently been shown to have immunomodulatory roles. Red

blood cells may serve as modulators of innate and adaptive immunity, while their

immature counterparts, CD71+ erythroid cells (CECs) have important

immunomodulatory functions in various contexts. CECs are abundant in

human cord blood and placenta, where they contribute to fetomaternal

tolerance. CECs also accumulate in patients with infections, tumors, and

anemia, and effectively suppress T cells by producing high levels of arginase,

reactive oxygen species, programmed death-ligand 1, transforming growth

factor b, and/or interleukin-10. Here, we systematically summarize the

immunomodulatory functions of erythroid cells and propose some potential

therapeutic applications based on their characteristics.
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1 Introduction

In vertebrates, red blood cells (RBCs) are abundant in the circulation and are the main

medium for oxygen transportation in the blood. In recent years, several studies have

demonstrated that erythroid cells have additional functions beyond oxygen transport.

Given their high level of production, vast numbers, and whole-body distribution,

understanding of the immunomodulatory effects of erythroid cells has potential to

provide novel targets for future immunotherapy approaches.

The immunoregulatory effects of erythroid cells were first discovered over 70 years ago, in

1953, when Nelson RA Jr discovered the phenomenon of immune-adherence between

microorganisms and erythrocytes, which caused an immunologically specific reaction and

enhanced phagocytosis (1). Subsequently, in 1979, the immunosuppression mediated by splenic

nucleated erythrocytes was first revealed (2), followed by the work of Conway de Macario in

1980, linking immunosuppression with erythropoiesis in irradiated spleen-cell-transferred

C57BL/6J mice (3). These studies revealed that nucleated erythrocytes can suppress primary

and secondary antibody-mediated responses in vivo (4). A few years later, nucleated

erythrocytes, which inhibit B-cell proliferation in humoral immune responses, were named

erythroid immunosuppressor cells (5). Recent studies have demonstrated that erythroid cells
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modulate both innate and adaptive immune responses (6). The aims of

this review were to introduce the basic features of erythropoiesis and to

summarize the immunomodulatory functions of RBCs and CD71+

erythroid cells (CECs).
2 Erythropoiesis

Erythropoiesis is a constant, multi-stage process, which takes

approximately 14 days in adult humans, who produce almost 200

billion RBCs every day, while mice generate more than 7000

erythrocytes per second (7, 8). During adulthood, steady state RBC

generation occurs in the bone marrow, while damaged and/or

senescent RBCs are recognized, internalized, and digested by splenic

red pulp macrophages and Kupffer cells in the liver. This cycle of

production and clearance creates steady-state RBC life spans of

approximately 120 and 60 days in humans and mice, respectively (9).
2.1 Developmental stages of erythropoiesis

2.1.1 Embryonic hematopoiesis
In human embryos, erythropoiesis first occurs in the yolk sac,

then transfers to the fetal liver and spleen, and finally becomes

established in the bone marrow (10). Blood islands form from the

mesoderm layer in the yolk sac, where primitive erythroid

progenitor cells differentiate into primitive erythroblasts (PEs),

which produce embryonic hemoglobin (a2e2) (11). During weeks

6–8 of gestation, erythro-myeloid progenitors (EMPs) from the yolk

sac begin to transfer to the fetal liver and spleen. The liver becomes

the primary site of erythropoiesis during weeks 10–28 of gestation,
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while the spleen is the primary producer of RBCs during the second

trimester (12, 13). At the end of the second trimester, erythropoiesis

transfers to the bone marrow, which becomes the primary site of

erythropoiesis until birth; fetal hemoglobin is produced to facilitate

oxygen transport across the placenta during this stage (14). After

birth, fetal hemoglobin output gradually decreases and is replaced

by the adult form of hemoglobin. (Figure 1).

In mouse embryos, hematopoiesis first emerges in the yolk sac

at embryonic day 7.5 (E 7.5), and is characterized by the production

of PEs, with diploid platelet progenitor cells and macrophages (15).

Subsequently, EMPs emerge in the yolk sac at approximately E 8.25,

which can generate erythroid colonies similar to those derived from

adult bone marrow and have the capacity to produce multiple other

myeloid lineages (16, 17). Soon afterwards, at around E10.5,

hematopoietic stem cells (HSCs) appear in the dorsal aorta of the

aorta-gonad-mesonephros region. Meanwhile, HSCs may also

emerge from other hemogenic endothelial cells (ECs) within

arteries in the umbilical cord, yolk sac, vitelline, cranial, and

placental regions. These HSCs then migrate to the fetal liver,

where they undergo a period of expansion, until they transfer to

the bone marrow before birth (18) (Figure 1).

2.1.2 Stages of erythroid development
The development of erythroid cells during erythropoiesis can be

divided into five stages. During the first stage, HSCs differentiate into

megakaryocyte-erythroid progenitors (MEPs). The second stage is

initiated by the differentiation of erythroid progenitor cells, followed

by the appearance of burst-forming unit-erythroid (BFU-E)

progenitors, and ends with the differentiation of colony-forming

unit-erythroid (CFU-E) progenitors (19). The third stage begins

with the development of pro-erythroblasts, followed sequentially by
FIGURE 1

Overview of embryonic hematopoiesis in human and mouse. In human, erythropoiesis first occurs in the blood islands from the mesoderm layer of
the yolk sac, generating primitive erythroblasts (PEs). Subsequently, erythromyeloid progenitors (EMPs) from the yolk sac migrate to the fetal liver
and spleen. Finally erythropoiesis occurs in bone marrow. In mouse, primary erythropoiesis develops in the yolk sac. The yolk sac then atrophies and
hematopoietic stem cells (HSCs) appear in aorta-gonad-mesonephros (AGM) region and transfer to the liver. Finally, erythropoiesis transfers to the
bone marrow before birth.
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basophilic erythroblasts (Baso-E), polychromatic erythroblasts (Poly-

E), and orthochromatic erythrocytes (Ortho-E). The fourth stage

comprises reticulocytes, with mature erythroid cells formed in the

fifth and final stage. Reticulocytes mature in the bone marrow, where

they begin to eliminate mitochondria and other organelles, and

subsequently enter the circulation to undergo further maturation

into erythrocytes (20, 21). Erythroid cells gradually reduce their

overall and nucleus size, while simultaneously increasing their

hemoglobin content (10). Markers of erythropoiesis are listed

in Table 1.
2.2 Molecular regulation of erythropoiesis

The differentiation of HSCs to erythroid cells is regulated by

various cytokines and growth factors (Table 2). The first stage of

erythropoiesis is regulated by hematopoietic cytokines, such as stem

cell factor (SCF; also known as c-Kit ligand), granulocyte-macrophage

colony-stimulating factor, interleukin-3 (IL-3), thrombopoietin, IL-11,

and transforming growth factor b (TGF-b). Further erythropoiesis is
mainly regulated by erythropoietin (EPO), and iron metabolism is

essential for hemoglobin synthesis. GATA1, GATA2, KLF1, and TAL1

are key transcription factors involved in erythropoiesis, while the
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transcription factors, FOG1, and BCL11A, regulate the expression of

genes encoding enzymes associated with heme biosynthesis and

hemoglobin production (62). Factors involved in the erythropoiesis

are listed in Table 2.
2.3 Macrophages in erythropoiesis
and erythrophagocytosis

2.3.1 Erythroblast islands
Erythroblastic islands (EBI), first discovered by Marcel Bessis in

1958, provide a specialized microenvironment for erythropoiesis
TABLE 1 Cell markers of the erythropoiesis.

Cell
type Species

Cell surface markers Ref.

HSC Human
Lin-CD34+CD38-

CD45RA-Thy1+CD49f+
(22, 23)

ST- HSC Mouse
c-Kit+Lin-Sca-1+Flk-2-

Flt3-CD34+
(24, 25)

LT- HSC Mouse
c-Kit+Lin-Sca-1+CD150+CD48-

CD41-CD34-
(24, 25)

MEP Human
Lin-CD34+CD38+CD10-

CD45RA-CD135-
(26)

Mouse
Lin-IL17ra-c-Kit+Sca-1-CD34-

CD16/32-
(27)

BFU-E Human
CD45+GPA-IL-3R-

CD34+CD36-CD71low
(28–30)

Mouse
CD45+CD150+c-Kit+ Sca-

1-CD71low
(28, 29, 31)

CFU-E Human
CD45+GPA-IL-3R-

CD34-CD36+CD71high
(28, 30)

Mouse CD45-c-Kit+TER119-CD71hi (28, 31)

Erythroblasts Human
CD45-/+CD235a+CD71hic-

Kit low/- (28, 32)

Mouse
CD45-/+TER119+CD71hic-

Kitlow/-CD44+
(33, 34)

Retic Human CD235a+CD71+RNA+DNAlow (35, 36)

Mouse TER119+CD71+RNA+DNAlow (35, 37)

Erythrocytes Human CD45-CD235a+CD71-DNAlow (35)

Mouse CD45-TER119+CD71-DNAlow (35, 37, 38)
TABLE 2 Factors involved in the erythropoiesis.

Factor Effect Ref.

