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Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of

COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR)

and peptide-MHC (major histocompatibility complex), constitutes the molecular

basis of CTL responses against SARS-CoV-2. While numerous studies have been

conducted on T cell immunity, the molecular mechanisms underlying CTL-

mediated immunity against SARS-CoV-2 infection have not been well

elaborated. In this review, we described the association between HLA variants

and different immune responses to SARS-CoV-2 infection, which may lead to

varying COVID-19 outcomes. We also summarized the specific TCR repertoires

triggered by certain SARS-CoV-2 CTL epitopes, which might explain the

variations in disease outcomes among different patients. Importantly, we have

highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell

killing: disrupting peptide-MHC binding, TCR recognition, and antigen

processing. This review provides valuable insights into the molecule

mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to

control the pandemic and prepare for future challenges.
KEYWORDS

SARS-CoV-2, cytotoxic T lymphocytes (CTL), epitope, HLA, TCR repertoire, TCR-pHLA,
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GRAPHICAL ABSTRACT
1 Introduction

In late 2019, the emergence of Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2) as a novel human

coronavirus drew global attention to the fight against this

infection (1). SARS-CoV-2 infection causes COVID-19 disease,

with clinical presentations ranging from mild or asymptomatic to

severe and fatal respiratory illness (2). Approximately 15% of

confirmed cases are classified as severe, most occurring in

individuals over 65 years of age or those with underlying medical

conditions (3).

During SARS-CoV-2 infection, neutralizing antibodies, CD4+

helper T cells, and CD8+ killer T cells all contribute to controlling

the virus and providing protection against viral pathogens (4, 5).

Unlike the transient and heterogeneous nature of neutralizing

antibodies (6–8), T cells play a critical role in conferring immune

memory and establishing long-term memory responses (9–13). For

closely related coronaviruses, such as SARS-CoV-1, memory T cell

responses have been detected up to 17 years after infection (14, 15).

Most COVID-19 convalescent patients exhibit broad and robust

SARS-CoV-2-specific T cell responses (11–13, 16–20). It has been

reported that functional SARS-CoV-2-specific T cell responses are

retained at 6 months following infection (21, 22). Moreover, SARS-

CoV-2-specific T cell responses were detectable in antibody-

negative patients or in patients with B cell-deficient

agammaglobulinemia, suggesting that T cells may effectively

respond to the virus even in the absence or insufficiency of

antibody responses (11, 16). Consistent with the positive effects

observed in convalescents, the reduction of T cell lymphocytes is

often used as a marker of disease severity (17, 18). Although
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circulating SARS-CoV-2-specific CTLs are less consistently

observed than CD4+ T cells (4, 10, 13), their presence is generally

associated with better COVID-19 outcomes (4, 12). The proportion

of multifunctional CTLs is higher in mild patients compared to

those with severe symptoms, further highlighting the positive role of

CTLs in mitigating disease severity (12). Both in vivo and in vitro

studies have demonstrated significant activation of CTLs during

SARS-CoV-2 infection (10, 17, 23, 24).

The breadth and nature of the cellular immune response to viral

infection are driven by the diversity of the T cell receptor (TCR) and

major histocompatibility complex (MHC, HLA in humans). The

tripartite interaction of TCR-peptide-MHC (TCR-pMHC) forms the

basis for CTL responses against viral infections and malignancies,

while maintaining auto-tolerance and averting autoimmune

diseases. The antigen specificity of CTL responses is influenced by

the expression of host HLA class I (HLA-I) alleles, each of which

presents a virus-derived peptide ranging from 8 to 11 amino acids in

length (25). Certain locations within antigenic epitopes, also

described as anchor residues, have been shown to be critical for

antigen presentation, and mutations in these anchor residues may

disrupt peptide binding to HLA-I molecules (26, 27). Moreover,

mutations within epitopes may also impact the interaction of TCRs

with antigenic peptides, as seen with the P272L mutation in the YLQ

(A*02/S269-277, YLQPRTFLL) epitope and the Y453F mutation in the

NYN (A*24/S448-456, NYNYLYRLF) epitope (28, 29). Such

mutations may interfere with the TCR-pHLA tripartite interaction,

potentially leading to the failure of T cell activation, a phenomenon

known as T cell immune escape (20, 29–31).

