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A novel hypoxia- and lactate
metabolism-related prognostic
signature to characterize the
immune landscape and predict
immunotherapy response
in osteosarcoma
Yizhuo Wang1†, Xin Wang2†, Yang Liu1, Jiayuan Xu1,
Jiyuan Zhu3, Yufu Zheng1 and Quan Qi1*

1The Second Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University,
Harbin, China, 2The Fourth Department of Medical Oncology, Harbin Medical University Cancer
Hospital, Harbin, China, 3Department of pathology, First Affiliated Hospital of Harbin Medical
University, Harbin, China
Background: Immunotherapy has shown considerable promise in cancer

treatment, yet only a minority of osteosarcoma patients derive benefits from

this approach. Hypoxia and lactate metabolism are two predominant

characteristics of the tumor microenvironment. These features are crucial for

molding the immune landscape and thus have the potential to act as predictive

indicators for immunotherapy response.

Methods: Prognostic modeled genes were identified through univariate and

multivariate Cox regression as well as LASSO regression analyses. The tumor

microenvironment was evaluated using ESTIMATE, CIBERSORT, and ImmuCellAI

analyses. Tide prediction and expression of immune checkpoints, MHC

molecules, chemokines, interleukins, interferons, receptors, and other

cytokines were utilized to estimate immunotherapy efficacy. Single-cell

analysis was performed to demonstrate the expression of modeled genes

among various immune cell types. Experimental validation was carried out to

verify the expression and functions of SFXN4 and SQOR.

Results: A potent signature was constructed with 8 genes related to hypoxia and

lactate metabolism, including MAFF, COL5A2, FAM162A, SQOR, UQCRB, SFXN4,

PFKFB2 and COX6A2. A nomogram incorporating risk scores and other clinical

features demonstrated excellent predictive capacity. Osteosarcoma patients

with high-risk scores exhibited poor prognosis and more “cold” tumor

characteristics. According to the ESTIMATE algorithm, these patients displayed

lower immune, stromal, and ESTIMATE scores, partially attributed to inadequate

infiltration of key immunocytes. The Ciborsort analysis similarly indicated that

high-risk individuals had diminished infiltration of critical anti-tumor immune

cells such as Cytotoxic T cells, CD4+ T cells, and NK cells. The low expression

levels of certain immune checkpoints, MHC molecules, chemokines,

interleukins, interferons, receptors, and other cytokines in high-risk cases

suggested their unsatisfactory responses to immune treatment. Tide prediction

further demonstrated that fewer individuals classified as high risk may exhibit
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sensitivity to immune checkpoint inhibitor therapy. Notably, SFXN4 was found to

be highly expressed in osteosarcoma tissues and cells; it promoted the growth,

migration, and invasion of osteosarcoma cells, while SQOR had the

opposite effect.

Conclusion: Our research has developed a robust hypoxia- and lactate

metabolism-related gene signature, providing a solid theoretical foundation for

prognosis prediction, classification of “cold” and “hot” tumors, accessing

immunotherapy response, and directing personalized treatment for osteosarcoma.
KEYWORDS

hypoxia, lactate metabolism, osteosarcoma, gene signature, immune checkpoint
inhibitors, immunotherapy, tumor microenvironment, single-cell sequencing
1 Introduction

Osteosarcoma is a highly aggressive bone sarcoma of

mesenchymal origin, predominantly occurring in young

individuals and often leading to mortality as a result of lung

metastases (1–3). The conventional therapeutic methods routinely

applied in osteosarcoma, including neoadjuvant chemotherapy,

surgical resection, and postoperative adjuvant chemotherapy, have

remained largely unchanged for many years (4–7). Compared to

patients with local diseases whose survival rate at five years reached

65-70% following these treatments, those with metastatic disease

had a significantly lower survival rate of only 20% (8–10). Hence, it

is urgent to identify reliable tools for accurate initial diagnosis,

introduce novel therapeutic strategies for osteosarcoma, and
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establish methods for ongoing monitoring of treatment

efficacy (11).

Hypoxia signifies a reduction in the tissue partial pressure of

oxygen [ptiO (2)], which is a critical characteristic of the tumor

microenvironment (TME) commonly observed in multiple solid

tumors (12). Any factor triggering an imbalance between the high

proliferative capacity of cancer cells and oxygen availability, such as

overlong diffusion distances and structural abnormalities in vascular

vessels, can contribute to hypoxia (13). Notably, tumors can adapt to

hypoxic conditions to promote growth, aggressiveness, angiogenesis,

metastatic potential, and resistance to treatment through

transcription factors, especially hypoxia-inducible factor 1a
(HIF1a) (14). Given the impact of hypoxia on the malignant

biological function of osteosarcoma, identifying key signature genes

within the hypoxia gene set could facilitate the development of

therapies targeting hypoxia-induced tumorigenesis in osteosarcoma.

Lactate is more than a mere metabolite and also acts as a

signaling molecule whose intracellular and extracellular

concentrations rise because of the essential effect of aerobic

glycolysis in energy production (15, 16). Hypoxia invariably

triggers lactate production, which subsequently accumulates in

the TME, in turn facilitating hypoxic response (17). In addition,

Zhang et al. has identified lactylation as a significant epigenetic

modification modulating the transcription of numerous oncogenes

and tumor suppressor genes, thereby influencing tumor progression

(18). Several studies have highlighted the impact of lactic acid on

tumor cell progression, metastasis, epithelial-mesenchymal

transition, angiogenesis, and immune evasion (19–21).

Considering the multifaceted roles of lactate, a comprehensive

understanding of the mechanisms by which lactate metabolism-

related genes operate in osteosarcoma will supply valuable insights

into tumor reprogramming and therapeutic strategies.

Metabolic disorders in cancers are marked by hypoxia and

subsequent elevated levels of lactate (22). This interplay contributes

to the creation of a restrictive TME dampening the efficacy of

immune effector cells, and ultimately weakens the immune system’s
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ability to combat tumors (23). Hypoxia plays a vital role in promoting

tumor immune evasion by upregulating certain immunosuppressive

immune checkpoints, cytokines, growth factors, and interleukins to

accelerate tumor progression (24). Furthermore, hypoxia hinders

immune response by reducing infiltration and function of CD8+ T

cells, impairing maturation and activities of dendritic cells coupled

with natural killer cells, evoking M2-like polarization of tumor-

associated macrophages, and boosting regulatory T cells and

myeloid-derived suppressor cells activities (25, 26). Simultaneously,

lactate augments antitumor immunity by driving M2 polarization,

enhancing stemness of CD8+ T cells, and promoting PD-1 expression

in regulatory T cells (27–29).