Transcriptional factors

GATA1 Regulating the survival and terminal
differentiation of EPCs.

(39, 40)

GATA2 Regulating the proliferation and maintenance
of HSCs and progenitor cells

(41)

KLF1 Inhibiting the differentiation of
megakaryocytes while promoting early
differentiation of erythroid cells.

(42)

TAL1 Promoting the differentiation of erythroid cells
and contributing to the formation of distinct
gene regulatory complexes in EPCs.

(43)

Growth factors

SCF Activating downstream signaling proteins PI3K
and Akt to influence cellular survival;
Indirectly phosphorylating EPO-R to activate
the EPO/EPO-R signaling pathway.

(11, 21, 44)

GM-CSF Inducting the division and differentiation of
BFU-Es into CFU-E cells.

(45)

EPO Regulating late stages of erythropoiesis mainly
through EPOR-JAK2-STAT5/STAT3
signaling pathway.

(46–48)

TPO Affecting the rate of entry into the cell cycle
and proliferative capacity of HSCs.

(49)

IL-3 Supporting the proliferation of early
progenitors stimulated by autocrine TGF-b.

(50–52)

IL-11 Promoting the growth of early progenitors and
increasing platelet production.

(53)

TGF-b Promoting CD34+ HSPCs differentiation into
EPCs; Suppressing the proliferation of CECs.

(54–57)

Factors modulating iron metabolism

Iron Material for hemoglobin synthesis. (58, 59)

Ferroportin Iron exporter. (60)

Hepcidin Binding to iron exporter ferroportin to induce
its internalization and degradation

(60)

Erythroferrone Suppressing the synthesis of hepcidin to allow
iron mobilization to facilitate erythropoiesis.

(61)
fr
PI3K, phosphoinositide-3 -kinase; Akt, protein kinase B; TGF-b, transforming growth factor-
b; HSPCs, hematopoietic stem and progenitor cells; EPCs: erythroid progenitor cells; CECs:
CD71+ erythroid cells; JAK2: Janus kinase2.
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(63). EBIs contain a central macrophage surrounded by maturing

erythroblasts, and act as the erythroid precursor niche, which

supports the bone marrow in producing RBCs at a rate of 2.5

million/second at homeostasis in adult humans (7). Terminal

erythroid differentiation occurs within EBIs, where late CFU-Es

mature into reticulocytes (64). Macrophages in the EBI secrete

growth factors to support erythropoiesis, provide iron for

hemoglobin synthesis, phagocytose extruded nuclei, and prevent

toxic effects of free DNA (65, 66). Both mouse and human EBI

macrophages express EPO-R, while EPO in the niche acts on

erythroid cells and EBI macrophages simultaneously, to promote

erythropoiesis. Under stress conditions (see section 2.4), RBCs are

mainly produced through splenic erythropoiesis, which is distinct

from bone marrow steady-state erythropoiesis (67). Impaired EPO-

R signaling in splenic niche macrophages significantly inhibits the

differentiation of stress erythroid progenitors (68). Further, EBI

macrophage dysfunction can lead to specific erythroid

hematological disorders (69).

2.3.2 Erythrophagocytosis
RBCs have a life span of around 120 days in the circulation.

Macrophages have important roles in phagocytosis of aged or

injured RBCs and contribute to iron recycling (70). RBC

clearance is regulated by so called “eat me” and “don’t eat me”

signals. Interaction of CD47 with SIRPa provides the “don’t eat me”

signal (71). When RBCs undergo aging, “eat me” signals, such as

phosphatidylserine (PS) and band 3, accumulate on their

membranes in a process termed eryptosis (72). PS binds to Tim-

1, Tim-4, Stabilin-2, or CD300 on macrophages, generating a pro-

phagocytic signal, while band 3 interacts with CR-1 and Fc

receptors to facilitate phagocytosis (73). PS also binds to platelets

and ECs, which triggers pro-thrombotic risk and compromises the
Frontiers in Immunology 04
microcirculation (72). Enhanced eryptosis is observed in several

clinical conditions, including malignancies (72). Tumor cells can

directly interact with RBCs via galectin-4, leading to RBC

aggregation (74). Together, RBC aggregation and augmented RBC

adherence to the vascular wall due to enhanced eryptosis enable

circulating tumor cells to stably roll along the vessel wall at a lower

flow rate (75).
2.4 Stress erythropoiesis

Stress erythropoiesis is a stem cell-based tissue regeneration

response that occurs in the spleen and fetal liver (76). Anemia or

hypoxia accompanied by inflammation, which occur frequently

during cancer development (77, 78), chronic infection (79), severe

trauma (80), and chronic psychological stress (81, 82), disrupt the

homeostasis between erythroid cell production through steady-state

erythropoiesis and clearance of senescent or damaged erythroid

cells by phagocytes, inducing stress erythropoiesis (79, 83); this

process is regulated by bone morphogenetic protein 4 (BMP4), SCF,

Hedgehog, EPO, growth-differentiation factor 15 (Gdf15), and

glucocorticoids (GCs) (Figure 2) (84). Under homeostatic

conditions, low EPO levels support terminal differentiation of

only the most EPO-sensitive progenitors, while other erythroid

progenitors undergo apoptosis; however, during stress

erythropoiesis, increased EPO levels induce massive and rapid

terminal differentiation of all erythroid progenitors (56). In

addition, BMP4 and Hedgehog signals restrict the transition of

short-term-HSCs to EPO-sensitive stress erythroid progenitors.

Immature stress-induced erythroid progenitors maintain stem cell

properties, including self-renewal, and can be serially transplanted

(84–87). Further, BMP4 and SCF are required for the expansion of
FIGURE 2

Developmental stages of erythropoiesis after birth. Under steady state, erythropoiesis occurs in the bone marrow, while stress erythropoiesis occurs
mainly in the spleen. Erythropoiesis occurs in erythroblastic islands, which contains a central macrophage surrounded by developing erythroid cells.
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stress BFU-E spleen cells under hypoxic conditions (88), while

Gdf15 regulates murine stress erythroid progenitor proliferation

and controls stress erythropoiesis niche development (89). GCs are

also essential for immature erythroid cell expansion during stress

erythropoiesis, and act by binding and modulating the

transcriptional activity of their cognate nuclear receptor,

glucocorticoid receptor (GR) (90).

Although biomarkers of BFU-E erythroid progenitors (Lin-

cKit+CD71LowCD150+CD9+Sca-1-) responsive to stress

erythropoiesis in the murine spleen are the same as those

detected during steady state (91), whole genome transcriptional

analysis demonstrated that mouse stress-BFU-E gene signatures are

more BMP4-responsive and associated with erythropoiesis and

proliferation, relative to those detected in the steady-state (92).

Single-cell RNA-seq analysis of human stress-induced erythroid

progenitors also revealed a distinct sub-population to that observed

under steady-state erythropoiesis (93). Furthermore, splenic BFU-E

exhibit different growth properties to their bone marrow

counterparts; splenic BFU-E require only EPO to form colonies,

while bone marrow BFU-E require EPO and a second factor (94).

Factors upstream of stress erythropoiesis have fundamental

immunomodulatory effects. EPO is the principal cytokine

regulating erythropoiesis through EPOR; however, EPOR is

expressed not only on erythroid cells, but also on immune cells,

such as macrophages, dendritic cells (DCs), mast cells, and

lymphocytes (40). EPO can bind to EPOR and tissue-protective

receptor (TPR, an EPOR/CD131 heterodimer), which are

important in tissue protection and immune regulation (95). EPO

inhibits the induction of genes encoding proinflammatory factors,

such as TNF-a and inducible nitric oxide (NO) synthase (iNOS), in

activated macrophages by decreasing NF-kB p65 activation (96). In

addition, EPO suppresses DC maturation through the Jak2/STAT-

3/SOCS1 pathway (97). Furthermore, EPO directly promotes
Frontiers in Immunology 05
regulatory T cell (Treg) proliferation, while inhibiting the

expansion of conventional T cells via molecular crosstalk with the

IL-2 pathway (98). GCs are required for regulation of stress

erythroid progenitor expansion (90); however, GR signaling also

has potent anti-inflammatory effects (99). Stress erythropoiesis

produces more RBCs and CECs, and both populations possess

considerable immunomodulatory functions under various

conditions (see below for further details).
3 Immunomodulatory effects of RBCs

The link between RBCs and immune function was reported as

early as 1953, when Nelson RA Jr. discovered the phenomenon of

immune-adherence between erythrocytes and microorganisms,

which augments phagocytosis (1). In 1991, RBCs were reported to

bind to IL-8 and prevent its release into the blood, thereby limiting

leukocyte stimulation (100). Data reported in 1993 demonstrated

that RBCs can bind to several chemokine superfamily inflammatory

peptides, indicating that RBCs may act as regulators of

inflammatory processes (101). Unlike healthy RBCs, RBCs

carrying mitochondria (Mito+ RBCs) augment inflammation.