Given the importance of TCR-pMHC interaction during SARS-

CoV-2 infection, there is a particular need for in-depth studies and
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a comprehensive understanding of TCR-pMHC complex. However,

the extent to which MHC polymorphism and TCR diversity,

especially concerning epitope specificity, contribute to CTL

responses remains ambiguous. In this review, we evaluated the

published studies about CTL immune response against SARS-CoV-

2, focusing on the epitope-presenting mechanism of TCR-pHLA

complexes, HLA variation in the context of various COVID-19

disease outcomes, and the characteristic of peptide-specific TCR

repertoire. We also discussed how SARS-CoV-2 variants of concern

evade CTL immunity and emphasized potential strategies in

response to Omicron and future variants, providing a basis for

vaccine optimization and prevention of reinfection.
2 HLA-I variation and its association
with COVID-19 disease course

HLA-I genes primarily encompass the classical, highly

polymorphic HLA-A, HLA-B, and HLA-C genes, as well as non-

classical HLA-E, HLA-F and HLA-G with limited polymorphisms.

HLA variation directly affects the binding affinities of HLA

molecules to antigenic peptides, thereby influencing the

recognition of pathogen-derived antigens by immune cells (32–

36). To date, pathogen-driven HLA selection has been proposed

and demonstrated in studies of various infectious diseases. A well-

documented example of HLA alleles influence viral infections is

HIV (human immunodeficiency virus) infection. Certain HLA

molecules, like HLA-B*27, B*57, and B*58:01, can accommodate
Frontiers in Immunology 03
specific HIV antigens and trigger effective immune responses (37).

The progression of HIV infection is strongly associated with the

homozygosity of HLA-I genes and differential HLA expression

levels (38, 39). Additionally, HLA variation has been linked to

hepatitis B, hepatitis C, and several other infectious diseases (40).

Given the pandemic nature of SARS-CoV-2 and the inherent

difficulties in assessing the risk of infection, the most robust genetic

association studies of SARS-CoV-2 infection have mainly focused

on disease outcomes. Thus far, numerous studies have explored the

association between HLA alleles and COVID-19 outcomes, but

without a clear consensus. In fact, some large studies, either

genome-wide association studies (41) or large HLA databases

(42), have failed to show significant effects of HLA alleles on

disease. Different populations may possess different alleles

associated with susceptibility, depending on the HLA allele pool

present in each population. In addition to study design and

statistical differences, this may be a reason why no conclusive

association between HLA and COVID-19 has been reported to

date (43–52).

Nevertheless, some correlated findings have emerged and are

summarized in Table 1. For instance, at least two studies have

reported an association between HLA-A*01:01 and diminished CTL

responses (53, 54). In two other independent studies, A*11:01 and

B*51:01 were identified to be associated with severe COVID-19

disease (51, 55). HLA-C*04:01 has also been found to be associated

with a severe clinical course of COVID-19, with patients carrying

this allele having twice the risk of requiring mechanical ventilation

(56). HLA-C*14:02 allele was significantly predisposed to the worst
TABLE 1 Summary of HLA associations with COVID-19 outcomes.

HLA-I allele Association with Country OR (95% CI) p-value Reference

A*01:01 Severe disease Italy * * (53, 54)

A*11:01
Severe disease Japan 3.41 (1.50-7.73) 3.34E-03 (55)

Severe disease China 2.33 8.51E-03 (51)

B*51:01 Severe disease China 3.38 0.007017 (51)

C*04:01 Severe disease Germany 5.4 (1.9-15.1) 1.10E-04 (56)

C*14:02 Severe disease China 4.75 3.03E-03 (51)

E*01:01/03 Severe disease China * * (57)

B*15:27 High frequencies in patients China 3.6 0.001 (46)

B*27:07 High frequencies in patients Italy * 0.00001 (48)

C*07:29 High frequencies in patients China 130.20 0.001 (46)

A*30:02 Viral infection USA 2.2 (1.4-3.6) 1.70E-03 (58)

B*46:01 Weak binding peptides * * * (59)

B*15:01 Asymptomatic infection USA 2.4 (1.54-3.64) 5.67E-05 (60, 61)

B*15:03 Cross-protective immunity * * * (59)

A*02:05 Protective effect Italy 0.1 (0-0.6) 0.015 (62)

B*58:01 Protective effect Italy 0.1 (0-0.6) 0.015 (62)

