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Background: Skin cutaneous melanoma (SKCM) is a significant oncological

challenge due to its aggressive nature and poor treatment outcomes. This

study explores the comprehensive effects of radiotherapy (RT) in SKCM,

focusing on cell signaling pathways, immune infiltration, immune gene

correlations, immunotherapy response, and prognosis.

Methods: Using the Cancer Genome Atlas (TCGA) database, differentially

expressed genes (DEGs) in SKCM patients undergoing RT were identified. A risk

score model based on these DEGs was developed to assess the effects of RT-

related genes on drug sensitivity, immune cell infiltration, immunotherapy

response, and prognosis through multi-omics analysis. Human melanoma cells

UACC62 and UACC257 were irradiated with 8 Gy gamma ray to establish an in

vitro model, verifying the impact of radiotherapy on gene expression.

Results: The risk score demonstrated significant prognostic value and emerged

as an independent prognostic factor. miRNA-mRNA and transcription factor

regulatory networks underscored its clinical significance. Four key genes were

identified: DUSP1, CXCL13, SLAMF7, and EVI2B. Analysis of single-cell and

immunotherapy datasets indicated that these genes enhance immune

response and immunotherapy efficacy in melanoma patients. PCR results

confirmed that gamma rays increased the expression of these genes in human

melanoma cells UACC62 and UACC257.

Conclusion: Using a multi-omics approach, we analyzed and validated the

impact of RT on the immune landscape of melanoma patients. Our findings
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highlight the critical role of RT-related genes in predicting SKCM prognosis and

guiding personalized therapy strategies, particularly in the context of

immunotherapy. These contribute to understanding the role of radiotherapy

combined with immunotherapy in melanoma.
KEYWORDS

skin cutaneous melanoma, radiotherapy, immunotherapy, tumor microenvironment,
prognosis
1 Introduction

Skin cutaneous melanoma (SKCM), characterized by the

malignant transformation of melanocytes, stands as a formidable

challenge in oncology due to its aggressive nature and propensity for

metastasis (1). Ethnic disparities are evident in the incidence of

SKCM, generally are reported to be higher among Caucasians (2).

However, recent studies have identified a troubling trend of rapidly

increasing SKCM incidence rates of Asians, such as in China (3),

emphasizing the imperative for heightened awareness and preventive

measures. Despite advancements in early detection and treatment

modalities, including surgery, chemotherapy, and immunotherapy,

the management of advanced SKCM remains a significant clinical

dilemma, as evidenced by poor treatment outcomes in clinical

settings. Reports from multiple clinical trials reveal a five-year

survival rate of less than 30% (4, 5). This underscores the urgent

necessity for innovative treatment approaches and early detection

strategies aimed at enhancing patient outcomes and survival rates.

Radiotherapy (RT) plays a critical role in controlling local

disease, managing inoperable lesions, and improving overall

survival rates, particularly in cases of unresectable or metastatic

SKCM (6). The use of RT in SKCMmanagement has evolved from a

palliative approach to an integral component of multidisciplinary

treatment strategies (7). With the development of immunotherapy,

RT has been reported to enhance the effect of immune checkpoint

inhibitors through abscopal effects (8), to achieve an additive anti-

tumor effect in patients with metastatic melanoma while ensuring

safety (9, 10).

Despite i ts therapeutic potentia l modulate tumor

immunogenicity, challenges remain in optimizing the efficacy and

safety of RT for SKCM. Additionally, the identification of predictive

biomarkers to guide patient selection and treatment response

represents a critical area of ongoing research.

In recent years, the field of bioinformatics has experienced

significant advancements, particularly in the analysis of complex

biological data. Bioinformatics has become an indispensable tool for

interpreting high-throughput data, enabling researchers to identify

key genetic components and elucidate their roles in various

biological processes and diseases. In this study, we aimed to

thoroughly investigate the role of RT in melanoma among the

distribution of cell signaling pathways, immune infiltration,
02
correlation of immune genes, sensitivity of chemotherapeutic

drugs, and transcription factor regulation and develop a new

prognostic model based on genes differentially associated with RT

in melanoma by bioinformatical analyze and in vitro validation.
2 Materials and methods

2.1 Data downloads

We obtained the processed SKCM original expression data

from TCGA database, which included a total of 285 melanoma

patients: 247 patients in the “RT Not accepted” group and 38

patients in the “RT Accepted” group.

We downloaded the Series Matrix File data for GSE53118 (11)

from the NCBI GEO public database, which is annotated under the

platform GPL6884 and contains expression profile data for 69

patients. The MSKCC dataset (12) provides expression profile

data for 140 patients.