Furthermore, oxidative stress and RBC senescence generate a

forward feedback cycle, resulting in the release of pro-

inflammatory microparticles (MPs), Hb, heme, and iron, and the

breakdown products generated by hemolysis have remarkable

effects on immunological functions (Figure 3).
3.1 Healthy RBCs and immune regulation

RBCs modulate innate and adaptive immunity mainly through

their surface molecules (proteins, lipids, and carbohydrates) and
FIGURE 3

Immune regulation effects of red blood cells (RBCs).
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potent antioxidant capacity (102); they express large amounts of the

key complement regulators, CD55, CD59, and complement

receptor type 1 (CR1, also referred to as CD35), where CD55

inactivates C3 convertases generated by all three complement

activation pathways, CD59 prevents membrane attack complex

formation by preventing C9 incorporation, and CR1 recognizes

collagen-like regions of C1q, mannose-binding lectin, C3b, and

C4b, to remove complement-tagged inflammatory particles. For

example, in patients with HIV, the virus binds to RBCs via C1q-

CR1 interaction (103). Further, CR1 is decreased on RBCs in

patients with coronavirus disease 2019 (COVID-19), resulting in

consistent inflammatory responses and tissue damage (104, 105).

Toll-like receptor 9 (TLR9), a nucleic acid sensing receptor, is

expressed on the surface of mammalian RBCs. Under basal

conditions, RBCs bind cell-free mitochondrial DNA (mtDNA)

through TLR9 and mediate DNA scavenging to prevent

unnecessary inflammation (106). Further, in the context of

inflammation, TLR9 binds to CpG-containing DNA derived from

bacteria, plasmodia, and mitochondria, which drives innate

immune activation and red cell clearance (107). Erythroid-specific

TLR9 deletion blocks erythrophagocytosis and decreases local and

systemic cytokine production (107). During viral pneumonia and

sepsis secondary to COVID-19, RBCs also exhibit protein

oxidation, together with decreased antioxidant capacity, increased

glycolysis, an altered membrane lipidome, and elevated mtDNA

binding, which may contribute to anemia and disease severity

(102, 108).

Moreover, RBCs can induce DCs toward an immature/

tolerogenic phenotype in response to lipopolysaccharide (LPS),

through a CD47-dependent mechanism (109). Mechanosensing

by RBCs also ensures exposure of splenic type-2 conventional

DCs to blood flow, allowing them to capture circulating antigens,

while retaining them in the spleen through CD55-CD97 signaling

(110); the same mechanism is also important for marginal B cell

retention and function (111). In addition, Duffy blood antigen,

primarily expressed on the surface of RBCs, can potently bind to

multiple chemokines (112, 113).

Transfusion of fresh RBCs under noninflammatory conditions

will reduce RBC clearance and therefore lessen macrophage loading

with heme, as well as up-regulating heme oxygenase (HO), shifting

macrophages toward the anti-inflammatory M2 state (112). Protein

factors released from RBCs, such as Hb and peroxiredoxin II, can

sustain normal and leukemic T cell growth and survival (113). RBCs

can also synergize with TCR/CD3-mediated activation signals and

enhance T cell survival and proliferation through a calcineurin-

dependent mechanism (111).
3.2 Mito+ RBCs and immune regulation

Programmed mitochondrial removal occurs during normal

erythropoiesis (114). A hypoxia-inducible factor-mediated

metabolic switch and consequent activation of the ubiquitin-

proteasome system precede, and are necessary for, autophagic

mitochondria removal, and disruption of this pathway leads to

accumulation of RBCs carrying mitochondria (Mito+ RBCs) (115).
Frontiers in Immunology 06
This process is defective in patients with systemic lupus

erythematosus (SLE) (115) and sickle cell disease (SCD) (116), as

well as in aged mtDNA mutator mice (117). In patients with SLE,

Mito+ RBC levels are correlated with disease activity, and antibody-

mediated Mito+ RBC internalization by macrophages induces type I

interferon (IFN-I) production through cGAS/STING activation

(115), while Mito+ RBCs may contribute to SCD pathophysiology

via high reactive oxygen species (ROS) production (118).
3.3 Oxidized or senescent RBCs and
immune regulation

RBCs are frequently exposed to various stressful conditions

during their lifespan, including oxidative stress, osmotic shock, and

mechanical squeezing (119), and consequently accumulate damage

which influences their functions. Senescent RBCs show pathologic

properties, including decreased deformability (120), MP release

(121), increased hemin-carrying Hb (122), and surface antigen

modification (123). RBC senescence occurs alongside oxidative

stress and in turn becomes a source of ROS, which serves as an

important signal of RBC senescence (124). Accumulation of

oxidized lipids, such as 4-hydroxynonenal, may induce vascular

inflammation (125, 126). At the molecular level, the major features

of senescent RBCs are Band 3 clustering or breakdown (127), PS

externalization (128), loss of glycophorin A, and reduction of CD47

expression (124). Consequently, senescent RBCs lose the ability to

control LPS-induced DC maturation (129).

Oxidized or senescent RBCs or RBC-derived MPs are potential

modifiers of T cell responses, which enhance mitogen-driven T cell

proliferation and apoptosis through an antigen presenting cell- and

cell contact-dependent mechanism, and regulate IFN-g production
from T helper 1 cells (124). Moreover, oxidized RBCs release Hb,

heme, and iron which are both sources of radicals and able to

activate ECs (130) and innate immune cells, such as monocytes

(131), in a proinflammatory manner, as detailed below (see section

3.4). Stored RBCs display senescence-related changes, such as

reduced structural integrity, MP release, and iron overload, and

the transfusion of stored RBCs exacerbates existing lung

inflammation and promotes lung injury, due to loss of Duffy

antigen expression and their chemokine scavenging function

during storage (132). Further, rapid clearance of transfused stored

RBCs by macrophages polarizes the macrophages toward the

classical M1 phenotype, with a huge Hb iron load (112, 133). In

addition, packed RBCs suppress T cell proliferation via cell-cell

contact and inhibit T cell activation via ROS-dependent

signaling (134).
3.4 Hemolysis and immune regulation

RBCs are highly differentiated cells with an elegant structure that

allows them to survive under continuous shear stress when transiting,

making them ideal messengers between distant organs. The erythrocyte

membrane skeleton is a polygonal 2D lattice structure, consisting of

lipids, proteins, and carbohydrates (135, 136). The skeleton attaches to
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the cell membrane through the spectrin-actin junctional complex

(adducin, dematin, and P4.1 interact with band 3, GPC/D, and

Glut1) and the ankyrin complex (137). Disorders of the RBC

cytoskeleton or dehydration cause hemolytic anemia, which is

associated with altered immune regulation, as hemolysis breakdown

products, including hemoglobin, heme, and iron, have remarkable

effects on immunological functions (138).

3.4.1 Hemoglobin
Hemoglobin (Hb) is an iron-containing protein in RBCs

formed from globin and heme (Fe2+ protoporphyrin-IX). When

large amounts of Hb are released into the plasma from damaged

RBCs, the scavenger protein haptoglobin (Hp) can rapidly bind

with cell-free Hb, to generate a Hb-Hp complex, which neutralizes

the pro-oxidative effects of Hb (139). When Hp binding capacity is

saturated, heme in free Hb is easily oxidized to hemin (Fe3+

protoporphyrin-IX) in the circulation. Free Hb triggers vascular

and organ dysfunction through extravascular translocation, NO

inactivation, oxidative reactions, hemin release, and activation of

downstream signaling pathways (see section 3.4.2) (139). Hp-Hb

complexes bind to the CD163 receptor expressed on macrophages

and hepatocytes and are subsequently digested, releasing heme into

the cytoplasm (140). Free Hb enhances platelet activation by

binding to ADP, as well as by abrogating the inhibitory effect of

NO (141).

3.4.2 Heme
Heme is an important iron-containing porphyrin molecule and

with crucial roles in cell protection, apoptosis, inflammation, and

immune disorders (142). Hydrophobic hemin intercalates into cell

membranes. Hydrogen peroxide from various sources splits the

heme ring and releases free redox-active iron, which catalytically

amplifies ROS production. Consequently, heme regulates

inflammation mainly by acting as a pro-oxidant in macrophages,

neutrophils, and ECs (143). Furthermore, heme can selectively bind

to receptors, transcription factors, and enzymes (89).

Heme stimulates monocyte differentiation into splenic red pulp

macrophages and bone marrow macrophages by promoting

degradation of the transcriptional repressor, BACH1, and

consequent expression of the transcription factor, SPI-C (144).

Heme can also act as a pro-inflammatory second hit in

macrophages by aggravating LPS-induced TLR4 signaling, or

induce an anti-inflammatory response (M2 macrophages) via

induction of SPI-C and HO-1, an inducible isoform of HO (145).

Moreover, heme impairs phagocytosis by inhibiting cytoskeleton

dynamics through the DOCT8/Cdc42 signaling pathway (146).

Heme can also induce Treg expansion in purified T cell-

monocyte cocultures by upregulating HO-1 in nonclassical

monocytes (138).