C*07:01 Protective effect Italy 0.1 (0-0.6) 0.015 (62)
OR, odds ratio; *, not available.
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outcomes in COVID-19 patients (51). HLA-E*01:01 allele and

heterozygous HLA-E*01:01/03 genotype are associated with

severe COVID-19, which may account for the individual

difference in NK cell responses following SARS-CoV-2 infection

(57). HLA-B*15:27, B*27:07, and C*07:29 genotypes have been

found at high frequencies in infected patients (46, 48). Schindler

et al. found an association between the A*30:02 allele and viral

infection (58). A comprehensive computer analysis of peptide-

HLA-I binding affinities across over a hundred HLA-A/B/C

genotypes revealed that B*46:01 has the fewest predicted binding

peptides for SARS-CoV-2 (59). This suggests that individuals with

B*46:01 may be particularly susceptible to COVID-19 (59), a

conclusion also supported by an earlier study related to SARS-

CoV-1 (63). Moreover, some HLA genotypes have shown strong

associations with mild disease and cross-reactive CTL responses. A

strong association was reported between B*15:01 and asymptomatic

infection in patients capable of clearing the virus during the early

stages of infection (60, 61). Predicted SARS-CoV-2 peptides

presented by B*15:03 are highly conserved across all other human

coronaviruses (HCoVs), implying the potential for cross-protective

T cell immunity (59). HLA-A*02:05, B*58:01, and C*07:01 have

been reported to be associated with protective effect against SARS-

CoV-2 infection. Overall, despite mixed results, some consistent

patterns are beginning to emerge in the association between HLA

alleles and SARS-CoV-2 infection. These patterns may offer a

valuable foundation for interpreting studies related to viral

antigen presentation.
3 Analysis of SARS-CoV-2 CTL epitope
distribution and immunodominance

SARS-CoV-2 epitopes have been identified for over 30 HLA-I

alleles, such as HLA-A*02:01, A*24:02, A*01:01, and B*07:02 (64).

According to the information provided by Immune Epitope

Database (IEDB, http://tools.iedb.org/immunomebrowser/) (65),

CTL responses are directed at multi-antigen, encompassing

structural proteins such as S (spike), N (nucleoprotein), and M

(membrane protein), as well as non-structural proteins like ORF3a,

ORF7a and ORF8. Viral proteins that are abundantly expressed in

SARS-CoV-2-infected cells tend to be the most dominant targets in

the T cell response to viral invasion (10, 11, 13, 66, 67). This

phenomenon may be attr ibuted to the fact that the

immunodominant pattern of T cells against SARS-CoV-2 is

closely associated with the expression level of viral proteins (10).

To date, numerous studies have reported immunodominant T cell

epitope. However, there are significant variations among these

studies, including differences in screening procedures, HLA alleles

considered, antigens targeted, sample sizes of individuals analyzed,

and the criteria used to define “immunodominance” (12, 68–70).

For example, Peng et al. reported several immunodominant

peptides, defining them as those recognized by at least 6

individuals out of a pool of up to 16 subjects screened (12). Tarke

et al. also highlighted the presence of highly immunodominant

epitopes, with 49 HLA-II-restricted epitopes recognized by at least 3
Frontiers in Immunology 04
out of an average of 10 donors, and 41 HLA-I-restricted epitopes

recognized by over 50% of HLA-matched donors (68). Nielsen et al.

found a broad spectrum of T cell responses, with the top three

immunogenic epitopes derived from different SARS CoV-2 proteins

(70). Keller et al. defined immunodominant epitopes as those

recognized by multiple donors from M, N and S viral proteins (69).

Several independent studies, including one involving the

BNT162b2 mRNA vaccine, have identified the YLQ-epitope as

immunodominant (20, 23, 71–74), eliciting an immune response

in the vast majority of convalescents with the HLA-A*02 genotype

(responses in 16 out of 17 individuals studied) (66, 70, 71). Another

notable example is the HLA-A*01:01-restricted TTD epitope (A*01/

NSP3819-828, TTDPSFLGRY). Nelde et al. reported a positive

response to the TTD epitope in 83% of donors (67). Saini et al.

conducted an extensive analysis of over 3,000 peptides for 10 HLA

alleles and confirmed the recognition of the same HLA-A*01:01-

restricted epitope (75, 76). Additionally, dominant CD8+ T cell

responses have been identified for the LTD (A*01/S865-873,

LTDEMIAQY) epitope and KCY (A*03/S378-386, KCYGVSPTK)

epitope when analyzing vaccine-elicited CD8+ T cell responses

that span the whole S protein (77). Using the Immunome

Browser tool (developed and hosted by the IEDB, https://

www.iedb.org/), we plotted the epitope assay counts for each

residue of SARS-CoV-2 ORF1ab, S, N, M, and ORF3a proteins.