Additionally, we downloaded the single-cell data file for

GSE215120 (13) from the NCBI GEO public database, which

includes single-cell expression profiles for four complete samples

for single-cell analysis.
2.2 Differential expression analysis

The Limma package, an R software package for differential

expression analysis (DEGs) of expression profiles, is used to identify

significantly differentially expressed genes between groups (14). By

using the “Limma” R package, we analyzed the molecular mechanisms

underlying the data and identified differentially expressed genes

between the two sample groups. The criteria for selecting differential

genes were P Value < 0.05 and |logFC| > 0.585. Volcano plots and

heatmaps of the differential genes were also generated.
2.3 Functional enrichment analysis

To understand the biological functions and signaling pathways

involved in the differential genes, the “ClusterProfiler” R package
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was used for functional annotation, providing a comprehensive

exploration of the functional relevance of these genes (15). Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) were used to evaluate related functional categories. GO and

KEGG enrichment pathways with p-values and q-values less than

0.05 were considered significant categories.
2.4 Model construction and prognosis

Differentially related genes were selected, and a prognosis-

related model was further constructed using lasso regression. A

risk score formula was constructed for each patient by

incorporating the expression values of each specific gene,

weighted by the estimated regression coefficients from the lasso

regression analysis. Based on the risk score formula, patients were

divided into low-risk and high-risk groups using the median risk

score as the cutoff. Survival differences between the two groups were

assessed using Kaplan-Meier analysis, and comparisons were made

using the log-rank test. Lasso regression analysis and stratified

analysis were employed to evaluate the role of the risk score in

predicting patient prognosis. The accuracy of the model predictions

was studied using Receiver Operating Characteristic (ROC) curves.
2.5 WGCNA analysis

By constructing a weighted gene co-expression network, we

identified co-expressed gene modules and explored the relationship

between gene networks and risk scores, as well as the key genes

within the network. Using the Weighted Correlation Network

Analysis(WGCNA)-R package (16), we constructed a co-

expression network for all genes in the SKCM dataset, screening

the top 5000 genes by variance for further analysis, with a soft-

thresholding power of 6. The weighted adjacency matrix was

transformed into a topological overlap matrix (TOM) to estimate

network connectivity, and hierarchical clustering was used to

construct a clustering tree structure of the TOM matrix. Different

branches of the clustering tree represented different gene modules,

and different colors represented different modules. Genes were

classified according to their expression patterns based on the

weighted correlation coefficients, grouping genes with similar

expression patterns into modules.
2.6 Immune cell infiltration analysis

The CIBERSORT method, widely used for evaluating immune

cell types within the microenvironment, was applied (17). This

method, based on the principle of support vector regression,

performed deconvolution analysis of the expression matrix of

immune cell subtypes. It includes 547 biomarkers, distinguishing

22 human immune cell phenotypes, including T cells, B cells,

plasma cells, and myeloid subgroups. In this study, the

CIBERSORT algorithm was used to analyze patient data to infer
Frontiers in Immunology 03
the relative proportions of 22 immune infiltrating cells and to

analyze the correlation between gene expression levels and

immune cell content.
2.7 Drug sensitivity analysis

Based on the largest pharmacogenomics database (GDSC, Genomics

of Drug Sensitivity in Cancer, https://www.cancerrxgene.org/), we used

the “oncoPredict” R package to predict the chemotherapy sensitivity

of each tumor sample (18). The IC50 estimates for each specific

chemotherapy drug treatment were obtained using regression

methods, and 10-fold cross-validation was performed using the

GDSC training set to test regression and prediction accuracy. All

parameters were set to default values, including “combat” for batch

effect removal and the average value for repeated gene expression.
2.8 GSVA analysis

Gene Set Variation Analysis (GSVA) is a non-parametric and

unsupervised method for evaluating the enrichment of transcriptomic

gene sets (19). GSVA scores gene sets of interest to translate gene-level

changes into pathway-level changes, thereby determining the biological

functions of the samples. In this study, gene sets were downloaded from

the Molecular Signatures Database (version 7.0), and the GSVA

algorithm was used to score each gene set comprehensively, assessing

potential biological function changes in different samples.
2.9 GSEA analysis

Patients were divided into high-risk and low-risk groups based

on the risk model, and GSEA was used to further analyze the

differences in signaling pathways between the two groups. The

background gene sets were downloaded from the MsigDB database

and annotated as subtype pathways for differential expression

analysis. Significantly enriched gene sets (adjusted p-value < 0.05)

were ranked according to their enrichment scores. GSEA analysis is

commonly used to explore the association between tumor subtypes

and their biological significance.
2.10 Nomogram model construction

A nomogram is built on regression analysis, based on the

expression levels of risk scores and clinical symptoms. It uses

scaled line segments drawn on the same plane to express the

relationships between variables in the predictive model. By

constructing a multivariate regression model, scores were

assigned to each level of influencing factors based on their

contribution to the outcome variable (regression coefficient). The

total score was then calculated by summing the individual scores,

thereby estimating the predictive value.
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2.11 miRNA network construction

miRNAs (MicroRNAs) are small non-coding RNAs that

regulate gene expression by promoting mRNA degradation or

inhibiting mRNA translation. We further analyzed whether

certain miRNAs regulate the transcription or degradation of key

genes. The miRNAs related to key genes were obtained from the

miRcode database (20), and the miRNA network was visualized

using Cytoscape software (21).
2.12 Transcriptional regulation analysis of
key genes