Heme promotes neutrophil migration by stimulating

macrophage-derived leukotriene B4 (147) and activating protein

kinase C and G-protein-coupled receptors in neutrophils (148, 149),

which induce chemokine expression and ROS production. During

neutrophil development in patients with SCD, heme regulates

neutrophil differentiation and can cause defective oxidative burst
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through HO-1 induction (150). Heme can also inhibit neutrophil

apoptosis in vitro through the phosphoinositide 3-kinase (PI3K)

and NF-kB pathways (151). Further, heme can induce neutrophil

extracellular trap (NET) formation through ROS signaling, to

protect the host against infections (152); however, in patients

with SCD, NETs can enhance the adherence of erythrocytes and

platelets to the endothelium and induce vascular occlusion or lung

injury (153).

Free heme interacts with ECs and stimulates the expression of

adhesion molecules, including intercellular adhesion molecule 1

(ICAM-1), endothelial cell adhesion molecule (ECAM), vascular

cell adhesion molecule 1 (VCAM-1), P-selectin, and others, through

heme-mediated ROS and NF-kB signaling pathways (154).

Leukocytes attach tightly to endothelium through adhesion

molecules and migrate to tissue parenchyma, which promotes

vascular occlusion and subsequent tissue ischemia (154, 155). In

addition, cell-free heme and heme-loaded microvesicles activate the

complement system via the alternative pathway in both serum and

on the surface of ECs. Heme also upregulates P selectin, C3aR, and

C5aR expression, and downregulates that of CD46, on ECs, which

contributes to endothelial damage and vascular occlusion in

patients with SCD (156).

3.4.3 Iron
Free heme is catabolized by HO into three products: biliverdin,

carbon monoxide (CO), and Fe2+ (142), where biliverdin is

converted to bilirubin, and both CO and bilirubin have potent

anti-inflammatory and antioxidant properties, whereas Fe2+

enhances oxidative stress, thereby promoting ferroptosis (157).

Fe2+ binds to the iron storage protein, ferritin, which has

cytoprotective and anti-oxidative effects, as well as a role in iron

storage. Ferritin was first discovered as a suppressor of granulocyte

and macrophage production in 1981 (158). Further studies

demonstrated that ferritin comprises two functionally distinct

subunits: ferritin H and L (159). H-ferritin can suppress T cell

proliferation in response to mitogens and impairs B cell maturation

(159), as well as helping to mediate the protective effect of HO-1

against oxidative stress (160). Moreover, H-ferritin is a negative

regulator of CXC chemokine receptor 4 in receptor-mediated cell

migration (161). L-ferritin overexpression in LPS-induced

Raw264.7 cells can significantly decrease the production of pro-

inflammatory cytokines (TNF-a, IL-1b) and NO and inhibit MAPK

and NF-kB activation (162).
4 Immunomodulatory effects of CECs

The term CECs refers to immature erythroid cells, including

erythroblasts and reticulocytes, which are physiologically enriched

in the spleen and cord blood of neonates, but rare in adult bone

marrow (45). CECs are characterized by expression of CD71 and

glycoprotein A (CD235a)/glycoprotein A-related protein (Ter119),

as CD71+TER119+ cells in mice and CD71+CD235a+ cells in

humans. CD71 is also known as transferrin receptor 1 (TfR-1), a

type II transmembrane protein important in cellular iron uptake
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and iron metabolism (163). CD71 is a surface marker for erythroid

cells from BFU-E to reticulocytes, which first appears in BFU-E,

reaches its highest expression levels in Baso-E and Poly-E cells, then

declines in Ortho-E cells, and finally disappears in mature

erythrocytes (33).

There are three general CEC subtypes: early-stage CECs, EDMCs,

and late-state CECs, each with differing immunosuppressive abilities.

Erythropoietic tracking showed that CD45+CD71+TER119+ cells are

enriched with stage I–III precursors, while CD45-CD71+TER119+ cells

contain more terminally differentiated stage III–V erythroid cells (164).

Recent studies have indicated that CECs at the earliest stages are more

potent immune response suppressors (164–166). The various surface

markers and functional properties of the three CEC subtypes are

summarized in Table 3, the immunomodulatory effects of the CECs

are summarized in Table 4 and Figure 4, and the immunomodulatory

effects of the CECs in diseases are summarized in Table 5.
4.1 CECs in neonatal and pregnancy

Erythroid cells play a crucial role in immunological regulation

during the neonatal period and in maternal-fetal tolerance. Mouse

placental erythroid cells are mainly CD45+ and secrete the

chemokines, CCL2, CCL3, CCL4, and CXCL1 (193). Further,

CECs are abundant in mouse neonatal spleen and human cord

blood, and possess unique immunosuppressive properties (167).

CECs are abundant in the liver of children with biliary atresia (BA),

and suppress the activation of hepatic mononuclear cells (172).

Further, CECs are numerous in the peripheral blood of human

newborns, but decline rapidly by 4 weeks of age (168).

CECs influence neonatal infections through various

mechanisms. Bordetella pertussis is a common neonatal

respiratory tract pathogen and CECs prevent the recruitment of

immune cells to the mucosal infection site (167). CECs from human

newborn peripheral blood mononuclear cells (PBMCs) suppress

TNF-a production by CD14+ monocytes and IFN-g production by

T cells (168). Further, ablation of CECs enhances the innate

immune response by increasing the production of protective

cytokines, including IL-17, IFN-g, TNF-a, and IL-12 in B.

pertussis-infected lungs (169, 170).
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L-arginine is essential for T cell proliferation and function

(194). Arginase (ARG) depletes L-arginine, thereby inhibiting T

cells, and is encoded by two recently-discovered genes, Arg1 and

Arg2 (195). ARG1 is expressed in the cytosol, whereas ARG2

localizes to mitochondria. Neonatal and human cord blood CECs

express ARG2 and ablation of CECs augments B. pertussis-specific

T cell responses in the lung and spleen on re-infection or

vaccination (170). In addition, ablation of CECs also induces

enhanced systemic and mucosal B. pertussis-specific antibody

responses (170). Accordingly, CECs in human cord blood can

suppress T and B cell functions in vitro (170). Regarding innate

immunity, CECs inhibit B. pertussis phagocytosis via ARG2 in vitro

(169, 170). Such effects of CECs facilitate intestinal colonization

with commensal microbes during the neonatal period (167).

Depletion of CECs in neonatal mice renders them more resistant

to infections by Listeria monocytogenes, Escherichia coli, and B.

pertussis, indicating the protective effects against neonatal infectious

diseases (167, 168); however, ablation of CD71+ cells failed to

modify neonatal mortality in either a model of endotoxin

challenge or a model of polymicrobial sepsis (173).

BA is a rare and progressive disease that develops in early

infancy (196). Rhesus rotavirus (RRV) infection of neonatal mice

induces an obstructive cholangiopathy, which is similar to BA

(197). CECs expand in the liver of children with BA or RRV-

infected mice and suppress the immune response by reducing TNF-

a production. Preemptive depletion of hepatic CD71+ erythroid

cells in neonatal mice augments the number of effector lymphocytes

and delays RRV infection of the liver and extrahepatic bile duct,

suppressing bile duct injury (172). Clearance of CECs before RRV

infection renders mice resistant to RRV-induced BA, while

repopulation of CD71+ erythroid cells after RRV inoculation

promotes long-term survival (172).

CEC-mediated immunosuppression is crucial for fetomaternal

tolerance. Both BALB/c and C57BL/6 female mice, and human

women are enriched for CECs (198). Further, analysis of 155

umbilical cord blood samples showed that the proportion of

CECs was 50-fold higher in cord blood than that in maternal

blood (199). Erythropoiesis becomes active during pregnancy, and

erythrocytes significantly expand in the peripheral blood (200).

TGF-b has an important role in regulating the erythroid lineage
TABLE 3 Phenotypes of the CECs.

early-stage CECs EDMCs late-state CECs

Markers: mouse CD45+CD71+TER119+ CD45-CD71+TER119+ CD11b+Gr1+ CD45-CD71+TER119+

Markers: human CD45+CD71+CD235a+ CD45-CD71+CD235a+

CD11b+CD33+HLA-DR-
CD45-CD71+CD235a+

Immunosuppressive ability high high low

Key mediators of suppression ROS
IL-10
TGF-b
ARG1
ARG2
VISTA

PD-1/PD-L1

iNOS
ARG1
PD-L1
PD-L2
CD49

Artemin
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differentiation potential of HSCs (201, 202). CECs in pregnant mice

express more PD-L1/PD-L2 and suppress T cells expressing

programmed cell death protein-1 (PD-1) at the fetomaternal

interface (174). Maternal CECs inhibit IFN-g and TNF-a
production to protect the fetus against the allogeneic response.