The number of positive and negative assays are indicated for

each residue position, allowing for the visualization of

immunodominance patterns (Figure 1). A range of potentially

immunodominant CTL epitopes were identified on these viral

proteins, some of which have been characterized by peptide-

specific TCR repertoires, including ORF1ab-TTD (67, 75, 76),

spike-YLQ (20, 71, 78–82), NYN (79, 83, 84), LTD (79, 84), RLQ

(71, 84) (A*02/S269-277, RLQSLQTYV), QYI (78, 79, 82–84) (A*24/

S1208-1216, QYIKWPWYI), nucleoprotein-SPR (80, 82, 84, 85)

(B*07/N105-113, SPRWYFYYL), MEV (82) (B*40/N322-331,

MEVTPSGTWL), KTF (82, 86) (A*03/A*11/N361 -369 ,

KTFPPTEPK), and ORF3a-FTS (79, 84) (A*01/ORF3a207-215,

FTSDYYQLY) (Table 2). Meanwhile, we also observed that some

potentially dominant epitopes, such as membrane protein-GLM

(A*02/M89-97, GLMWLSYFI) and ORF3a-FTS, have emerged

several mutations associated with CTL immune escape, including

GLM-L90F and FTS-Q213K mutations (20, 88) (Table 3). These

dominant epitopes warrant further investigation, as they may offer

valuable insights for developing effective SARS-CoV-2 vaccines.
4 Biological insights into COVID-19
from the TCR repertoire

The specificity of T cells toward viral antigens presented by

MHCs is determined by unique TCRs (93). TCRs exhibit

considerable sequence heterogenei ty due to somatic

recombination of different variable (V), diversity (D), and joining

(J) gene fragments, as well as random mutations of nucleotides at

segment junctions (94). As a result, each TCR chain possesses three

variable complementary determination regions (CDRs): the
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germline-encoded CDR1 and CDR2 loops, and the hypervariable

CDR3 loop (Figure 2A). Upon antigen recognition, activated T cells

undergo rapid clonal expansion, resulting in a substantial increase

in T cells with identical TCRs, thus producing the identical antigen

recognition (95). Expanded CTL clones possess specific TCRs for

viral antigens, directly lyse infected cells via perforin/granzyme

release, and secrete pro-inflammatory mediators (87). Hence,

investigating the role of TCR in SARS-CoV-2 infection should

garner vast interest.
4.1 Interindividual TCR repertoire
influencing immune responses

It is well well-established that TCR diversity declines with age.

In individuals within the first two decades of life, TCRb diversity in

the naïve T cell repertoires is estimated to be 60-120 million, but a

decline to 8-57 million is observed in individuals over 70 years of

age (96, 97). This age-related decline in TCR repertoire has been

confirmed in the antiviral responses to human influenza A viruses

(98, 99). This age-related decline in TCR repertoire has been

observed in the antiviral responses to human influenza A viruses

(98, 99). The numbers of antigen-specific CD8+ T cells across

universal influenza epitopes were reduced in the elderly, although
Frontiers in Immunology 05
their effect/memory phenotype remained stable (98). Interestingly,

the mortality rate of elderly COVID-19 patients is notably higher

than that of young and middle-aged patients, while children mostly

exhibit milder disease outcomes when infected with SARS-CoV-2

(2, 100, 101). Further studies are needed to clarify whether aged and

less diverse TCR repertoires impact the ability of elderly patients to

generate sufficiently robust T cell response to SARS-CoV-2. HLA

variation is another factor of concern, influencing the composition

of TCR genes by affecting both intra-thymus and extra-thymus

clonal selection (102). A study by Francis et al. demonstrated that

HLA variations significantly affect the CD8+ T cell repertoire shape

and utilization of immune recall upon SARS-CoV-2 infection (84).