This study used the “RcisTarget” R package to predict

transcription factors. All computations by RcisTarget are based

on motifs, and the normalized enrichment score (NES) of the motifs

depends on the total number of motifs in the database. In addition

to the motifs annotated by the source data, we inferred further

annotations based on motif similarity and gene sequences. The first

step in estimating the overexpression of each motif in the gene set is

to calculate the area under the curve (AUC) for each motif-gene set

pair, based on the recovery curve of motif ranking by the gene set.

The NES of each motif was calculated from the AUC distribution of

all motifs in the gene set.
2.13 Single-cell analysis

Initially, the expression profiles were imported using the Seurat

package. Cells were filtered based on the total UMI count per cell,

the number of genes expressed, and the percentage of

mitochondrial and ribosomal reads in each cell. Outliers were

defined as those deviating by three median absolute deviations

(MAD) from the median, and cells with fewer than 200 detected

genes were excluded. The filtering criteria were as follows:

(nFeature_RNA > 200 & percent.mt <= 3MAD & nFeature_RNA

<= 3MAD & nCount_RNA <= 3MAD & percent.ribo <= 3MAD),

where nFeature_RNA represents the number of genes,

nCount_RNA represents the total UMI count, percent.mt

represents the percentage of mitochondrial reads, and

percent.ribo represents the percentage of ribosomal reads.

Subsequently, doublets were filtered using the DoubletFinder

package, resulting in the retention of 28,371 cells.

The data were then normalized using the NormalizeData

function. Cell cycle scores were computed using CellCycleScoring,

and 2,000 highly variable genes were identified with the

FindVariableFeatures function. The data were scaled with

ScaleData to normalize them and to mitigate the effects of

mitochondrial genes, ribosomal genes, and cell cycle on

downstream analyses. Linear dimensionality reduction was

performed using RunPCA. Batch effects were removed with

Harmony, which iteratively clusters similar cells in PCA space
Frontiers in Immunology 04
across different batches while maintaining batch diversity within

each cluster. Nonlinear dimensionality reduction was conducted

using RunUMAP (Uniform Manifold Approximation and

Projection), followed by identification of neighboring cells with

FindNeighbors and clustering of cells into distinct cell clusters

with FindClusters.
2.14 Immunotherapy response analysis

Tumor Immunotherapy Gene Expression Resource (TIGER) is

a tumor immunotherapy gene expression resource, provides many

useful modules for analyzing collected and user-provided data (22).

Key gene signatures were evaluated by the “gene set query” tab

in “Immunotherapy Response” module (http://tiger.canceromics.

org/#/immuneResponse).
2.15 Cell irradiation and quantitative real-
time polymerase chain reaction

Human melanoma cell line UACC62 and UACC 257 were

purchased from RIKEN (Saitama, Japan). Cells were cultured at

37°C in Roswell Park Memorial Institute (RPMI) 1640 medium and

supplemented with 10% fetal bovine serum and a 1% penicillin-

streptomycin solution purchased from Gibco (Albany, NY, USA) in

a humidified incubator with 5% CO2.

To investigate the effects of radiation on the mRNA expression

of key genes in human melanoma cells after RT, UACC62 and

UACC257 cells were cultured in 6-cm dishes then irradiated with 8

Gy of Gamma ray radiotherapy (g-RT).
g-Ray radiation was conducted by a Gcell 40 Exactor (Best

Theratronics Ltd., Ottawa, ON, Canada).

At 24 hours after RT, total RNA was isolated using a RNeasy

Plus Mini kit (QIAGEN, Tokyo, Japan), and cDNA was synthesized

using a qPCR RT Master Mix kit (TOYOBO, Osaka, Japan). PCR

was performed using SYBR Green gene-expression assay with the

Real-time PCR QuantStudio5 System (Thermo Fisher Scientific,

London, UK). The gene-specific primer sequences used were

as Table 1.

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene

was used to normalize expression across assays and runs, and a

cycle threshold (Ct) value for each sample was used to assess the

expression level of genes.
2.16 Statistical analysis

Survival curves were generated using the Kaplan-Meier method

and compared using the log-rank test. Multivariate analysis was

performed using the Cox proportional hazards model. All statistical

analyses were conducted using R (version 4.3.0), with p < 0.05

considered statistically significant.
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3 Results

Figure 1 i l lus t ra tes an ana lys i s workflow of the

present manuscript.
3.1 Identification of RT-related DEGs
among SKCM patients

We downloaded the SKCM dataset from the TCGA public

database and extracted the data of 285 patients with melanoma,

including 247 patients in the RT Not accepted group and 38

patients in the RT Accepted group. The limma package was used

to screen the differentially expressed genes between the two groups.