Further, fetal liver CECs also exhibit immunosuppressive activity. A

recent transcriptional study demonstrated expression of high levels

of galectin-9, galectin-1, and VISTA on the surface of neonatal

splenic CECs. CD71+VISTA+ cells produce more TGF-b than

CD71+VISTA− cells, and can promote CD4+ T cell differentiation

into Tregs (171); however, CECs in human cord blood express

negligible amounts of VISTA. Indeed, VISTA expression levels are

significantly higher in placental CECs than those in cord blood
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(171). Thus, both maternal and fetal CECs are essential for

fetomaternal tolerance (175). Accordingly, depletion of CECs in

pregnant mice induces a proinflammatory immune response, by

reducing IL-4 and IL-10 production, while increasing TNF-a and

IL-6 levels in placental tissues, which in turn results in fetal

resorption (175, 203); however, in pregnant women with

inflammatory bowel disease (IBD), CECs are decreased in the

peripheral blood, cord blood, and placenta tissue, and express

lower levels of inhibitory molecules, including VISTA, TGF-b,
and ROS. Accordingly, pregnant women with IBD have lower

levels of Tregs and increased immune-activation. Patients with

IBD are more likely to have a pro-inflammatory environment in

the gastrointestinal tract, which leads to impairment of CECs

during pregnancy (176).
4.2 CECs in infection

CECs not only function during neonatal infections, they

participate in various infections throughout life.

Acquired immune deficiency syndrome is a systemic disease

caused by human immunodeficiency virus (HIV), the genome of

which comprises two copies of a 9749 nucleotide sequence packaged

in each virion (204). CECs are expanded in the peripheral blood of

patients with HIV and there is a positive correlation between CEC

frequency and plasma viral load. When cocultured with CD4+ T cells,

CECs exacerbate HIV-1 infection/replication, by enhancing NF-kB
activation in CD4+ T cells to facilitate HIV infection (177). Meanwhile,

CECs bind to HIV-1 via CD235a and subsequently transfer the virus to

uninfected CD4+ T cells. Moreover, in the presence of antiretroviral

therapy, CECs from HIV-infected individuals contain infective viral

particles, which mediate HIV-1 trans-infection of CD4+ T cells (177).

CECs are also significantly expanded and possess immunosuppressive

properties in the blood of patients with COVID-19. With high levels of

ARG2, ARG1, and ROS, CECs mediate immunosuppression by

inhibiting CD4+ and CD8+ T cell production of TNF-a and IFN-g
in vitro (179). Furthermore, CD45+ CECs express ACE2, TMPRSS2,

CD147, and CD26 and can be infected with SARS-CoV-2 (179).

CECs are also expanded in adult patients with sepsis and serve as

predictors of 30-day mortality as well as nosocomial infection

development. Low levels of RBCs and high levels of IL-6 and IFN-g
may contribute to the expansion of CECs in sepsis (178). During

Salmonella infection, accumulation of CECs in the spleen and

increased EPO production are dependent on Myd88/TRIF signaling

(182); EPO neutralization reduces the population of CECs in the spleen

and slightly improves the host immune response (182).

Malaria is an insect-borne infection caused by the bite of

Anopheles mosquitoes, and a major global health problem, with

approximately 247 million cases worldwide in 2021 and many

more residents of endemic areas having asymptomatic parasitemia

(chronic malaria) (205). Different species of malaria parasites exhibit

distinct tropism (206). Plasmodium falciparum can invade all stages

of erythrocytes while Plasmodium vivax and Plasmodium cynomolgi

invade only reticulocytes (207, 208). P. vivax is the most widely

distributed human malaria parasite and exhibits a strong preference

for immature reticulocytes, with CD71 acting as an anchor receptor
TABLE 4 Mechanisms of the CECs in immunoregulation.

Mechanism Diseases Effects

Arginase ARG1 COVID-19 patients and
anemia

Suppress cytokines
produced by T cells
Suppress T
cells proliferation

ARG2 COVID-19 patients and
anemia
Neonates and pregnancy

Suppress cytokines
produced by T cells
Suppress T cells
proliferation
Suppress cytokine
produced by
myeloid cells

ROS COVID-19 patients,
anemia and tumor
HIV patients
Neonates and pregnancy

Suppress cytokines
produced by T cells
Suppress T cells
proliferation
Promote HIV
replication and trans-
infection in T cells
Suppress cytokine
produced by
myeloid cells

Cytokines TGF-b Tumor
Neonates and pregnancy

Suppress cytokines
produced by T cells
Suppress T cells
proliferation
Promote
Tregs differentiation

IL-10 Tumor Suppress T
cells proliferation

Artemin Tumor Promote tumor growth

IL-22 Anemia Decrease EPCs number
in bone marrow

Immune
checkpoints

PD-1/
PD-L1

Tumor
Neonates and pregnancy

Suppress cytokines
produced by T cells
Suppress T cells
proliferation
Suppress cytokines
produced by T cells

VISTA Tumor
Neonates and pregnancy

Suppress cytokines
produced by T cells
Suppress T cells
proliferation
Promote
Tregs differentiation
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(209, 210). Reticulocytes have a more complex and enriched

metabolic profile than mature erythrocytes, providing metabolic

reservoirs for malaria parasites (206). P. vivax-infected reticulocytes

express high levels of human leukocyte antigen class I (HLA-I), which

can be specifically detected by cytotoxic CD8+ T cells to protect

against intracellular parasites (180). In BALB/c mice, reticulocytes

can secrete exosomes when infected by the reticulocyte-tropic non-

lethal Plasmodium yoelii 17X strain (211). These reticulocyte-derived

exosomes carry parasite proteins and are involved in antigen
Frontiers in Immunology 10
presentation. Mice immunized using purified exosomes produce

IgG antibodies that can recognize P. yoelii-infected RBCs and show

increased survival time and altered reticulocyte cell tropism of the

parasite (181). Furthermore, during P. vivax infection, parasites

invariably affect bone marrow CD71+ cells , inducing

dyserythropoiesis and ineffective erythropoiesis (212). Identification

and characterization of the reticulocyte receptor, metabolism, and the

underlying mechanisms involved in malaria may provide insights to

inform the development of novel antimalarial drugs and vaccines.
FIGURE 4

Mechanisms and immunoregulation effects of CECs.
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TABLE 5 Immunomodulatory effects of the CECs in diseases.

Disease or animal model Mechanisms Effects Ref.

Neonatal
Listeria monocytogenes infection
and Escherichia coli infection

ROS and ARG2

CECs in PBMCs suppress the
production of TNF-a by
monocytes and IFN-g by T cells
in vitro

(167, 168)

Bordetella pertussis infection ARG2

CECs in neonatal mouse spleen
inhibit the immune response
against B. pertussis infection in
vivo, and CD71+CD235a+ cells in
human cord blood inhibit T and B
cell function in vitro

(169, 170)

VISTA KO mice
VISTA, TGF-b, inhibition of the
Akt signaling pathway

Splenic CECs secret TGF-b to
promote CD4+ T cell
differentiation into Tregs

(171)

RRV infection Not mentioned Reduce TNF-a production (172)

Endotoxin challenge and
polymicrobial sepsis

Not mentioned
CECs do not modify
murine mortality

(173)

Pregnancy
CECs depletion in pregnant mice ARG2 and PD-1

Maternal CD71+ erythroid cells
inhibit allogeneic response to
promote fetomaternal tolerance

(174, 175)

Pregnant mice TGF-b-dependent mechanisms

TGF-b facilitates the differentiation
of CD34+ HSPCs into CECs
without impacting
HSPCs proliferation

(55)

Allogeneic mouse model and
IBD patients

VISTA, TGF-b, and ROS

CEC number decreased and CECs
express lower levels of inhibitory
molecules including VISTA, TGF-
b and ROS

(176)

Infection

HIV patients ROS

CECs enhances NF-kB in CD4+ T
cells to facilitate HIV infection.
CECs bind to HIV-1 via CD235a
and subsequently transfer the virus
to uninfected CD4+ T cells

(177)

Nosocomial infections and sepsis Not mentioned
Low levels of RBCs and high levels
of IL-6 and IFN-g may contribute
to the expansion of CECs

(178)

COVID-19 ARG2, ARG1, and ROS
CECs suppress TNF-a and IFN-g
secretion by CD4+ and CD8+T
cells in vitro

(179)

P. vivax infection Cytotoxic CD8+ T cells Reticulocytes highly express HLA-I (180)

P. yoelii infection Exosomes regulation

Reticulocytes in BALB/c mice
secrete exosomes carry parasite
proteins and are involved in
immune modulation.

(181)

Salmonella infection Myd88/TRIF Erythropoiesis occurs in the spleen (182)

Inflammation
T cell-induced colitis mouse phagocytosis-associated pathway

CECs suppress TNF-a expression
in red pulp macrophages in vitro

(183)

SoJIA patients ARG2?
Suppress the secretion of IL-1b,
IL-6, and IL-8 by monocytes

(184)

Chronic inflammation in
Turpentine-induced sterile abscess

Not mentioned
Inflammation impacts the late
stages of mammalian
erythroid development

(185)

Zymosan-induced
generalized inflammation

Heme-dependent activation of
SPI-C

Inflammatory signals induce stress
erythropoiesis to maintain
erythroid homeostasis

(79)

(Continued)
F
rontiers in Immunology
 11
 frontiersin.org

https://doi.org/10.3389/fimmu.2024.1466669
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Niu and Zhang 10.3389/fimmu.2024.1466669
4.3 CECs in inflammation

Inflammation is the automatic defense response to tissue injury, and

can be classified as acute and chronic, according to its duration.