Genetic differences in the HLA genes directly affect the binding

affinity of MHC molecules to antigens, which in turn confer

susceptibility or resistance to viral infections (32, 33, 103).
4.2 Diversity of TCR repertoire after SARS-
CoV-2 infection and vaccination

The size, frequency, and publicity of individual clonotypes

within the TCR repertoire can provide insights into both

successful and failed immune responses. During SARS-CoV-2

infection, the diversity and clonability of TCR repertoire peaked
FIGURE 1

The identification of immunodominant antigenic regions of SARS-CoV-2 CTL epitopes. (A-E) CTL Epitope assay counts of five viral proteins (ORF1ab,
Spike, N, M, and ORF3a) were analyzed using the IEDB’s Immunome Browser tool to identify potential antigenic regions. The number of positive and
negative assays are indicated for each residue position.
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within 8-14 days (104, 105), and then returned to base levels within

a week after virus elimination (106). In COVID-19 convalescent

individuals, SARS-CoV-2 peptide continue to mediate long-term

immune responses, with robust functional T cell responses
Frontiers in Immunology 06
persisting for up to 6 months post-infection (107). A study by

Cohen et al. evaluated 254 COVID-19 patients longitudinally up to

8 months and found that virus-specific CD4+ and CD8+ T cells were

polyfunctional and maintained with an estimated half-life of 200
TABLE 2 TCR epitope characteristics of 22 SARS-CoV-2 epitopes in the public VDJ database (87).

Name Epitope Location HLA-I allele Major TRAV (%), TRAJ (%)
TRBV (%), TRBJ (%)

Count (TRAV,
AJ, BV, BJ)

Reference

YLQ YLQPRTFLL S269-277 A*02 AV12-1 (53%), AJ43 (23%),
BV7-9 (18%), BJ2-2 (57%)

872, 864, 1110, 1110 (20, 71, 78–82)

SPR SPRWYFYYL N105-113 B*07:02 AV4 (11%), AJ10 (8%),
BV27 (18%), BJ2-7 (20%)

467, 449, 608, 608 (80, 82, 84, 85)

TTD TTDPSFLGRY NSP3819-828 A*01:01 AV9-2 (12%), AJ49 (8%),
BV27 (28%), BJ2-7 (21%)

407, 394, 437, 437 (79, 82)

KTF KTFPPTEPK N361-369 A*03:01, A*11:01 AV19 (9%), AJ12/4249 (5%),
BV20-1 (9%), BJ2-2 (17%)

135, 132, 179, 179 (82, 86)

QYI QYIKWPWYI S1208-1216 A*24:01, A*24:02 AV19 (13%), AJ25 (7%),
BV20-1 (25%), BJ2-7 (30%)

142, 136, 158, 158 (78, 79, 82–84)

LTD LTDEMIAQY S865-873 A*01:01 AV21 (14%), AJ40 (10%),
BV27 (18%), BJ2-7 (21%)

135, 125, 135, 135 (79, 84)

MEV MEVTPSGTWL N322-331 B*40:01 AV14 (35%), AJ4 (25%),
BV27 (31%), BJ2-1 (29%)

74, 73, 90, 90 (82)

NQK NQKLIANQF S919-927 B*15:01 AV21 (14%), AJ40 (18%),
BV7-2 (10%), BJ1-2 (25%)

77, 72, 77, 77 (79)

RLQ RLQSLQTYV S1000-1008 A*02 AV16/38-1/28-2 (11%), A20 (19%)
BV27 (31%), BJ2-1 (29%)

54, 54, 94, 94 (71, 84)

NYN NYNYLYRLF S448-456 A*24:01, A*24:02 AV12-1 (75%), AJ28 (19%)
BV6-1 (27%), BJ2-7 (80%)

57, 57, 70, 70 (79, 83, 84)

LLY LLYDANYFL ORF3139-147 A*02:01 AV8-1 (65%), AJ29 (56%)
BV11-2 (38%), BJ1-1 (56%)

34, 34, 55, 55 (79, 84)

FTS FTSDYYQLY ORF3207-215 A*01:01 AV14 (21%), AJ52 (13%)
BV7-3 (14%), BJ2-7 (23%)

42, 39, 43, 43 (79, 84)

PTD PTDNYITTY NSP31321-1329 A*01:01 AV12-1 (46%), AJ24 (49%)
BV28 (51%), BJ2-7 (61%)

37, 37, 41, 41 (79, 84)

ALS ALSKGVHFV ORF372-80 A*02:01 AV1-2 (13%), AJ24 (23%)
BV27 (21%), BJ2-1 (30%)