The screening conditions for differentially expressed genes were P

Value < 0.05 and |logFC| >0.585. A total of 220 differentially

expressed genes were screened out, including 136 up-regulated

genes and 84 down-regulated genes (Figures 2A, B).
Frontiers in Immunology 05
3.2 Results of functional enrichment
of DEGs

In this study, the differentially expressed genes were further

investigated for pathway analysis. GO results showed that the genes

were mainly enriched in keratinocyte differentiation, epidermal cell

differentiation, immunoglobulin complex and other pathways

(Figure 2C). KEGG analysis showed that these differentially

expressed genes were mainly enriched in Complement and

coagulation cascades, B cell receptor signaling pathway and

Estrogen signaling pathway and other pathways (Figure 2D).
3.3 Screening of prognostic genes and
construction of RT-related risk score
model in SKCM patients

The clinical information of SKCM patients was collected from

TCGA database, and the prognostic genes in SKCM were screened

by Cox univariate regression based on the differential genes. The

results showed that a total of 102 prognostic related genes were

screened by Cox univariate regression (p value< 0.01) (Figure 3A).

According to the prognostic genes, the feature genes in SKCM were

screened by lasso regression feature selection algorithm. The

patients with survival data in the SKCM data set were randomly

divided into training set and test set according to the ratio of 3:1.

After lasso regression analysis, the best risk score value

corresponding to each sample was obtained for subsequent

analysis (Figures 3B–D). Therefore, we constructed the

calculation formula and named it the RT-related risk score.
FIGURE 1

A workflow of the analysis protocol in the present study. TCGA, the Cancer Genome Atlas; SKCM, Skin Cutaneous Melanoma; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; GEO, Gene Expression Omnibus data base; Lasso, Least absolute shrinkage and selection
operator; GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis.
TABLE 1 Gene primer information.

Gene 5’->3’

DUSP1
Forward primer GCCTTGCTTACCTTATGAGGAC

Reverse primer GGGAGAGATGATGCTTCGCC

SLAMF7
Forward primer ACAACCCCTCTTGTCACCATA

Reverse primer CCCACATAGTAGATCCCTGAGTC

EVI2B
Forward primer ACCAACACAATTCAGCGACAC

Reverse primer GTTGTAGGCAAGTGGTTGTCC
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1467098
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2024.1467098
RT − related risk score  = DUSP1� ( − 0:289869459740093) + GCH1�
( − 0:178521004363843) + NGFR� ( − 0:113723425288065) + PLA2G2D�
( − 0:104760807889745) + CXCL13� ( − 0:0783756785513177) + SLAMF7�
( − 0:0501776740893767) + EVI2B� ( − 0:0289365802842518) + SPRR2D�
0:0191166637996898 + SPRR2� 0:038490593757909 + KRT6B�
0:0641695020289119 + LGI3� 0:200278253670939 + CRABP2�
0:407272355942318:

The patients were divided into high-risk group and low-risk

group according to the RT-related risk score, and Kaplan-Meier

curve was used for analysis. The OS of the high-risk group was

significantly lower than that of the low-risk group in both the

training set and the test set (Figures 3E, F). In addition, the ROC

curve results of the training set and the test set indicated that the

model had good validation efficiency (Figures 3G, H).

We downloaded the survival data of SKCM patients from the

GEO database (GSE53118) and the processed survival data from the

MSKCC database. Using our model, we analyzed the clinical
Frontiers in Immunology 06
classification of patients and evaluated the survival differences

between the two groups using Kaplan-Meier analysis to assess the

stability of the prediction model. The results indicated that the

overall survival (OS) of the high-risk group was significantly lower

than that of the low-risk group in both the GEO and MSKCC

external validation sets (Figures 4A, B). To verify the accuracy of the

model, we conducted ROC curve analysis using external datasets.

The results demonstrated that the model had strong predictive

efficiency for patient prognosis (Figures 4C, D).
3.4 WGCNA analysis revealed the RT-
related risk score related regulatory
network and screening of key genes
in SKCM

Based on the SKCM data, we further constructed a WGCNA

network to explore the regulatory network associated with the RT-
FIGURE 2

Radiotherapy-influenced genes among melanoma patients in TCGA-SKCM database and functional enrichment of differential genes. (A, B) Volcanic
distribution plot and heat-map of differential genes. (C) Associated signaling pathways enriched in differential gene GO. (D) Associated signaling
pathways enriched by differential gene KEGG.
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related risk score in SKCM. Here, the modeling genes with higher

correlation with the risk score of the model were selected as the key

genes by WGCNA analysis. The soft threshold b was set to 6

(Figure 5A), and gene modules were detected based on the TOM

matrix. Ten gene modules were identified in SKCM (Figure 5B),
Frontiers in Immunology 07
namely black (223 genes), blue (615 genes), brown (361 genes),