Inflammation modifies bone marrow hematopoiesis towards innate

immune effector cells at the expense of lymphoid cells and erythrocytes

(79). Inflammatory cytokines, such as TNF-a, limit steady-state

erythropoiesis and promote granulopoiesis. Further, mature

granulocytes contact the central macrophage of EBIs and alter EBI

structures, leading to increased numbers of maturing granulocytes and
Frontiers in Immunology 12
fewer erythroid precursors (213). In chronic inflammation resulting

from sterile abscesses, erythropoiesis is impaired at Ter119+ stages of

erythroid development (185). Although inflammation inhibits

erythropoiesis in the bone marrow, inflammatory signals induce stress

erythropoiesis in the spleen, to maintain erythroid homeostasis.

Inflammatory signaling through TLRs enhances erythrophagocytosis

by splenic macrophages and augments expression of the transcription

factor, SPI-C. In turn, SPI-C couples with TLR signaling to promote the

expression of Gdf15 and Bmp4, which encode ligands that initiate the

expansion of stress erythroid progenitors in the spleen (79). The spleen is
TABLE 5 Continued

Disease or animal model Mechanisms Effects Ref.

Tumor
LLC patients and B16-F10 mouse ROS

CD45+ EPC accumulate in the
spleen and impair CD8+ T
cell function

(164)

HCC patients
(CD45+ CECs)

IL-10, TGF-b, and ROS

Suppress T cells production and
proliferation through the NF-kB,
STAT-3, TGF-b, and ROS
pathways in a paracrine and cell-
cell contact manner

(165)

HCC patients and tumor-bearing
mice
(CD45- CECs)

Artemin

Splenic Ter-Cells secret
neurotrophic factor artemin in the
blood and promotes tumor
progression by inducing Caspase-9
Thr125 phosphorylation and
upregulating TRIOBP and
ITGB5 expression

(186)

Virus-associated solid tumors
patients and mouse
with melanoma

ROS, PD-L1, PD-L2, VISTA, and
TGF-b

CD45+CECs express more ROS,
PD-L1/PD-L2, and VISTA to
suppress T cell function through
TGF-b

(187)

Patients with advanced tumors and
B16-F10 lung metastasis
mouse model

PD-L1, PD-L2, iNOS, ARG1,
and CD49

EDMCs inhibit CD8+ T cell
proliferation and IFN-g
production, and reduce the anti-
PD-1/PD-L1 treatment efficacy

(166)

Anemia EPOR-HM mice EPO CD45+ CECs expansion (188)

COVID-19 patients Lysis and phagocytosis
Infected/damaged CECs are
eliminated by lysis or/
and phagocytosis.

(179)

Anemia patients without
proliferative diseases and
NHA mice

ARG and ROS

In mice, CD45+CECs express high
levels of ARG2 and ROS, CECs
expansion-induced L-arginine
depletion suppresses T-cell
responses in the spleen. In
humans, CECs expand and express
ARG1 and ARG2 that suppress
IFN-g production by T cells

(189)

LLC patients and B16-F10 mouse ROS

CD45+ CECs are robust ROS
producers and suppressors of
TCR-stimulated CD8+ T
cell proliferation

(164)

P. falciparum or P. vivax
infected patients

Uninfected reticulocytes retention
in the spleen

Uninfected reticulocytes congestion
in the red-pulp

(190)

P. chabaudi AS infected mice Insufficient erythropoiesis
EPO-induced proliferation of early
EPOR+ erythroid progenitors
is suppressed

(191)

MDS and CKD patients IL-22
BM erythroid precursor cell
frequency and number decrease

(192)
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the largest secondary lymphoid organ, and has a wide range of

immunologic functions alongside its roles in erythropoiesis, and

splenic erythropoiesis alters the histological structure of spleen to

become rich in granulomatous lesions and devoid of clear separation

between red and white pulp (214).

Autoimmune diseases comprise a range of disorders in which the

immune response to self-antigens results in tissue damage or

dysfunction (215). In patients with autoimmune diseases, CECs can

inhibit inflammatory responses to prevent excessive inflammation and

injury. Experimental autoimmune encephalomyelitis (EAE) is an

autoimmune disease mainly mediated by specific sensitized CD4+ T

cells, which serves as the best experimental model reflecting the

autoimmune pathogenesis of human multiple sclerosis (216), and

iron-deficient mice fail to develop EAE (217). Management using

EPO or its non-erythropoietic derivatives consistently decreases EAE-

associated TNF-a, IL-1b, and IL-1Ra production in the spinal cord,

and IFN-g by peripheral lymphocytes, which ameliorates chronic

murine EAE (218). IBD inflammation spreads systemically and can

cause complications, such as arthritis, cachexia, and anemia. In a

CD45-deficient Rag1-deficient mouse model of T cell-induced colitis,

an increased number of erythroid progenitors are found in the spleen.

These CECs can suppress TNF-a expression in red pulp macrophages

in a phagocytosis-dependent manner (183). Further, erythropoiesis-

related genes are upregulated in PBMCs of patients with systemic-onset

juvenile idiopathic arthritis (SoJIA) (184), while active SoJIA-driven

CECs co-cultured with healthy donor monocytes suppress IL-1b, IL-6,
and IL-8 secretion. Although ARG2 is the top upregulated gene in

SoJIA-driven CECs, cytokine production from monocytes remains

suppressed when they are treated using an arginase inhibitor (184).
4.4 CECs in tumor

Tumors are complex ecosystems, comprising tumor cells and

various non-neoplastic cells (219), where non-neoplastic cells in the

tumor microenvironment play critical roles in cancer development.

Targeting the tumor microenvironment is considered a promising

approach for cancer intervention (220). CECs are abundant in both

the tumor microenvironment and the circulation and their levels

can be used to predict tumor recurrence (165).

Tumor-associated myeloid cells include myeloid-derived

suppressor cells (MDSCs), tumor-associated macrophages

(TAMs), and neutrophils (221), which are important immune cell

populations in the tumor microenvironment that are crucial for

immune checkpoint blockade efficacy (222). MDSCs can be divided

into at least two major subsets: mononuclear MDSCs (M-MDSCs,

CD11b+Ly6G-Ly6Chigh) and polymorphonuclear MDSCs (PMN-

MDSCs, CD11b+Ly6G+Ly6Clow) (223), where M-MDSCs exert

more robust immunosuppression than PMN-MDSCs. Further,

erythroid cells can differentiate into myeloid cells in tumors and

mediate immunosuppression. Lineage tracking in patients with

cancer and tumor-bearing mice revealed that > 30% of erythroid

progenitor cells lose their developmental potential and switch to the

myeloid lineage, and that these erythroid differentiated myeloid

cells (EDMCs) are similar to their myeloid-originated counterparts

at the transcription level (166). The phenotypes of EDMCs are
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CD45+CD235a+CD71+CD11b+CD33+HLA-DR- in patients with

cancer and CD45+Ter119+CD71+CD11b+Gr1+ in tumor-bearing

mice. EDMCs express more immune inhibitory molecules,

including PD-L1, PD-L2, iNOS, ARG1, and CD49, than MDSCs,

which may endow EDMCs with the ability to inhibit CD8+ T cell

proliferation and IFN-g production. Accordingly, EDMCs reduce

the efficacy of anti-PD-1/PD-L1 treatment (166).

In tumors, CD45+ CECs exert a strong immune suppressive

function, mainly by regulating T cells. In Lewis lung cancer, CD45+

CECs are induced by tumor growth-associated extramedullary

hematopoiesis (EMH) in the spleen and their transcriptome

closely resembles that of MDSCs. As robust immunosuppressors,

CD45+ CECs hinder both CD8+ T cell priming in the spleen and

effector function in peripheral tissues (164). In hepatocellular

carcinoma (HCC) tissues, CD45+ CEC numbers are higher than

those of CD45- CECs. Further, CD45+ CECs from patients with

HCC inhibit CD4+ T cell proliferation and differentiation and

suppress CD8+ T cell proliferation and cytotoxicity by generating

factors including ROS, IL-10, and TGF-b (165). In patients with

virus-associated solid tumors, substantially greater expansion of

CECs occurs in the blood compared with that in healthy controls.

CD45+ CECs have more immunosuppressive properties than their

CD45- counterparts, mediated by higher levels of ROS, PD-L1/PD-

L2, and VISTA. Further, the abundance of CECs in the circulation

may be associated with anemia (187). Moreover, CECs in mice with

melanoma secrete artemin, while this is not the case for VISTA+

CECs in patients with virus-associated solid tumors (187).

CD45- CECs have lower immunosuppression abilities than their

CD45+ counterparts; however, they also play a crucial role in promoting

tumor progression. One population of tumor-induced erythroblast-like

cells (CD45-Ter119+CD71+, Ter-cells) derived from MEPs (186, 224),

accumulate in the spleen of patients with terminal cancer and secret

artemin, where artemin is a neurotrophic factor with an important role

in cancer progression through its induction of Caspase-9 Thr125

phosphorylation, to maintain cell survival, and upregulation of

TRIOBP and ITGB5 expression, to promote invasion. Blocking

artemin, or its receptor, GFRa3, signaling inhibits HCC growth in

vivo (186). In this context, the phenotype of Ter-cells is CD45-Ter119+

CD71+CD41+CD44+, and they mainly exist in the spleen of advanced-

tumor bearing hosts; however, a few can also be found in the tumor.