24, 22, 43, 43 (79, 84)

ALW ALWEIQQVV ORF1ab4094-4102 A*02:01 AV19 (19%), AJ42 (19%)
BV19 (14%), BJ2-1 (22%)

27, 26, 36, 36 (84)

VYF VYFLQSINF NSP3112-120 A*24:02 *, AJ30 (18%)
BV19 (17%), BJ2-7 (21%)

29, 28, 29, 29 (79, 84)

RVA RVAGDSGFAAY M186-196 B*15:01 AV1-2 (21%), AJ43/45 (14%)
BV27/7-9 (17%), BJ1-5/2-1/2-7 (17%)

24, 22, 24, 24 (79)

KLW KLWAQCVQL ORF1ab3886-3894 A*02:01 AV38-2 (76%), AJ43 (29%)
BV6-6 (20%), BJ2-1 (36%)

21, 21, 25, 25 (84)

KSV KSVNITFEL ORF1ab837-845 A*02:01 AV5 (19%), AJ39/49 (13%)
*, BJ2-1 (26%)

16, 16, 19, 19 (84)

WPV WPVTLACFV M58-66 B*07:02 AV38-1 (14%), *
BV7-9 (14%), BJ2-7 (19%)

14, 14, 21, 21 (84)

SII SIIAYTMSL S691-699 B*07:02 AV14 (19%), AJ54/9 (13%)
BV4-2 (11%), BJ2-3 (33%)

16, 15, 18, 18 (84)

VWV VMVELVAEL ORF1ab84-92 A*02:01 AV13-1/13-2 (15%), AJ5 (17%)
BV27 (18%), BJ2-1/2-7 (24%)

13, 12, 17, 17 (84)
*, not available. Bold values indicate TCR genes that constitute more than 50% of the peptide-specific TCR repertoire.
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TABLE 3 CTL immune escape by SARS-CoV-2 mutations.

Original
sequence

Location HLA Mutation Mutant
sequence

CTL immune escape Reference

YLQPRTFLL S269-277 A*02
L270F
P272L

YFQPRTFLL
YLQLRTFLL

IFN-g+ CD8+ T cells ↓
peptide-MHC-I binding ↓
tetramer+ CD8+ T cells ↓
specific-TCR binding ↓
TNF+ CD8+ T cells ↓
MIP-1b release ↓
CD107a release ↓
T cell activation ↓

(20, 28, 29)

RLQSLQTYV S1000-1008 A*02 T1006I RLQSLQIYV
specific-TCR binding ↓

T cell activation ↓
(28)

FVFLVLLPLV S2-11 A*02
L5F
L8V

FVFFVLLPLV
FVFLVLVPLV
FVFFVLVPLV

peptide-MHC-I binding ↓
tetramer+ CD8+ T cells ↓
CD69+ CD8+ T cells ↓
CD137+ CD8+ T cells ↓

(89)

FQFCNDPFL S133-141 A*02 D138H/Y
FQFCNHPFL
FQFCNYPFL

peptide-MHC-I binding ↓ (89)

YQDVNCTEV S612-620 A*02 D614G YQGVNCTEV peptide-MHC-I binding ↓ (89)

FTSDYYQLY ORF3a207-215 A*01:01 Q213K FTSDYYKLY
IFN-g ELISpot ↓
killing capacity ↓

(88)

QRNAPRITF N9-17 B*27:05 P13L/S/T
QRNALRITF
QRNASRITF
QRNATRITF

IFN-g ELISpot ↓
killing capacity ↓

(88)

KTFPPTEPK N361-369
A*03:01
A*11:01

T362I
P365S

KIFPPTEPK
KTFPSTEPK

IFN-g ELISpot ↓
killing capacity ↓

(88)

TTDPSFLGRY
ORF1a1637-

1646
A*01:01

T1637I
T1638I
P1640S
P1640L
P1640H

ITDPSFLGRY
TIDPSFLGRY
TTDSSFLGRY
TTDLSFLGRY
TTDHSFLGRY

IFN-g+ CD8+ T cells ↓
CD107a+ CD8+ T cells ↓
TNFa+ CD8+ T cells ↓

killing capacity ↓

(88)

YFPLQSYGF S489-497 A*29:02
Q493R
G496S

YFPLRSYSF
IFN-g+ CD8+ T cells ↓

IFN-g+ TNF+ CD8+ T cells ↓
(30)