In this study, our objective was to comprehensively elucidate the

heterogeneity of the TME and precisely predict the effects of

immunotherapy in osteosarcoma. In terms of the impact of

hypoxia and lactate metabolism on tumor immunity, we

identified 8 genes related to hypoxia and lactate metabolism as

potential predictive markers and developed a hypoxia- and lactate

metabolism-related gene signature that held promise for clinical

application. Osteosarcoma patients stratified based on this

prognostic model exhibited distinct survival outcomes, TME

characteristics, immune cell infiltration, expression levels of

immune checkpoints, immune response, and sensitivity to drugs.
2 Materials and methods

2.1 Data source and preprocessing

Transcriptional expression data and corresponding clinical

information of osteosarcoma samples were sourced from the

TARGET (https://ocg.cancer.gov/programs/target) database and

GEO (http://www.ncbi.nlm.nih.gov/geo/) database. Transcriptome

data of para-cancerous tissues were retrieved from the GTEx

(https://xenabrowser.net/datapages/) database. Hypoxia-related

genes (HRGs) and lactate metabolism-related genes (LMRGs)

were obtained from The Molecular Signatures Database (MSigDB,

https://www.gsea.msigdb.org/gsea/msigdb/index.jsp). By exploring

the keywords “hypoxia” and “lactate”, we found 5 priority LMRG

datasets and 7 major HRG datasets in the MSigDB database. After

filtering out duplicate genes in the identified LMRG and HRG

datasets, a total of 284 LMRGs and 493 HRGs were selected for the

forthcoming study (Supplementary Table S1).
2.2 Identification of DEGs, DELMRGs
and DEHRGs

The R package “limma” was utilized to screen differentially

expressed genes (DEGs) meeting the criteria of absolute fold change

greater than 2 and p values less than 0.05. Differentially expressed

hypoxia-related genes (DEHRGs) were determined by intersecting

DEGs with HRGs, while differentially expressed lactate metabolism-

related genes (DELMRGs) were recognized by intersecting DEGs

with LMRGs.
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2.3 Development of a hypoxia- and lactate
metabolism-related gene signature

Univariate Cox regression analysis was conducted based on the

R package “survival” to pick out meaningful candidate genes

associated with the overall survival time of patients among

DELMRGs and DEHRGs. Genes were deemed statistically

significant if their p values were less than 0.05. To mitigate

overfitting and refine gene selection, the least absolute shrinkage

and selection operator (LASSO) Cox regression analysis was

performed. Finally, a total of 8 genes were chosen for inclusion in

the gene signature based on multivariate Cox regression analysis.
2.4 Derivation of the prognosis classifier

The following equation was used to determine the risk score:

risk score = (0.6049967×UQCRB) + (-0.4744143×SQOR) +

( 0 . 4 0 6 4 6 87×COL5A2 ) + ( 0 . 5 1 1 4 6 36×FAM162A ) +

(0.8507392×SFXN4) + (-1.187998×PFKFB2) + (0.4085068×MAFF) +

(0.2279495×COX6A2). Subsequently, the risk score of each

osteosarcoma sample in the three datasets were calculated. In

accordance with the median risk score of each database, the

osteosarcoma samples were then stratified into two groups: low-risk

and high-risk.
2.5 Survival analysis and measurement of
predictive ability

The R package “survminer” was utilized for conducting Kaplan-

Meier survival analysis to compare survival between the two risk

groups using the optimal cutoff value of gene expression. The

prediction performance of this model was appraised by

employing the “timeROC” package to generate receiver operating

characteristic (ROC) curves and compute the corresponding area

under the curve (AUC) values.
2.6 Construction of the
prognostic nomogram

A nomogram was organized to predict the 1-, 3-, and 5-year

survival rates of osteosarcoma patients. The predictive accuracy of the

nomogram was rated using ROC curves, C-index, and calibration

curves. The net benefit of the nomogram and other clinical

characteristics was assessed by Decision curve analysis (DCA).
2.7 Functional annotation enrichment

The R package “clusterProfiler” was utilized for conducting GO

functional enrichment analysis, while the DAVID (https://

david.ncifcrf.gov/summary.jsp) online database was searched for

KEGG functional enrichment analysis. The top 10 results from the
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GO functional enrichment analysis in terms of 3 distinct aspects

were selected based on smaller p values. Similarly, the top 10 results

from the KEGG analysis were also chosen. Bar charts and bubble

charts were visualized using the “ggplot2” package.
2.8 Evaluation of tumor
microenvironment pathways

The 29 pathways related to the tumor microenvironment

(TME) were initially identified in a previous study (30).

Subsequently, the R package “clusterProfiler” was used to

calculate single-sample gene set enrichment analysis (ssGSEA)

scores to quantify the pathway activity. Then, we identified

statistically significant associations among the various TME

pathways. The “ggcor” package was utilized to unmask the

correlation between risk scores and the TME.
2.9 Immune status analyses

The immune cell abundance identifier (ImmuCellAI) was

employed to evaluate the infiltration levels of 24 immune cell

types in the TARGET database and GSE21257 dataset.

Additionally, the CIBERSORT algorithm was conducted to

appraise the infiltration abundance of 22 immune cell types. The

correlation analysis was for investigating the relationship between

the expression of the 8 HLMRGs and cell infiltration inferred from

ImmuCellAI and CIBERSORT algorithm. Moreover, four key

indicators of the tumor microenvironment components were

evaluated through the “estimate” R package.
2.10 Immunotherapy and molecular
therapy response prediction

Chemokines, interleukins, interferons, receptors, and other

cytokines were sourced from a published article (31). The TIDE

online tool was employed to forecast potential clinical response to

immunotherapy in osteosarcoma patients. A higher TIDE

prediction score typically indicates increased immune evasion by

the tumor and reduced likelihood of positive response to immune

checkpoint inhibitors (ICIs). Genes associated with T-cell-inflamed

gene expression profile (GEP), Th1/IFNg gene signature, and

cytolytic activity were obtained from a prior study and their

scores were computed using the “ssGSEA” algorithm to predict

response to immune checkpoint therapy (30).
2.11 Drug sensitivity analysis

The diversity in medication sensitivity was investigated by

conducting a comparison of the IC50 values of more than 100

chemotherapeutic agents through the R package “pRRophetic”.