TGF-b and Smad3 activation contribute to Ter-cell generation.

Moreover, serum artemin levels in patients with HCC are correlated

with poor prognosis (186).
4.5 CECs in anemia

Anemia is a common blood disorder characterized by a decreased

number of RBCs in the peripheral blood, which is defined as a

hemoglobin level less than the 5th percentile for age (225). Anemia

is the main cause of EPC expansion by increasing EPO concentration

in response to oxygen deficit (226). In mice with anemia, CD45+ CECs

expand in the spleen and express high levels of ARG2 and ROS. CEC

expansion-induced L-arginine depletion suppresses T cell responses. In

patients with anemia, CECs expand in the peripheral blood and express

ARG1 and ARG2, which suppress IFN-g production by T cells (189).
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Furthermore, human erythroleukemia-derived erythroid cell lines,

including K562, HEL92.1.7, and TF-1, which express multiple

erythroid-lineage markers, such as CD71 and CD235a, suppress T

cells in an ARG- and ROS-dependent manner (189). Serum levels of

IL-22 are increased in patients with anemia secondary to chronic

kidney disease and myelodysplastic syndromes, and the IL-22 receptor,

IL-22RA1, is present on erythroid precursors, with blockade of IL-22

signaling alleviating anemia in mice (192).

Anemia is also a common feature of sepsis (227). In patients

with sepsis, RBC levels are negatively associated with CD45+ CEC

frequency, suggesting that anemia may lead to CEC expansion

through the EPO pathway (178). EPO can induce the expansion of

CD45+ CECs, while EPO neutralization prevents infection-related

CEC accumulation (188). In patients with COVID19, SARS-CoV-2

infection is associated with lower blood oxygen levels and the

numbers of CECs in the blood are negatively correlated with

hemoglobin levels; this may be due to the elimination of infected/

damaged CECs by lysis and/or phagocytosis. Dexamethasone

enhances the maturation of CECs to RBCs by downregulating

ACE2 and TMPRSS in a dose-dependent manner (179).

In addition, anemia is very common among patients with

cancer and tumor bearing animal models; approximately 30%–

90% of patients with cancer have varying degrees of anemia,

depending on the type of cancer (228). Immunosuppressive CECs

can be detected in patients with cancer and anemia. Further,

hematocrit, HGB levels, and mature RBC counts are decreased in

the blood of mice after prolonged tumor-bearing, and HGB is

negatively correlated with numbers of splenic CECs. Tumor-

initiated anemia and EMH may act synergistically to cause

splenic CEC accumulation (164): anemia induces EMH, whereas

terminal differentiation is blocked in the presence of tumors. RNA

sequencing of CD45+ and CD45- CECs generated by anemia

induced in different ways revealed that CD45+ CECs differ

significantly from their CD45- counterparts, particularly regarding

signature genes defining the erythrocyte l ineage and
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immunosuppression. Notably, ROS and NOX-2 are highly

expressed in CD45+ CECs, particularly those from tumor-bearing

individuals (164). EPO has been widely used to overcome hypoxia

in patients with cancer. Recombinant human EPO and

erythropoiesis-stimulating agents can promote EPC differentiation

and maturation to RBCs, and thereby effectively treat anemia;

however, these agents do not prolong the survival of patients with

cancer (229–231). Immune checkpoint inhibitors (ICIs) targeting

co-inhibitory molecules, including PD-1, PD-L1, and cytotoxic T

lymphocyte-associated antigen 4 (CTLA-4), have been widely

applied in the therapy of various tumors (232); however, EPO

treatment in patients receiving anti-PD-L1 therapy reduce the

therapeutic effects of this monoclonal antibody (187); the

underlying mechanism involves EPO induction of continual

differentiation of CECs into EDMCs, which mediate systemic

immunosuppression against immune surveillance (166).
5 Future applications

5.1 Manipulation of CECs

Erythroid cells participate in several immune conditions and have

important roles in regulating immune responses. Further, CECs may

have beneficial effects in fetomaternal tolerance and autoimmune

diseases; however, in contexts including infection, tumor, and

anemia, CECs appear to exert detrimental effects (Table 6). Thus,

further understanding of the immune regulatory mechanisms used by

erythroid cells can provide new insights into pathogenic mechanisms,

and CECs may serve as a novel target in immunological therapies

(Figure 5). CECs can have opposite effects in different diseases, and

different measures could be selected to manipulate CECs, according to

context; for example, promotion/inhibition of CEC expansion,

inhibition/promotion of CEC differentiation, and inhibition/

promotion of CEC immunosuppressive properties.
TABLE 6 Immunomodulatory effects of the CECs.

Clinical scenario CECs Effect Outcome

Neonatal infection promoted Immunosuppression Detrimental

physiological abundant Immunosuppression and fetomaternal tolerance Beneficial

Pregnancy IBD decreased Impaired immunosuppressive functions Beneficial

physiological promoted Enhance the erythropoiesis and fetomaternal tolerance Beneficial

Infection virus promoted Immunosuppression and facilitate to infection Detrimental

bacteria promoted Immunosuppression Detrimental

malaria host Exosomes from infected reticulocytes modulate immune response —

Inflammation inflammation ↓↑ Impaired immunosuppressive functions Beneficial

Autoimmune diseases decreased Impaired immunosuppressive functions Beneficial

Tumor CD45+CECs promoted Immunosuppression Detrimental

CD45-CECs promoted Artemin secretion to promote tumor growth Detrimental

Anemia promoted Immunosuppression Detrimental
“↓↑”: Bone marrow erythropoiesis decreased and spleen erythropoiesis promoted.
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Under normal conditions, CECs suppress the immune response

to protect tissue from immunologic injury; however, CECs may be

impaired in autoimmune diseases and chronic inflammation. Thus,

promoting CEC expansion may be beneficial in inflammatory

disorders. In contrast, in patients with tumors, infection, or

anemia, CECs expand and arrest at an early stage, to inhibit

immune activity; therefore, preventing CEC expansion and

promoting CEC differentiation may be promising therapies to

attenuate immune evasion and enhance immune responses in

these contexts.

5.1.1 Targeting CEC expansion signals
EPO is crucial in regulating the late stages of erythropoiesis, and

EPO and EPO derivatives are widely used to treat different types of

anemia (233–235). Clinical studies have demonstrated that EPO

can significantly improve the management of anemia in patients

with chronic renal insufficiency (236). Further, EPO administration

for patients with cancer significantly improves hematological

responses and decreases the need for RBC transfusion (237);

however, caution is required in patients with cancer and anemia

as, while EPO may influence the curative effect of ICI therapy by

restoring Ter-cell numbers and serum artemin concentration (166),

EPOR are present on various types of tumor cell and tumor cell

lines, and EPO/EPOR may contribute to tumor progression and

metastatic progression (238). EPO can also strongly suppress

immune system activation and protect injured tissues from

apoptosis, suggesting that it may be a promising therapeutic

target in autoimmune diseases, allergy, and organ transplantation.

As EPOR is expressed on various immune and tumor cells, the

interactions between EPO and these cell types requires

further study.

Other factors involved in stress erythropoiesis can also be

targeted to modulate CEC expansion. GCs are established

immunosuppressive steroid molecules secreted by the adrenal

gland and regulated by the hypothalamic-pituitary-adrenal axis,

and are widely used in the treatment of various immune disorders

(239, 240). GCs can also be used to treat anemia by modeling

human stress erythropoiesis, as they can both induce monocyte

differentiation to EBI macrophages (241) and directly target EBI
Frontiers in Immunology 15
macrophages to promote erythroid expansion (242). Further, GCs

can aid in the treatment of EPO-resistant anemia by stimulating

progenitor self-renewal (243), while, in healthy humans, GC

injection also accelerates erythropoiesis and increases total

hemoglobin mass, which may help to prevent altitude sickness

(244). Although GC application in immune disorders has been

widely studied, whether GCs can be used to modulate CECs in these

diseases awaits further in-depth investigations.

5.1.2 Promoting CEC differentiation
CECs expand and arrest in the early stages of maturation in

patients with cancer and suppress immune responses. Therefore,

promoting CEC differentiation is a novel therapeutic strategy to

diminish the tumor-promoting effects of CECs.

TGF-b triggers differentiation arrest and promotes CEC

expansion, as well as functioning as the main effector cytokine of

CECs that regulate immunosuppression (245). Further, TGF-b and

downstream Smad3 activation are important in splenic Ter-cell

generation (186). Inhibitors targeting TGF-b and Smad2/3

signaling can stimulate CEC differentiation and promote their

maturation, thereby neutralizing their suppressive effects (202,

246), and have been proven effective in mouse models of cancer.