PTDNYITTY
OEF1ab1321-

1329
A*01:01

T1322A
T1322P

PADNYITTY
PPDNYITTY

IFN-g+ CD8+ T cells ↓ (90)

NYNYLYRLF S448-456
A*24:01
A*24:02

L452R
Y453F

NYNYRYRLF
NYNYLFRLF

IFN-g+ CD8+ T cells ↓ (91, 92)

KIADYNYKL S417-425 A*02:01 K417N NIADYNYKL IFN-g+ CD8+ T cells ↓ (92)

GVYYHKNNK S142-150 A*11:01 Y144del GVYHKNNK IFN-g+ CD8+ T cells ↓ (92)

IIWFLLLSV
ORF1ab2230-

2238

A*02:01
A*02:07

I2230T TIWFLLLSV IFN-g+ CD8+ T cells ↓ (92)

GLMWLSYFI M89-97 A*02:01 L90F GFMWLSYFI
peptide-MHC-I binding ↓ tetramer+ CD8+ T

cells ↓
IFN-g+ CD8+ T cells ↓

(20)

MEVTPSGTWL N322-331 B*40:01

M322I
L331F
L331S
T325I

IEVTPSGTWL
MEVTPSGTWF
MEVTPSGTWS
MEVIPSGTWL

peptide-MHC-I binding ↓, tetramer+ CD8+ T
cells ↓

IFN-g+ CD8+ T cells ↓
(20)

LLFNKVTLA S821-829 A*02 L822F LFFNKVTLA peptide-MHC-I binding ↓ (20, 88)

SIIAYTMSL S691-699 B*07:02
S691P/C
I692T

PIIAYTMSL
CIIAYTMSL
STIAYTMSL

peptide-MHC-I binding ↓ (20)
F
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IFN-g, interferon-gamma; TNF, tumor necrosis factor; CD107a, cluster of differentiation 107a; MIP-1b, macrophage inflammatory protein-1 beta. The bold, colored, and underlined letters in the
mutant sequences indicate mutation sites on CTL epitopes.
The downward arrow indicates a reduction in the population of activated CD8+ T cells, a decrease in cytokine secretion, or a weakening of peptide-MHC/peptide-TCR binding.
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days (108). Long-term immunity against SARS-CoV-2 is primarily

driven by the clonal diversity of antigen-specific T cell responses

(107, 109). Studies have demonstrated that highly diverse TCR

repertoires can offer protection against a variety of antigens,

including those from CMV, EBV, and HIV (110, 111), and such

repertoires may be associated with a higher level of affinity, affinity,

and overall functionality in immune responses (112, 113).

Vaccination against SARS-CoV-2 infection elicit strong T cell

responses. Vaccine-induced CTL expansion seems to be relatively

weak and results in fewer distinct clonotype clusters compared to

CTLs induced by natural infection (114). Despite the rapid

contraction of the circulating T Cell responses to SARS-CoV-2

mRNA vaccination, there is a persistent memory that were readily

detectable in most individuals out to 235 days after vaccination

(115). Repeated mRNA vaccination lead to large expansions of
Frontiers in Immunology 08
memory spike-reactive T cell clonotypes, most of which were CD8+

T cells, while also eliciting diverse spike-reactive T cell clonotypes

not observed before vaccination (116). Infection-induced spike-

specific CD8+ T cell memory plays an important role in the

formation of circulating T cell bank size and clonal composition

after vaccination (117), and mRNA vaccination promotes the

expansion of memory CD8+ T cells (117, 118). As both virus-

and vaccine-induced antigen-specific TCR repertoires undergo

significant clonal contraction over time, coupled with an overall

decline in immune response, booster vaccination may be the

primary strategy to enhance long-term protection (109, 119).