Setting a significance threshold of p smaller than 0.005, we
Frontiers in Immunology 04
identified several efficacious chemotherapy agents in both

risk groups.
2.12 Single-cell analysis

The scRNA sequence matrix was imported using the R package

“Seurat.” To acquire high-quality scRNA-seq data, specific filtering

conditions were applied for every cell: only cells with over 500 UMI

counts were included; cells expressing fewer than 300 genes and

equal to or more than 5000 genes were excluded; cells with over 10%

mitochondrial gene expression were also eliminated. Normalization

of the scRNA-seq data was carried out by applying the

“NormalizeData” function, with the normalization method set to

“LogNormalize”. The top 3,000 highly variable genes were

recognized through the “FindVariableFeatures” function.

Subsequently, principal component analysis (PCA) was carried

out to lessen the dimensionality of the raw data based on the top

3,000 genes using the “RunPCA” function. Principal components

with statistical significance were discerned using “JackStraw”

function, and the top 14 meaningful principal components were

selected for cell clustering based on variance explained. Cell

clustering analysis was conducted using the “FindNeighbors” and

“FindClusters” functions, followed by uniform manifold

approximation and projection (UMAP) analysis through the

“RunUMAP” function. Batch correction was implemented by

applying the “Harmony” package. The “FindAllMarkers” function

was carried out to identify marker genes in each cluster. The cell

annotation was from a previously published paper (32).
2.13 Cell culture

Human osteosarcoma cell lines (HOS, 143B) and human

normal osteoblast cell lines (hFOB1.19) were purchased from

Procell Life Science and Technology Co., Ltd. (Wuhan, China).

Cells were cultured with 10% fetal bovine serum (PAN, German)

and 1% penicillin-streptomycin solution (SEVEN, China) in a

humidified environment at 5% CO2 and 37°C.
2.14 Transfections

Tumor cells were cultured in a six-well plate at a density of

3×105 cells per well in appropriate culture medium and incubated

overnight with agitation. Upon reaching a cell density of 60 to 70%,

the cells were washed with PBS and supplemented with serum-free

culture medium, followed by the addition of the plasmid-lipo2000

mixture to each well. The six-well plates were then incubated in the

incubator for 6 hours before being switched to serum-containing

culture medium. The sequence of the siRNA purchased from

General Biol (China) is as fol lows:GAUCAAAGCUA

GAGUGACUTT (si-SQOR-1); ATCTTTACCTTCCCAA

ATACTCC (si-SQOR-2); GGACAAAGGCUGUUAGAGATT (si-

SFXN4-1); CUGACUGGCCCUUGGAUUATT (si-SFXN4-2).
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For virus transfection, 143B cells were seeded in 24-well plates

at a density of 1 × 105 cells per well and incubated for 18 to 24

hours. The original medium was replaced with 2 ml of fresh

medium containing 6 µg/ml polybrene, along with an appropriate

quantity of virus (Genechem, Shanghai, China). After four hours,

an additional 2 ml of fresh medium was added to dilute the

polybrene. Forty-eight hours post-transfection, the cells were

screened using new medium supplemented with puromycin.

Following another forty-eight hours, the medium was again

replaced with fresh medium before harvesting the cells.
2.15 CCK8 assay

100 mL of suspension containing 5000 transfected cells was

dispensed into each well of a 96-well plate along with 10 mL of

CCK8 solution (Beyotime, China). The plate was then placed in a

cell culture incubator for 1 hour, following which absorbance

readings were taken at 450 nm and recorded.
2.16 Cell colony assay

3600 osteosarcoma cells were equally distributed into six-well

plates and incubated at 37°C with 5% CO2 for 14 days with regular

medium changes. Post-incubation, the cells were fixed and stained

using 4% paraformaldehyde and 0.1% crystal violet for 20 minutes

each, after which images were captured and data documented.
2.17 Scratch assay

Upon the cell density reaching 80 to 90 percent on a six-well

plate, a scratch was created using a pipette tip perpendicular to the

plate surface. Following a wash with PBS to remove unattached

cells, microscopic images were captured at 0 and 48 hours.
2.18 Transwell assay

The transfected HOS and 143B cell lines were cultured with the

serum-free DMEM and serum-free 1640, respectively, in a

Transwell upper chamber. Corresponding culture medium

containing 10% FBS was added to the lower chamber. The cells

were incubated at 37°C with 5% CO2 for 48 hours, fixed with

formaldehyde, stained with crystal violet, and visualized under a

microscope for analysis.
2.19 qRT-PCR

The total RNA was extracted from HOS and 143B as well as

hFOB1.19 using TRIzol reagent (Invitrogen, USA). Following the

manufacturer’s instructions, the PrimeScriptTM RT reagent kit

(Takara, Japan) was used to create the cDNA by reverse

transcription. The relative expression of SQOR and SFXN4 was
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measured according to the 2-DDCt algorithm by normalizing the

samples to GAPDH utilizing a LightCycler 480 Fluorescence

Quantification System (Roche, Basel, Switzerland).
2.20 Western blotting

The Radioimmunoprecipitation (RIPA) lysis buffer (Beyotime,

China) was used to isolate the proteins and then transferred the

proteins to onto PVDF membranes (Millipore, Billerica, MA, USA)

by electrophoretic separation. The membranes were closed for one

hour at room temperature with 5% nonfat milk in TBST before being

incubated at 4° with a particular primary antibody. After overnight

incubation the bands were visualized using the ECL kit. Specific

antibodies included: SFXN4 (YT4298, Immunoway Biotechnology

Company, China), SQOR (21112-1-AP, Proteintech Group Inc.,

Wuhan, China).
2.21 Tissue specimens
and immunohistochemistry

The expression of two genes (SQOR and SFXN4) significantly

affecting prognosis was confirmed through immunohistochemical

experiments. Four osteosarcoma patients from the First Affiliated

Hospital of Harbin Medical University voluntarily donated tumor

tissues and normal bone tissues. All of them signed informed consent

forms before tissue donation. Prior to surgery, none of them received

radiation therapy or chemotherapy. The hospital ethics committee

gave approval for this research. Slices of tissues were fixed,

dehydrated, and paraffin-embedded. Then, the tissues were

dewaxed and hydrated through rinses with xylene, anhydrous

ethanol, ethanol, and distilled water after baking at 60°C. For 12

minutes, tissues were submerged in 0.3% H2O2 to deactivate

endogenous peroxidase. Sections were sealed with serum and then

treated with the appropriate antibodies for an overnight period at 4°C.