greenyellow (112 genes), grey (1253 genes), magenta (135 genes),

pink (163 genes), purple (1801 genes), salmon (56 genes), and

yellow (281 genes). Further analysis of the correlation between

modules and traits revealed that the blue module had the highest
FIGURE 3

Construction and validation of risk scores based on patient prognosis information from TCGA-SKCM database. (A) A total of 102 genes related to
prognosis were screened by Cox univariate regression. (B-D) The optimal riskscore value was obtained by lasso regression analysis. (E) Overall
survival analysis of risk score in TCGA training database. (F) Overall survival analysis of risk score in TCGA testing database. (G, H) AUC of the risk
score among training and testing database. AUC, areas under the curve.
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correlation with the RT-related risk score (cor = -0.65, p = 3e−35)

(Figure 5C). Subsequently, we intersected the genes in the blue

module with the model genes, resulting in four intersecting genes

(Figure 5D). These four genes, which will be the focus of our

subsequent research, are DUSP1, CXCL13, SLAMF7, and EVI2B.

Using the ROC curve, with whether the patient accepted

radiotherapy as the analysis condition, the identification value of

four key genes for radiotherapy in melanoma patients was analyzed

(Supplementary 1).
3.5 Verification of the applicability and
significance analysis of the risk score in
clinical typing of SKCM samples

We categorized the RT-related risk score values of the samples

based on clinical indicator values and presented the results of each

clinical indicator grouping using box plots (Figure 6). A rank sum test

was performed, revealing that the distribution of RT-related risk score

values differed significantly between groups for the clinical indicators

of Stage, T, and Fustat (p < 0.05). This finding demonstrates that the

RT-related risk score obtained from our modeling analysis has good

applicability for classifying SKCM samples.
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3.6 Analysis of the impact of risk score on
tumor immune infiltration and
regulatory factors

By analyzing the relationship between RT-related risk score and

tumor immune infiltration, we aimed to further explore the

potential molecular mechanisms by which RT-related risk score

affects the progression of SKCM.

First, we analyzed the effect of radiotherapy on immune cell

infiltration. We then compared the differences in immune cell

infiltration between high-risk and low-risk groups (Figure 7).

The proportion of immune cell content between high and low-risk

groups is illustrated. Our study further compared the immune cell

content differences between low-risk and high-risk groups, revealing

that in the high-risk group, B cells naive, Macrophages M1, Plasma

cells, T cells CD4 memory activated, and T cells CD8 were significantly

reduced, whereas Macrophages M0, Macrophages M2, Mast

cells resting, and T cells CD4 memory resting were significantly

increased. We further obtained various categories of immune

regulatory genes from the TISIDB database (http://cis.hku.hk/

TISIDB/), including immunosuppressive factors, immune-

stimulating factors, chemokines, major histocompatibility

complex, and chemokine receptors (Figure 8).
FIGURE 4

External validation of the risk score using prognosis data from melanoma patients in the GEO and MSKCC databases. (A) Overall survival analysis of
risk score in GSE53118 database. (B) Overall survival analysis of risk score in MSKCC database. (C, D) AUC of the risk score among GEO and MSKCC
database. MSKCC, Memorial Sloan-Kettering Cancer Center.
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3.7 Analysis of the impact of risk score on
chemotherapy drug sensitivity in
skcm patients

Our study is based on the drug sensitivity data from the GDSC

database, using the R package “oncoPredict” to predict the
Frontiers in Immunology 09
chemotherapy sensitivity of each tumor sample, and further explore

the relationship between RT-related risk score and the sensitivity to

common chemotherapy drugs. Research results show that the level of

RT-related risk score is significantly related to the patient’s sensitivity to

Camptothecin_1003, Docetaxel_1007, Gefi t inib_1010,

Navitoclax_1011, Vorinostat_1012, and Olaparib_1017 (Figure 9A).
FIGURE 5

(A-D) WGCNA analysis revealed the RT-related risk score related regulatory network and screening of key genes in SKCM.
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3.8 Potential molecular mechanisms of risk
score on tumor progression in
skcm patients

We next studied the specific signaling pathways involved in high

and low-risk related models and explored the potential molecular

mechanisms by which RT-related risk scores affect tumor

progression. The GSVA results showed that the differential

pathways between the two groups of patients were mainly enriched

in signaling pathways such as MYOGENESIS, P53_PATHWAY, and

DNA_REPAIR (Figure 9B). GSEA results showed that the pathways

involved were Ribosome, Oxidative phosphorylation, and PI3K−Akt
Frontiers in Immunology 10
signaling pathway (Figure 9C). The molecular interaction network

between each pathway is shown in the figure (Figure 9D).
3.9 Analysis of risk score as an
independent prognostic factor and
validation of the predictive model for
SKCM patients

We found that RT-related risk score is an independent

prognostic factor in patients with SKCM through univariate and

multivariate analyses (Figures 10A, B). Samples were then divided
FIGURE 6

(A–G) Correlation between risk score and clinical index in melanoma patients. T, Tumor; N, Node; M, Metastasis.
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into high-risk and low-risk groups according to the median RT-

related risk score value, and the results of their regression analysis

were displayed in the form of a nomogram. The results of the

logistic regression analysis showed that in all our samples, the RT-

related risk score value significantly contributed to the scoring

process of the nomogram prediction model (Figure 10C).