In addition, TGF-b-promoted immune escape of carcinoma cells

can be flexibly treated using ionizing radiation combined with

hyperthermia and ICIs. Numerous anti-cancer pharmacological

interventions targeting TGF-b have undergone pre-clinical and

clinical stage studies; however, although several anti-TGF-b-based
immunotherapies were effective in preclinical trails (247–249), the

results of subsequent clinical trials were disappointing, due to low

efficacy and safety issues (250). Thus, further research to explore

optimal combinations with other chemotherapies and improve

specificity is needed.

p38 MAPK signaling is important in regulating erythropoiesis,

and restrains EPC differentiation by regulating active GATA-1

degradation (251). Further, p38 MAPK signaling contributes to

several biological functions, including inflammation and

tumorigenesis, as well as cell proliferation, differentiation,

apoptosis, and senescence (252–254). Therefore, p38 signaling

inhibitors may be beneficial in patients with cancer as they have
FIGURE 5

Manipulation of the CECs.
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anti-tumor effects and can promote CEC maturation; however,

similar to TGF-b inhibitors, although some p38 MAPK inhibitors

have completed phase I and II trials, the results of clinical trials have

been unsatisfactory due to high levels of systemic toxicity (254).

Thus, further research is warranted to facilitate more

comprehensive understanding of p38 MAPK signaling.

mTOR belongs to the PI3K-related kinase family of serine/

threonine protein kinases and acts with Forkhead-box-class-O3

(FoxO3) to regulate erythropoiesis (255). FoxO3 inhibits mTOR

and promotes CEC differentiation by inducing cell cycle exit of

early-stage EPCs during ineffective erythropoiesis (255). mTOR

inhibitors or FoxO3 inducers may be used to reduce ineffective

erythropoiesis by promoting CEC maturation and inhibiting CEC

proliferation (256); however, first-generation mTOR inhibitors

showed limited sensitivity (257). Additional research is needed to

enhance this type of therapy and overcome resistance.

Caspases are negative regulators of erythropoiesis through

caspase-mediated degradation of the transcription factor, GATA-

1 (258). In chronic inflammation, inflammasomes activate caspase-

1 and skew the differentiation of HSPCs toward myeloid cells,

resulting in neutrophilia and anemia. Caspase-1 inhibition rapidly

upregulates GATA1 and promotes HSPC differentiation into

erythroid cells (259). Caspase-1 is also involved in inflammatory

processes and autoinflammation; therefore, it is of great interest to

evaluate the effects of caspase inhibitors, such as colchicine (260),

VRT-18858, VRT-043198, and sulfasalazine (261), on CEC

expansion and differentiation in inflammation-associated anemia

and autoimmune diseases.

Iron, a necessary component of hemoglobin and myoglobin, is

essential in hemoglobin synthesis and erythroid cell proliferation

(60), and iron deficiency leads to anemia. Thus, targeting iron and

its metabolism is an effective way to ameliorate ineffective

erythropoiesis and reduce accumulation of early-stage CECs.

Several new agents to modulate iron metabolism, such as anti-

hepcidin antibody (LY2787106) (262), anti-ferroportin antibody

(LY2928057) (263), and anti-matriptase-2 antibody (RAP-536L and

RLYB331), have been investigated (264), and are all beneficial in the

treatment of anemia; hence, drug combinations incorporating these

agents represent a potential superior option. RLYB331 prevents

iron overload, ameliorates ineffective erythropoiesis, and limits the

formation of toxic a-chain, while RAP-536L efficiently corrects

anemia in b-thalassemic model mice. Combination treatment with

RLYB331 and RAP-536L integrates their advantages, including

hepcidin upregulation, alleviation of iron overload, and

amelioration of ineffective erythropoiesis (264). Moreover,

inflammation-inducible cytokines can directly suppress CEC

differentiation as well as blocking intestinal iron absorption and

causing iron-restricted erythropoiesis (265). Thus, therapies

targeting pro-inflammatory cytokines can also promote CEC

differentiation by increasing iron availability.

5.1.3 Modulation of CEC
immunosuppressive properties

CECs modulate immune responses through multiple

mechanisms, including L-arginine depletion by ARG, ROS,
Frontiers in Immunology 16
cytokines, and immune checkpoints. ARG inhibitors, such as

boronic acid derivatives or L-arginine supplementation, may

diminish the inhibitory effects of CECs on immune responses

(189, 266). Similar to ARG inhibitors, targeting of ROS-

generating proteins, including NOX enzymes, or use of a ROS

inhibitor, such as N-acetylcysteine, may be helpful therapeutic

strategies for autoimmune conditions or cancer (267). Further,

targeting cytokines secreted by CECs is a promising strategy to

attenuate CEC-induced immune evasion. TGF-b superfamily

inhibitors can both ameliorate CEC suppressive effects and

cooperate with EPO to promote RBC production and alleviate

anemia (268); neutralization of TGF-b also reduces CEC

expansion. Thus, targeting TGF-b signaling is a potentially

promising strategy; however, as discussed above, a number of

challenges are yet to be overcome. Late-stage CECs secrete

artemin to promote tumor growth and invasiveness, and anti-

artemin neutralizing antibody can inhibit tumor growth and

increase the survival of tumor-bearing mice. Thus, the clinical

utility of targeting artemin or related signaling pathways warrants

exploration. Targeting immune checkpoints has revolutionized

clinical oncology and antibodies targeting the PD-1/PD-L1 axis

have proven effective in cancer therapy. CECs mediate immune

response suppression by the PD-L1/PD-1 axis, and ICIs may, at

least partially, suppress the tumor-promoting effects of CECs.

Importantly , mechanisms by which CECs induce

immunosuppression also overlap with those used by many other

immunomodulatory cells, including Tregs, MDSCs, and TAMs,

among others. Therefore, therapeutic strategies targeting these

mechanisms to modulate the properties of CECs may also influence

other immunomodulatory cells, leading to unexpected effects.

5.1.4 Splenectomy and radiation
Splenomegaly occurs in patients with anemia or advanced

cancer, where the spleen becomes a central organ of EMH, which

generates suppressive cells, including CECs and myeloid cells (269).

Splenectomy is associated with longer hospital stay and longer time

to chemotherapy in patients with cancer but has no impact on

overall or disease-free survival (270); however, for patients with

advanced epithelial ovarian cancer or with splenic involvement,

spleen resection is associated with longer survival (271, 272).

Moreover, splenectomy leads to the depletion of MDSCs and

promotes the activation of anti-tumor immunity (269), hence it

may be beneficial for some patients with advanced cancer. Although

there have been several clinical studies of splenectomy, more

preclinical and clinical investigations are required.

Radiation is often used as an adjuvant therapy for tumors, and

exhibits substantial versatility and efficacy in cancer treatment (273).

Local irradiation can significantly decrease tumor-induced Ter-cell

accumulation in the murine spleen (224). Further, patients with

cancer who received local tumor ionizing radiation (IR) alongside

PD-1 therapy exhibited IR-mediated reduction of Ter-cells, artemin,

and GFRa3 (an artemin signaling partner associated with tumor

regression) (224). Hence, radiation is an effective cancer treatment,

and understanding the interactions when immunotherapies are

combined with radiotherapy warrants further study.
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5.2 Future applications of RBCs

Targeting RBCs is an underdeveloped therapeutic strategy;

however, with their strong ability to contribute to material

exchange and high immunocompatibility, RBCs have potential as

drug delivery carriers (274, 275). RBC membrane-coated polymeric

nanoparticles can effectively deliver doxorubicin in a mouse model

of lymphoma (275). Further, RBC extracellular vesicles (RBCEVs)

are taken up by leukemia cells with high efficiency, and may serve as

a valid vehicle to deliver antisense oligonucleotides to leukemia cells

(274). RBCEVs are also used as a vehicle for osteoclast-targeted

delivery of anti-miR-214 oligonucleotides. TBP-CP05 is a

functional peptide which binds to both CD63 on RBCEVs and

receptors on osteoclasts, and TBP-CP05 binds with RBCEVs

through CP05 and endows them with osteoclast-targeting ability.

Intravenous injection of osteoclast-targeting RBCEVs significantly

inhibits osteoclast activity, elevates osteoblast activity, and improves

bone density in osteoporotic mice (276). Hence, RBCs have huge

potential in cancer and clinical therapy as a novel type of

nanoparticle-based RNA drug vehicle.

RBCs also have potential applications in disease diagnosis,

prognosis, and monitoring (277). A considerable fraction of cell-

free mtDNA, which is associated with trauma, autoimmune disease,

sepsis, malignancy, cellular injury, and organ dysfunction, binds to

the outer surface of RBCs and can serve as a biomarker (278–280).

Furthermore, long DNA fragments which cover most nuclear and

mitochondrial genome regions can be detected in RBCs from

patients with cancer (281).
6 Perspectives on erythroid
cell research

Erythroid cells possess complex immunoregulation functions at

different stages of their development. Overall, the available evidence

demonstrates the broad range of immunological properties

possessed by these most abundant, but less appreciated, cells.

Further studies should clarify the roles of erythroid cells at

different stages of development and in various diseases and their

underlying mechanisms, which could inform the development of

new therapeutic strategies. Furthermore, recent studies have
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revealed erythropoiesis in the skull and dura (282, 283), and

tissue-specific functions in these contexts are also of interest.
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