Next, all sections were exposed to secondary antibodies for 30

minutes at 37°C. Two pathologists employed 3,3-diaminobenzidine

(DAB) reagent (Boster, Wuhan, China) to stain every tissue piece.

The antibodies utilized in the aforementioned SQOR (1:200) and

SFXN4 (1:200) experiments were both from.Microscopic images were

captured and analyzed using cellSns software.
2.22 In vivo experiment

The BALB/c nude mice were procured from Huachuang Sino

(Jiangsu, China) and housed at the Animal Experiment Center of

the First Hospital of Harbin Medical University. A total of ten four-

week-old nude mice were randomly assigned to two groups and

subcutaneously injected bilaterally with 1×106 cells each of 143B

wild-type, SFXN4 knockdown, and SQOR knockdown cells. Tumor

volume was monitored and measured continuously for a period of

15 days post-implantation. Following this observation period, the

mice were euthanized. All procedures involving the nude mice

adhered strictly to the regulations set forth by the Ethics Committee
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of the First Hospital of Harbin Medical University (Batch Number:

IRB-AF/SC-0402.0).
2.23 Statistical analysis

The Wilcoxon signed-rank test was applied to recognize

differences between two groups. Spearman’s rank correlation

coefficient was employed to assess the correlation between risk

scores and pathway enrichment scores calculated by the “ssGSEA”

algorithm. A p value less than 0.05 was considered as statistically

significant. * denotes p < 0.05, ** represents p < 0.01, *** means

p < 0.001 and **** indicates p < 0.0001.
3 Results

3.1 Construction of the prognostic
HLMRGS and validation of its
predictive ability

The research process was illustrated in Figure 1. The differential

analysis of transcriptome data between osteosarcoma patients in the

TARGET database and normal specimens in the GTEx database

revealed 2925 upregulated genes and 3361 downregulated genes

(Figure 2A). A Venn diagram depicted 234 differentially expressed

hypoxia-related genes (DEHRGs) and 129 differentially expressed

lactate metabolism-related genes (DELMRGs), with 6 shared genes

between them (Figure 2B). Univariate Cox regression analysis

identified 51 genes out of the DEHRGs and DELMRGs that were

associated with prognosis, including 20 DEHRGs and 31

DELMRGs (Supplementary Table S2). Subsequent LASSO Cox

regression analysis was carried out to reduce overfitting and

filtered 8 genes (Figures 2C, D). Multivariate Cox regression

analysis confirmed that these 8 identified genes, including 2

protective elements (SQOR and PFKFB2) and 6 hazardous factors

(MAFF, COL5A2, FAM162A,UQCRB, SFXN4, and COX6A2), could

independently predict the overall survival of osteosarcoma samples

(Figure 2E). Eventually, an optimal prognostic gene signature

named hypoxia- and lactate metabolism-related gene signature

(HLMRGS) was generated with those 8 determined genes. The

correlation of 8 genes was portrayed as follows (Figure 2F). Among

these genes,MAFF, COL5A2, FAM162A and SQOR were DEHRGs,

while UQCRB, SFXN4, PFKFB2 and COX6A2 were DELMRGs.

According to the Kaplan-Meier (KM) survival analysis of 8 modeled

genes, elevated expression levels of COL5A2, COX6A2, UQCRB,

SFXN4, FAM162A and MAFF sharply shortened the survival time

of osteosarcoma patients (Supplementary Figures S1A–H).

Conversely, high expression levels of PFKFB2 and SQOR were

associated with prolonged survival. The risk scores derived from

the expression levels of these 8 modeled genes effectively

categorized samples into low- and high-risk groups. The findings

indicated that high-risk patients experienced worse clinical

outcomes (Figures 2G, H). Receiver operating characteristic

(ROC) analysis reflecting the sensitivity and specificity of gene

signatures showed that the area under curve (AUC) values of the
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HLMRGS were 0.916 at 1 year, 0.932 at 3 years and 0.950 at 5 years

(Figure 2I). After the establishment of HLMRGS within the

TARGET database, its prognostic significance and predictive

capacity were verified externally in the GSE39055 and GSE21257

datasets, thereby affirming both its repeatability and reliability

(Supplementary Figures S2A–F). Altogether, the collective

findings unequivocally validated the prognostic value of the

HLMRGS and its predictive potential.
3.2 Stratified analysis by different clinical
characteristics of osteosarcoma patients

To further elucidate the universal applicability of the HLMRGS,

we conducted survival outcome predictions for osteosarcoma

patients stratified by various clinical characteristics using the

HLMRGS. Osteosarcoma samples from the TARGET database

were grouped into diverse subcategories bottomed on age (≥18 vs.

<18 years), gender (male vs. female), metastatic stage (metastatic vs.

nonmetastatic), primary tumor location (leg vs. arm/pelvis), and

specific tumor site (lower limb vs. upper limb vs. pelvis/sacrum/

ilium) (Supplementary Table S3). KM survival analysis was

performed across these subgroups, illustrating that individuals

with high-risk scores exhibited significantly poorer outcomes

amidst most subgroups, including age, gender, and metastatic

stage (Supplementary Figures S3A–K).
3.3 Clinical value of the HLMRGS
in osteosarcoma