Additionally, we conducted prediction analyses for the three-year

and five-year periods of melanoma (Figure 10D).
3.10 miRNA-mRNA network and
transcription factor regulatory
mechanism analysis

We used the miRcode database to perform reverse prediction

on 4 key genes, resulting in 60 miRNAs and a total of 95 mRNA-

miRNA pairs, which were visualized using Cytoscape (Figure 11A).
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We then used these four key genes as the gene set for this analysis

and found that they are regulated by common mechanisms

involving multiple transcription factors. Consequently,

enrichment analysis of these transcription factors was performed

using cumulative recovery curves. Motif-TF annotation and

selection analysis of important genes showed that the Motif with

the highest normalized enrichment score (NES: 5.33) is cisbp:

M3227. All enriched motifs and corresponding transcription

factors of model genes are displayed (Figures 11B, C).
3.11 Cell subtype clustering, cell type
annotation, and key gene expression
analysis from single-cell data

The single-cell data file GSE215120 was downloaded from the

NCBI GEO public database, encompassing four single-cell samples,
FIGURE 7

Correlation between risk score and tumor microenvironment in melanoma. (A) Comparison of differences in immune cells between radiotherapy
Accepted and Not Accepted groups. (B) Overview of the differences in immune cell content between high and low-risk groups. (C) Comparison of
differences in immune cells between high and low-risk groups. *p<0.05, **p<0.01, ***p<0.001 ns, No Significant.
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and all of them were marked as cutaneous melanoma:

GSM6622299, GSM6622300, GSM6622301 and GSM6622302.

Cell clustering was performed using the UMAP algorithm,

resulting in 12 subtypes (Figure 12A). Annotation of each subtype

was conducted with the R package SingleR, and the 12 clusters were

categorized into seven cell types: CD4+ T cells, Melanocytes, NKT

cells, B cells, Endothelial cells, Fibroblasts, and Dendritic cells

(Figure 12B). The expression of four key genes was analyzed

across these seven cell types. The results revealed that the DUSP1

gene was significantly expressed in CD4+ T cells and NKT cells; the

CXCL13 gene was significantly expressed in CD4+ T cells and NKT

cells; the SLAMF7 gene was significantly expressed in NKT cells and

Dendritic cells; and the EVI2B gene was significantly expressed in B

cells and Dendritic cells. These findings explore their potential

impacts on immunotherapy and cell function (Figures 12C, D). Dot
Frontiers in Immunology 12
plot displaying marker genes of each cell type was showed in

Supplementary 2.
3.12 Immunotherapy response analysis of
key genes signature in melanoma patients.

The melanoma immunotherapy dataset PRJEB23709(n=91),

GSE100797(n=25), GSE78220(n=28), GSE91061(n=109),

Nathanson_2017(n=24), phs000452(n=153) were included to

analyze the influence of DUSP1, CXCL13, SLAMF7 and EVI2B in

immunotherapy response. Patients with partial response (PR) and

complete response (CR) were included in the Responder Group (R),

the patients with stable disease (SD) and progressive disease (PD)

were included in the Non-Responder (NR).
FIGURE 8

Differences of immune regulatory factors between the high and low risk groups. (A) Association of risk score with chemokines. (B) Correlation of risk
score with immunosuppressive agents. (C) Association of risk score with immune agonists. (D) Association of risk score with MHC. (E) Association of
risk score with MHC receptors. MHC, major histocompatibility complex. *p<0.05, **p<0.01, ***p<0.001 ns, No Significant.
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Figure 13 showed that patients with high expression of the key

genes signature exhibit a significantly better response to

immunotherapy among GSE91061 and PRJEB23709. Survival

analysis results indicate that high expression of the key genes is

s ignificant ly assoc ia ted wi th longer surviva l among
Frontiers in Immunology 13
Nathanson_2017 and PRJEB23709. These findings demonstrate

that the key genes we have identified potentially enhance the

response of melanoma patients to immunotherapy. This

contributes to a better understanding of the positive role of

radiotherapy in the immunotherapy of melanoma patients.
FIGURE 9

Influence of drug sensitivity and discussion on specific signaling mechanisms related to risk score. (A) Relationship between risk score and drug
sensitivity in melanoma. (B) Results from GSVA. (C) Results from GSEA. (D) Network of molecular interactions between pathways.
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3.13 Validation of key genes expression
by qPCR