After conducting univariate and multivariate Cox regression

analyses, a nomogram was developed to validate the clinical

significance of the HLMRGS. The univariate Cox regression

analysis indicated that metastasis, primary tumor site, specific

tumor site, and risk scores were relevant to overall survival time

of osteosarcoma specimens from the TARGET database

(Figure 3A). In addition, the multivariate Cox proportional

hazard models revealed that metastasis, specific tumor site, and

risk scores were independent prognostic factors for osteosarcoma

patients (Figure 3B). Then, a nomogram model was structured

based on these three independent prognostic indicators to predict

the 1-, 3-, and 5-year survival probabilities of osteosarcoma samples

(Figure 3C). The calibration plots depicted a satisfactory agreement

between predicted and actual outcomes with a high C-index of

0.915 (Figure 3D). The AUC values of the nomogram were a

whopping 0.916 at 1 year, 0.932 at 3 years and 0.950 at 5 years

(Figure 3E). The decision curve analysis (DCA) curve suggested that

the nomogram provided the highest net benefit, strongly

confirming its clinical suitability in osteosarcoma patients

(Supplementary Figure S3L). In particular, the HLMRGS

displayed superior accuracy in comparison to previously

published gene signatures related with hypoxia or lactate

metabolism, as evidenced by its highest AUC value and C-index

(Figure 3F). Overall, these results highlighted the applicability of the

HLMRGS in clinical practice for osteosarcoma patients.
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3.4 Functional enrichment analysis based
on the HLMRGS

To explore the functional enrichment disparities between the two

cohorts delineated by the HLMRGS, we conducted GO and KEGG

enrichment analyses based on the differentially expressed genes (DEGs)

between the low- and high-risk groups in the TARGET database. A

total of 84 DEGs were discerned between these two groups, with 47
Frontiers in Immunology 07
genes highly expressed and 37 genes downregulated (Supplementary

Figure S4A). KEGG pathway analysis revealed evident enrichment of

DEGs in pyrimidine metabolism, drug metabolism, EGFR tyrosine

kinase inhibitor resistance and TGF-b signaling pathways

(Supplementary Figure S4B). Additionally, GO pathway analysis

exhibited predominant enrichment in the regulation of cellular

response to growth factor stimulus, immunoglobulin complex, and

signaling receptor activator activity (Supplementary Figure S4C).
FIGURE 1

Flow chart of this study.
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3.5 Heterogeneity of the TME between the
two risk groups

To unravel the heterogeneity within the TME, we did single-

sample gene set enrichment analysis (ssGSEA) to estimate the activity

of 29 TME pathways encompassing immune, matrix, and biological

characteristics. Osteosarcoma patients were stratified into two

cohorts according to their risk scores and distinct clinical features

to compare the activity of 29 TME pathways. The two subgroups

separated by only five factors namely, sex, age, metastasis, tumor site,

and risk scores, demonstrated differences in TME pathway activities

(Figure 4A and Supplementary Figure S5A). Notably, the risk scores-

based group showed the most significant disparities in the activity of a

total of 17 TME pathways compared to other groups. In addition,
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only 11 TME pathways linked with immunity exhibited obvious

differences when categorized by risk scores (Figure 4B and

Supplementary Figure S5B). These pathways reflected elevated

activity levels in the low-risk group, as observed in both the

TARGET database and the GSE21257 dataset. The pathways

identified included MHC-II, coactivation molecules, checkpoint

molecules, effector cells, NK cells, T cells, cancer-associated

fibroblasts, myeloid cell traffic, macrophage and DC traffic, effector

cell traffic and Th2 signature. More importantly, the risk scores

displayed the strongest correlation with all 29 TME pathways, with a

high degree of interrelation among the majority of TME gene

signatures (Figure 4C and Supplementary Figure S5C).

Since the risk scores were primarily associated with immunity,

we aimed to quantify the infiltration of diverse immune cell types to
FIGURE 2

Development of the HLMRGS and verification of its predictive ability in the TARGET database. (A) Volcano chart of 6286 DEGs between
osteosarcoma and normal samples. (B) Venn diagram depicting the junction of HRGs, LRGs, and DEGs. (C, D) LASSO penalized Cox regression, and
(E) multivariate Cox regression analyses of the DEHRGs and DELMRGs. (F) The association network diagram and types of 8 HLMRGs. (G) The risk
scores, clinical outcomes, and expression of 8 modeled genes of osteosarcoma samples divided by median risk score. (H) KM survival analysis for
the two risk cohorts. (I) The ROC curve of HLMRGS at 1, 3, 5 years.
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further elucidate the heterogeneity of the TME by using three

different methodologies: ImmuCellAI, Cibersort and ESTIMATE

(Figure 5A and Supplementary Figure S6A). Among the 8 key genes

comprising the HLMRG, the protective factors SQOR and PFKFB2

exhibited positive correlations with the abundance of most

infiltrating immune cells, while the risk factors FAM162A and

COL5A2 showed negative associations with immune cell

infiltration in both the TARGET and GSE21257 cohorts
Frontiers in Immunology 09
(Figure 5A and Supplementary Figure S6B). In accordance with

the ImmuCellAI database, low-risk patients had a noticeably

enriched population of some immune-activated cell types in both

the TARGET and GSE21257 cohorts, such as CD4+ T cells, CD8+ T

cells, cytotoxic T cells, dendritic cells and natural killer cells,

manifesting the latent capacity of humoral immunity and cellular

immunity in low-risk patients (Figure 5A and Supplementary

Figure S6C). Regrettably, the distribution differences of most
FIGURE 3

Construction of the clinical nomogram and validation of its predictive power in the TARGET database. (A, B) The forest diagram of univariate and
multivariate Cox regression analyses comprising risk scores and distinctive clinical features. (C) The nomogram based on three factors with statistical
significance, involving metastasis, specific tumor site and risk scores. Total scores were summed up by points of each variable. The survival
probabilities in three different time periods are indicated on the axis at the bottom. (D) Calibration curves showing a tremendous fit between the
predictive outcomes and actual outcomes. (E) ROC curves of the nomogram depicting the prognostic performance of HLMRGS. (F) Comparison of
AUC values and C-index between the HLMRGS and other gene signatures related with hypoxia or lactate metabolism.
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immune cells between the two risk groups obtained by the

CIBERSORT algorithm were not statistically significant in both

the TARGET and GSE21257 cohorts (Figure 5A and

Supplementary Figure S6D). ESTIMATE analysis revealed that

the low-risk group displayed increased stromal, immune, and

ESTIMATE scores in the TARGET database (Figure 5B). The

results were consistent in the GSE21257 cohort, with the

exception of stromal scores, where statistical significance was not

observed (Supplementary Figure S6E). Furthermore, the risk scores

were inversely correlated with stromal, immune, and ESTIMATE

scores in both the TARGET and GSE21257 cohorts (Figure 5C and

Supplementary Figure S6F). In brief, the osteosarcoma patients with

low-risk scores exhibited more “hot” tumor features. These results

suggested that the two groups classified by the HLMRGS displayed

quite different infiltration of certain key immune cells, which may

be one of the explanations for the distinction in survival outcomes

between them.
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3.6 Prediction of response to
immunotherapy and chemotherapy

We further investigated the differential expression of immune

checkpoints, MHC molecules, and immunomodulators in low- and

high-risk groups to predict the efficacy of immunotherapy in

osteosarcoma samples. As essential prognostic markers of

immunotherapy response, some immune checkpoints were

considerably upregulated in the low-risk patients in the TARGET

and GSE21257 cohorts, including BTN3A1, LAG3, CD209, TNFSF4,

BTN2A2, CD70, TNFSF14, HAVCR2, CD96, CD200R1, LGALS9,

TIGIT, PDCD1LG2, and SIRPA (Figure 6A and Supplementary

Figure S7A). Additionally, a remarkably negative correlation was

observed between the risk scores and the expression levels of these

immune checkpoints (Figure 6B). Furthermore, a majority of MHC

molecules, such as HLA-DQA1, HLA-DOA, HLA-DMA, HLA-DRA,

HLA-E, HLA-DPB1, HLA-DPA1, and HLA-DMB, were expressed at
FIGURE 4

Heterogeneity of the tumor microenvironment between the two risk groups in the TARGET database. (A) The differentially expressed activity of 29
TME pathways between the two subgroups using “limma” package. (B) Heatmap and box line plot depicting the activity discrepancies of 29 TME
pathways between the two cohorts. (C) Multidimensional correlation plot demonstrating the relationship of 29 TME pathways, and risk score as well
as other clinical features. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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considerably high levels in the low-risk group (Figure 6C and

Supplementary Figure S7B). Meanwhile, the levels of most

chemokines, interleukins, interferons, receptors, and other

cytokines were also increased in the low-risk group, implying the

enhanced sensitivity to immunomodulators and better response to

immunotherapy compared to those of high-risk group (Figure 6D).

The IFNG scores, Merck18 scores and T-cell dysfunction scores were

found to be higher in the low-risk group of the TARGET and

GSE21257 cohorts, while MDSC scores were lower in this group

according to data from the TIDE website (Figure 7A). Remarkably,

TAM M2 scores were increased in the high-risk group of the

GSE21257 cohort (Supplementary Figure S7C). Subsequent analysis

of immunotherapy response from the TIDE website exhibited a

higher percentage of responders in the low-risk group (54.8% vs.

47.6%), suggesting that high-risk patients may have a tendency to

escape immune surveillance and exhibit a less favorable response to

immune checkpoint inhibitors (ICIs) (Figure 7B). Additionally, the

T-cell-inflamed gene expression profile (GEP) score, Th1/IFN gene

signature score, cytolytic activity score, and tumor infiltrating

lymphocyte score were significantly elevated in the low-risk

samples (Figures 7C–F and Supplementary Figures S7D–G) and
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displayed a negative correlation with risk scores (Figures 7G–J).

The assessment of chemotherapy response through the

computation of half-maximal inhibitory concentration (IC50)

values for more than 100 chemotherapeutic agents indicated that

high-risk patients were more likely to benefit from pictilisib,

BAY.61.3606, doramapimod, CGP.082996, Elesclomol, and

GW.441756, while the low-risk group was predicted to exhibit

greater sensitivity to ponatinib, serdemetan, TCS JNK 6o, MG.132,

dactolisib, and WH.4.023 (Figures 8A–L). These findings disclosed

that the efficacy of immunotherapy and chemotherapy differed in the

HLMRGS-based groups, and low-risk patients tended to have

improved immunotherapy outcomes.
3.7 Single-cell analysis of the HLMRGs in
TME-associated cells

Considering the tight association of the risk scores with TME, we

examined the expression of 8 HLMRGs in various TME-associated

cells at the single-cell level using the GSE162454 dataset. Following

the implementation of initial quality control procedures, a gene
FIGURE 5

Divergences in the immune landscape between the low- and high-risk groups in the TARGET dataset. (A) Heatmap and box line plot showing the
variances in immune infiltration with the ImmuCellAI and CIBERSORT algorithms. Bubble diagram depicting the correlation between the modeled
genes expression and ImmuCellAI, and CIBERSORT scores. (B) Comparison of stromal, immune, and ESTIMATE scores between the two groups.
(C) Correlation analysis of risk scores with stromal, immune, and ESTIMATE scores. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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expression profile was generated for a total of 30,660 cells

encompassing 33,538 genes obtained from the primary tumors of 6

osteosarcoma samples (Figures 9A, B). The Harmony package was

employed to mitigate batch effects (Figure 9C). Through unbiased

clustering of the cells, 19 main clusters were identified in parallel,

based on uniform manifold approximation and projection (UMAP)

analyses of their gene profiles (Figure 9D). Subsequent cell annotation

was performed using markers specific to different cell types as

described in a previously published study, identifying 11 distinct

cell populations denoted as B cells, chondroblastic cells, endothelial
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cells, myeloid cells, NK cells, osteoblastic cells, malignant cells, T cells,

pericytes, proliferation cells, and fibroblast cells (Figure 9E). In

general, UQCRB was found to be the most highly expressed gene,

while COX6A2 exhibited the lowest expression across all TME-

related cell subtypes (Figure 9F). Remarkably, SQOR displayed

significant variation in gene expression between malignant cells

and osteoclasts (Figures 9F, G). The tumor suppressor genes

PFKFB2 showed quite low expression in malignant cells, which was

consistent with its role as a protective factor in osteosarcoma as

predicted by bioinformatics.
FIGURE 6

Evaluation of immunotherapy response of the low- and high-risk groups in the TARGET database. (A) Box plot showing the expression variations in
immune checkpoints between the two cohorts. (B) Multidimensional correlation plot illustrating the relationship of risk scores and the gene
expression of immune checkpoints reaching statistically significant differences in both the TARGET and GSE21257 cohorts. (C) Expression
divergences of MHC molecules of the two subgroups. (D) Heatmap illustrating the differences in the gene expression of chemokines, interleukins,
interferons, receptors, and other cytokines between the two risk groups. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001.
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3.8 Experimental validation of the
expression and biological functions of
SFXN4 and SQOR

We selected two genes that have not been reported in

osteosarcoma for further experimental validation. These genes

were chosen based on their classification as protective and

hazardous factors, respectively (Figure 2E). SQOR was picked out

from two protective elements in the multivariate Cox regression on

account of its visibly low p value. Additionally, the decision to focus
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on SFXN4 was supported by its obviously high HR value compared

to other modeled genes. The RT-qPCR, western blot and

immunohistochemistry (IHC) analyses confirmed that SFXN4

displayed elevated expression at both RNA and protein levels in

osteosarcoma tissues and cells, whereas SQOR exhibited heightened

abundance in normal tissues and cells (Figures 10A–C).