To further verify the regulation of key genes in melanoma cells by

RT, human melanoma cells UACC62 and UACC257 were irradiated
Frontiers in Immunology 14
with 8 Gy gamma ray. At 24 h after irradiation, cellular RNA was

extracted and analyzed by qPCR. The results in Figure 14 showed that,

except for SLAMF7 gene in UACC62 cells, the expression of other key

genes in both cell lines was effectively increased by radiation. This further

validates the regulation of key genes in melanoma by radiotherapy.
FIGURE 10

Construction of the risk score-associated nomogram prediction model and clinical relevance analysis. (A, B) Risk score is an independent prognostic
factor for SKCM patients. (C) Risk score grade value of nomogram prediction model has significant contribution in the process. (D) Calibration curves
of nomogram for predicting OS at 3-year and 5-year.
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4 Discussion

Melanoma is an immunogenic tumor with multiple types of

tumor-infiltrating lymphocytes (TILs) in the TME (23). Previous

studies have confirmed that RT is closely related to influence tumor

immunotherapy and modulate TME status (24, 25). However, the

underlying mechanism seems unclear. Although the combination of

radiotherapy and immunotherapy provides an opportunity to

enhance the immunostimulatory effects of radiotherapy, the

factors that affect the overall balance of immunomodulation are

largely unknown (26). At the same time, few studies have focused

on the comprehensive analysis of radiotherapy-related genes on

immunotherapy response, immune cell infiltration and prognosis of

melanoma patients.

In this study, we constructed a risk score model based on RT-

related genes involved in melanoma patients using data from the

TCGA-SKCM database. Validation results from different databases

showed that the risk score model could effectively and reliably

predict the prognosis of melanoma patients.

We investigated this RT-related risk score model in relation to

clinical parameters and found that it was significantly associated

with Stage, T, and Fustat. The results show a significantly elevated

risk score in stage II melanoma patients. The American Joint
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Committee on Cancer (AJCC) introduced the 8th edition of the

melanoma staging system, which is currently widely used

worldwide (27). However, we have observed that in recent years,

this staging system has been increasingly challenged, particularly in

stage II subtypes with high-risk factors, such as stages IIB and IIC.

Real-world clinical data indicate that the survival rates of IIC

melanoma patients are lower than stage IIIA and IIIB patients

(28, 29). Possible reasons include the higher risk of metastasis and

recurrence in stage IIB and IIC patients (30, 31), as well as

differences in immune cell infiltration (32). It aligns with our

finding of the predictive effect of risk score and suggesting that

the current AJCC8 staging system limits in accurately reflecting an

increasing risk of mortality in melanoma patients.

Furthermore, we constructed a nomogram model to verify that

the RT-related risk score is an independent prognostic factor among

melanoma patients. This model allowed us to predict 3- and 5-year

survival rates, indicating that the nomogram has good predictive

efficacy and can guide clinical practice. We also analyzed the risk

score model for chemotherapy drug sensitivity to further clarify its

value in the comprehensive treatment of melanoma patients.

Additionally, we used Cytoscape to construct a comprehensive

transcriptional regulatory network of RT-related genes involved

in radiotherapy in melanoma.
FIGURE 11

Transcriptional regulatory network of 4 key genes.
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This RT-related risk score model, identified through

comprehensive bioinformatics analyses, implicates various aspects

of melanoma biology, including cell proliferation, apoptosis, and

metastasis. The RT-related risk score derived from our model

correlates with specific signaling pathways known to influence

melanoma progression. For instance, pathways such as

MYOGENESIS, P53, and DNA_REPAIR were differentially

enriched in high-risk and low-risk groups, suggesting their

potential role in modulating tumor behavior. Further exploration

of these pathways could uncover novel therapeutic targets and

improve our understanding of melanoma pathogenesis.

Immunotherapy is a critical treatment for patients with advanced

SKCM (33, 34). Understanding the interaction between immune cells

and melanoma can provide insights into the mechanisms driving

tumor immune evasion and resistance to immunotherapy. The

immune activity and tumor microenvironment (TME) status play a

decisive role in the effectiveness of immunotherapy (35). Recent

advances in tumor immunology have underscored the importance of

immune infiltration in melanoma progression and treatment

response (36). Immune cells within the TME, including T cells,

macrophages, and dendritic cells, significantly influence tumor

growth, either promoting or inhibiting it. The degree and type of
Frontiers in Immunology 16
immune infiltration are associated with clinical outcomes, with a high

presence of cytotoxic T cells generally correlating with a better

prognosis (37).