Transfection of short interfering RNA fragments into HOS and

143B cell lines resulted in decreased expression levels of SFXN4 and

SQOR (Figures 10D, E). Knockdown of SFXN4 led to decreased cell

proliferation, migration, and invasion, while knockdown of SQOR
FIGURE 7

Differences in TIDE prediction and pathway activities of immunotherapy-related pathways between the low- and high-risk groups in the TARGET
database. (A) TIDE prediction of the immunotherapy effectiveness of the two cohorts. (B) The bar graph depicting the proportion of patients
sensitive and resistant to immunotherapy. (C–F) Violin plots presenting the distinctions of cytolytic activity score, tumor infiltrating lymphocyte
score, Th1/IFN gene signature score, and T-cell-inflamed gene expression profile (GEP) score. (G–J) Correlation analysis between the risk score and
the four scores mentioned above. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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had the opposite effect (Figures 10F, G, 11A–D). Then, we

performed in vivo experiments to further investigate the functions

of SFXN4 and SQOR in osteosarcoma. As shown in Figures 12A–C,

knockdown of SQOR enhanced tumor growth, whereas knockdown

of SFXN4 yielded an opposing effect (Figures 12D–F).
4 Discussion

Hypoxia and lactate metabolism are two widely recognized

characteristics of the tumor microenvironment (TME) that

profoundly affect tumor progression, immune infiltration, and

treatment response (33–38). This study has introduced a novel

gene signature related to hypoxia and lactate metabolism

(HLMRGS), representing the first identification of such a signature

in osteosarcoma. Moreover, the research also underscored the

clinical relevance of the HLMRGS concentrated on its latent force

for predicting prognosis and immunotherapy response.

Previous studies primarily stressed on gene signatures related to

hypoxia or lactate metabolism in osteosarcoma (39, 40). However, a

gene signature that integrates both hypoxia and lactate metabolism for

prognostic evaluation and treatment guidance in osteosarcoma has not
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yet been reported. The area under the curve (AUC) values of the

HLMRGS surpassed those of existing models, indicating its superior

predictive performance. Besides, compared to other models related to

hypoxia or lactate metabolism, our AUC values stood out as the

highest, showcasing exceptional predictive capability (41–47). This

suggested that the HLMRGS was well suitable for osteosarcoma

patients and served as a valuable tool for predicting clinical outcomes.

Immune cells are the cellular foundation of immunotherapy (48).

The abundance and variety of tumor-infiltrating immune cells are

intricately linked to therapeutic efficacy prediction and clinical

outcomes (49). The immune cell composition of individuals with

the same cancer may vary significantly inside the tumor

microenvironment (TME), emphasizing the importance of

characterizing immune infiltrates and their functional status for

enhancing response rates (50). In our study, we observed that

lower risk scores were closely correlated with more infiltration of

crucial antitumor cells, including NK cells, CD4+ T cells, CD8+ T

cells, cytotoxic T cells, and dendritic cells (DCs) within the TME. The

cytotoxic activity of CD8+ T cells is a potent effector mechanism in

tumor destruction (51), while CD4+ T cells are pivotal in initiating

and coordinating innate and antigen-specific immune response (52).

NK cells can recruit DCs to tumors to strengthen CD8+ T-cell
FIGURE 8

Discrepancies in treatment response to chemotherapy drugs of osteosarcoma patients between the low- and high-risk groups in the TARGET
dataset. (A–L) Box plots showing the IC50 values for clinical drugs with statistical significance amidst the two risk groups. ** p < 0.01, *** p < 0.001,
**** p < 0.0001
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response and improve the efficacy of immunotherapy by cooperating

with T cells based on their complementary functions in tumor

immunity (53). Besides, the low-risk group exhibited increased

immune scores according to the ESTIMATE algorithm, indicating

a more favorable TME enriched with abundant immune cells. It has

been reported that osteosarcoma can be classified as an immune

“hot” tumor or “cold” tumor or somewhere in between (54).

Generally, “hot” tumors demonstrate higher response rates to
Frontiers in Immunology 15
immunotherapy (55). In our research, the tumors of low-risk

patients were more likely to be classified as “hot” tumors more

sensitive to immunotherapy due to more infiltration of crucial anti-

tumor cells.

As a prevailing immunotherapy, immune checkpoint inhibitors

(ICIs) treatment takes into account the genetic background of

tumors by utilizing biomarker-based patient selection, thereby

hopefully increasing the proportion of osteosarcoma patients who
FIGURE 9

Single-cell analysis of 8 model genes in the GSE162454 dataset. (A–C) Quality control and de-batching effect of the single-cell sequencing raw data.
(D) The UMAP plot of 30,660 cells colored by the 19 clusters. (E) The UMAP plot of 30,660 cells colored by 11 different cell subtypes. (F, G) The
expression of 8 modeled genes across various cell subtypes.
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benefit from the ICIs treatment (5). In our study, we observed that

the subset classified as “hot” exhibited an adaptive immune

resistance mechanism characterized by the upregulation of T cell

inhibitory immune-checkpoint proteins, specifically TIGIT (32).

Bes ides , PDCD1LG2 blockade may become potent ia l
Frontiers in Immunology 16
immunotherapeutic intervention targets enhancing the cytotoxic

effects against osteosarcoma (56). Overall, low-risk patients were

more likely to be categorized as individuals with “hot” tumors and

harbored a better prognosis after ICIs treatment thanks to more

infiltration of tumor-killing cells with reversible dysfunction.
FIGURE 10

Expression and biological functions on growth of SFXN4 and SQOR in osteosarcoma. (A) SFXN4 and SQOR expression in para-cancerous and
osteosarcoma tissues by IHC. (B, C) The expression of SFXN4 and SQOR at RNA and protein levels in normal osteoblast cell and osteosarcoma cell
lines through qRT-PCR and western blotting assays. (D, E) Effect of knocking down SFXN4 and SQOR at RNA and protein levels in osteosarcoma cell
lines by qRT-PCR and western blotting assays. (F, G) CCK8 and colony formation assays demonstrating the proliferation capacity ability after
knocking down SFXN4 and SQOR in osteosarcoma cell lines. ∗ p < 0.05, ∗∗ p < 0.01.
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Additionally, low-risk patients exhibited increased expression

levels of most HLA genes, interleukin-2 (IL-2), and heightened

activity in the M2-like tumor-associated macrophages (TAMs)

pathway, as well as an elevated gene expression profile (GEP)

score. The majority of “cold” tumors displayed decreased

expression levels of HLA antigen-presenting genes, leading to the

absence of TCR productive clonality and subsequent immune

evasion (57). The combination of IL-2 and chemotherapy

demonstrate a three-year survival rate exceeding 40% among

patients (58). TAMs may create an immunosuppressive

environment to participate in the malignant progression of
Frontiers in Immunology 17
osteosarcoma (59). As a novel gene signature biomarker for

patient's response to ICIs, a higher GEP score implies worse

treatment effects (60). These results were in line with the findings

of the TIDE prediction analysis, indicating that low-risk individuals

may derive greater benefits from immunotherapy interventions.

Most modeled genes included in the HLMRGS have been

demonstrated to be connected to tumor microenvironment or

immunotherapy efficiency across various cancers in prior studies.

Here, our bioinformatic correlation analysis suggested that SQOR

was positively correlated with the infiltration abundance of nearly

all immune cells, with particularly strong correlations observed for
FIGURE 11

Effect of SFXN4 and SQOR on invasion and metastasis of osteosarcoma. (A, B) Wound healing assay revealing the impact of SFXN4 and SQOR
knockdown on osteosarcoma cell invasiveness. (C, D) The invasive and migratory abilities of HOS and 143B cell lines were assessed by Transwell
assays after SFXN4 and SQOR knockdown. ∗ p < 0.05, ∗∗ p < 0.01.
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NK T cell and Gamma delta T cell infiltration. NK T cells are a

specialized subpopulation of T cells that expressed both T cell

receptor and NK cell receptor (61). Beyond their direct cytotoxic

effects on cancer cells, they also modulate the immune response by

secreting a large number of cytokines and chemokines (e.g., IL-4,

IFN-V, etc.) (62). Gamma delta T cells are recognized as the most

tumor-killing immune cell; they not only induce apoptosis in tumor

cells but also activate NK cells through 4-1BBL expression (63).

Hence, we hypothesized that SQOR may activate the interaction

network between NK T cells and Gamma belta T cells, thereby

increasing the abundance of immune cell infiltration, altering the

tumor microenvironment, and enhancing the patient’s response to

immunotherapy. SFXN4 has been shown to be associated with

multimodal immune cell infiltration in hepatocellular carcinoma

(64). Unfortunately, our analysis showed that this correlation did

not hold true in osteosarcoma. Nevertheless, the results of our in

vivo and in vitro experiments supported a critical role of SFXN4 in

tumor progression. However, the molecular mechanism of SFXN4

in the malignant progression of osteosarcoma needs to be further

investigated. COL5A2 was found to enhance the infiltration

abundance of tumor-associated macrophages while concurrently

diminishing the population of CD8 T cells in prostate cancer (65).

FAM162A has been incorporated into the prediction model of lung

squamous cell carcinoma, and its expression has been taken into

account for calculating the m6A score to predict the

immunotherapy response of patients (66). UQCRB can ensure the

normal function of mitochondrial complex III and rectify

hypoglycemia and lactic acidosis in the tumor microenvironment

of colorectal cancer (67). COX6A2 was reported to be incorporated

into the oxidative phosphorylation gene model of osteosarcoma for

predicting the prognosis of patients and the infiltration of immune

cells (68). Last but not the least, we conducted in vivo experiments

to investigate the effects of SQOR and SFXN4 on the growth of

osteosarcoma. The results demonstrated that SQOR exhibited a

tumor-suppressive function, whereas SFXN4 facilitated tumor
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growth. These findings aligned with our bioinformatics

predictions, indicating that both SQOR and SFXN4 may serve as

potential drug targets for future clinical treatment of osteosarcoma.

This opened new avenues for targeted therapy aimed at

osteosarcoma patients. However, further research is required to

determine whether SQOR and SFXN4 influence the growth of

osteosarcoma through the tumor microenvironment and

tumor immunity.

Our study had several limitations. The signature was developed

and validated through bioinformatics analyses using publicly

available databases. Although we have assessed its reliability in

external validation sets, a large-scale clinical trial is necessary for

further validation. Moreover, additional research on the efficacy of

immunotherapy and drug sensitivity assays is needed for clinical

evaluation in future studies. Finally, the specific molecular

mechanisms by which SQOR and SFXN4 affect the tumor

microenvironment and immunotherapeutic response need to be

further investigated.
5 Conclusions

In summary, this study developed and validated a powerful

hypoxia- and lactate metabolism-related gene signature that

effectively predicted patient’s prognosis and response to

immunotherapy. In vivo and in vitro experiments demonstrated that

the expression of SQOR could suppress the growth of osteosarcoma,

whereas the expression of SFXN4 promoted it. Additionally, in vitro

experiments also verified that SQOR inhibited the metastasis and

invasiveness of osteosarcoma cells, while SFXN4 had the opposite

effect. These findings will contribute to understanding the tumor

microenvironment in osteosarcoma and guiding the selection of

immune checkpoint inhibitors in osteosarcoma treatment strategies,

thus improving individualized therapy and enlarging the population

benefiting from immunotherapy.
FIGURE 12

Knockdown of SFXN4 and SQOR affected osteosarcoma growth in vivo. 143B cells were transfected with lentivirus expressing either shNC, shSFXN4,
or shSQOR. (A) Knockdown of SFXN4 significantly inhibited tumor growth. (B, C) Volume changes and weight of shNC and shSFXN4 tumors. (D)
Knockdown of SQOR promoted tumor growth. (E, F) Volume changes and weight of shNC and shSQOR tumors. **p < 0.01.
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