In clinical practice, various modalities of radiotherapy, such as

the type of radiation, dose, and irradiation site, exert distinct

influences on the efficacy of combined immunotherapy (38). Our

previous in vitro experimental results indicated that B16F10 cells

pretreated with melatonin exhibited significant differences in

immune-related pathways after irradiation with varying doses of

carbon ions compared to control cells, suggesting a potential to

enhance the response to immunotherapy (39). Previous studies

have demonstrated that the application of low-dose radiotherapy

can effectively counteract the immunosuppressive effects within the

tumor microenvironment, thereby promoting the infiltration of

CD8+T cells (40). Additionally, it has been suggested that

administering radiation to multiple sites within a tumor may

activate a greater number of shared tumor-associated antigens,

particularly in light of the heterogeneity observed across various

tumor lesions (41). In this study, we have compiled information

regarding the irradiation sites and patterns, as well as corresponding

risk stratification, from the TCGA data collected, which is presented

as Supplementary 3.
FIGURE 12

Cell Subtype Clustering, Cell Type Annotation, and Key Gene Expression Analysis from Single-cell data. (A) UMAP clustering of single-cell RNA-seq
data from 4 samples (GSE215120) downloaded from the NCBI GEO public database, resulting in 12 distinct cell subtypes. (B) Annotation of the 12
clusters using the SingleR R package, categorizing them into 7 cell types. (C, D) Expression levels of 4 key genes across the 7 identified cell types.
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FIGURE 13

Immunotherapy response analysis of key genes signature in melanoma patients. Left side of the image: The relationship between gene expression
and response to immunotherapy. The right side of the image: The relationship between gene expression and patient survival rates.
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Our research focuses on characterizing the immune landscape

of melanoma based on RT-related genes to develop predictive

biomarkers and novel immunotherapeutic strategies. Our results

found that the risk score had a significant effect on immune

infiltration in melanoma patients. Furthermore, four key genes

were identified: DUSP1, CXCL13, SLAMF7 and EVI2B. Findings

based on single-cell data and melanoma immunotherapy datasets

highlight the potential of these key genes in modulating

immunogenicity and response to immunotherapy.

DUSP1(dual specificity phosphatase 1) is a member of the

DUSP family. DUSP proteins are involved in the regulation of

cellular plasticity cells and melanoma drug resistance and are

potential targets for treatment of MAPKi-resistant melanoma

(42). Also, DUSP1 is a critical negative regulator of the immune

response and mediates the expression of inflammatory and anti-

inflammatory factors (43). CXCL13(C-X-C motif chemokine ligand

13) is vital for the recruitment of B cells and T follicular helper cells

into the tumor microenvironment. It is a potent chemoattractant

cytokine that promotes the migration of cells expressing its cognate

receptor, CXCR5. The CXCL13-CXCR5 axis has very important

roles in immunotherapy for melanoma, especially in the

combination of anti-PD1 therapy (44, 45). SLAMF7(signaling

lymphocytic activation molecule family member 7) was reported

to play an important role in modulating T cell function in the TME

(46). As a receptor of Natural Killer (NK) cells, SLAMF7 tends to

regulate NK cell cytotoxicity. This highlighted its value in SLAM-
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based targeted immunotherapies (47). EVI2B (ecotropic viral

integration site 2B) involved in positive regulation of granulocyte

differentiation. Recent studies have confirmed its role in immune

infiltration among multiple myeloma (48), osteosarcoma (49). More

importantly, EVI2B was confirmed to increase CD8+ T cells over

regulatory T cells and its expression correlated with multiple

immunomodulatory genes including IFN-g signature genes in

melanoma (50). These results further suggest that radiotherapy-

related genes have the potential to improve the response of

melanoma patients to immunotherapy.

We validated the expression of DUSP1, SLAMF7 and EVI2B in

human melanoma cell UACC62 and UACC257 after 8 Gy gamma-

ray. CXCL13 is a chemokine for B cells, primarily expressed in

immune cells such as T follicular helper cells, dendritic cells and

macrophages. Therefore, we did not check its expression in our

human melanoma cell model.

However, our study has some limitations. Firstly, the sample

size retrieved from the database was limited. Also, the findings lack

in vivo experimental validation. In our future work, based on the

four key genes identified in this study, we will comprehensively

investigate the impact of radiotherapy on the immune

microenvironment and immunotherapy response in melanoma

patients by constructing in vivo models and collecting relevant

clinical samples. Despite these shortcomings, our preliminary

findings offer meaningful and constructive insights into the role

of radiotherapy in melanoma immunotherapy.
FIGURE 14

Results of qRT-PCR detection of key genes in human melanoma cell UACC62 and UACC257 after 8 Gy Gamma-ray radiation. *p<0.05, **p<0.01
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5 Conclusion

In summary, our study underscores the importance of

constructing accurate prognostic models for radiotherapy in

melanoma to enhance disease management and patient outcomes.

The interplay between immune infiltration and radiotherapy

highlights the need for integrating immunological parameters into

prognostic assessments. Furthermore, the identification of key genes

and their associated signaling pathways offers promising avenues for

future therapies. Lastly, the regulatory roles of radiation in melanoma

present potential opportunities for novel prognostic and therapeutic

strategies, especially in immunotherapy. Future research should focus

on validating these findings in clinical settings and exploring their

translational applications in melanoma treatment.
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