Viral infection triggers massive T cells that can recognize

specific antigens, resulting in skewing of the TCR repertoire

toward these antigen-specific T cells (120). It has been

demonstrated that certain V, D, and J fragments are over-
FIGURE 2

Overview of CTL response to SARS-CoV-2 infection mediated by TCR-pMHC complex. (A) Antigen presenting cells (APCs) endocytose SARS-CoV-2
and degrade it through antigen processing. These epitope fragments are then presented on the cell surface by MHC molecules and allow
recognition by T cells. TCR genes of the a-chain (TCRa) and b-chain (TCRb) on the T cell surface are recombined to produce a diverse TCR
repertoire. If a CD8+ T cell is able to bind pMHC, it will undergo clonal expansion and directly target infected cells through perforin/granase, FAS
ligand/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway, or secretion of pro-inflammatory mediators. CDR1 and CDR2 are
encoded by TRBAV and TRABV genes, and CDR3 encompasses VJ regions (for TCRa) or VDJ regions (for TCRb). Non-template nucleotide insertions
and deletions are represented by black boxes. MHC-a (green), b2m (sand), Peptide (magenta), TCRa (teal), TCRb (salmon), TCRa-CDR1 (red), TCRa-
CDR2 (orange), TCRa-CDR3 (yellow), TCRb-CDR1 (blue), TCRb-CDR2 (green), TCRb-CDR3 (maroon). (B–E) Histograms of V gene usage across the
sequences of YLQ-, NYN-, PTD-, LLY-specific TCRs. Only the top ten of each gene are shown.
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expressed or under-expressed in COVID-19 patients with different

clinical pictures (121). Compared with symptomatic patients,

asymptomatic patients exhibit an overrepresentation of some

TCR genes, including TRAV (AV17, AV12-1, AV19, AV35, and

AV41), TRBV (BV12-5 and BV19), TRAJ16, and TRBJ2-1 (122,

123). Symptomatic patients, on the other hand, have higher

frequencies of TRAV2, AJ8, AJ40, BV3-1, and BV5-1 (122).

Severe patients tend to highly express TRBV5-6, BV14, BV13 and

BV24-1 (124). Furthermore, a study showed that 25 sequences

within the central parts of CDR3 region could be used to predict

severe infection, emphasizing the significant impact of distinct

clonal expansion on disease progression (125).
4.3 SARS-CoV-2 CTL epitopes recognized
by public and private TCRs

Interestingly, despite an estimated potential TCR diversity of

1015 (126, 127), TCRs that recognize a common ligand typically

exhibit convergent sequence features in CDR3 residues that directly

contact the peptide (111, 128), as well as CDR1 and CDR2 residues

that can also contact the peptide and MHC, which are also known

as “public” TCR motifs (129). In previous HIV-related studies, viral

control has been linked to the presence of more cross-reactive

public TCR clones, which may play a role in limiting viral escape

pathways (130, 131). Several studies have identified “public” TCR in

COVID-19 convalescents, characterized by conserved CDR motifs

within and between individuals (71, 104, 132, 133). Ford et al.

identified public CD8+ and CD4+ TCR motifs associated with

SARS-CoV-2 spike specificity through TCR sequence similarity

clustering (116). Analysis of over 4,000 epitope-specific TCR

sequences showed that all SARS-CoV-2 exposures elicit diverse

repertoires characterized by shared TCR motifs, confirmed by

monoclonal TCR characterization (134). Here, we summarized

TCR repertoires for 22 epitopes (each with a gene count >30)

from the public VDJ database (135), as shown in Table 2. Consistent

with previous studies (71, 133, 136), we found that TRAV12-1

(53%, 462/872) and TRBV7-9 (18%, 196/1110) were used by most

YLQ-specific TCRs (Figure 2B). Likewise, TCRs recognizing other

SARS-CoV-2 epitopes (e.g., NYN, LLY, PTD) display notable bias

in the usage of specific TCR gene fragments (Figures 2C–E). For

example, TRAV12-1 gene was commonly employed by YLQ, NYN,

and PTD specific TCRs. Half of the epitopes we counted, such as

SPR, TTD, QYI, LTD, RLQ, NYN, FTS, PTD, VYF, RVA, andWPV

were dominated by the TRBJ2-7 gene (Table 2). This strong bias of

TCR gene usage among epitope-dependent TCRs likely highlights

the significance of germline-encoded features in TCR recognition,

as previously reported in other antiviral immune responses

(137, 138).

In addition to public TCRs, the TCR repertoire generated in

response to a specific epitope varies between individuals, often

referred to as “private” responses. The RLQ-epitope (spike1000-1008,

RLQSLQTYV) is another immunodominant epitopes located on

the SARS-CoV-2 spike protein, triggering cellular responses in most

HLA-A*02:01+ convalescents (71). Unlike the highly “public” TCRs

generated in response to the YLQ-epitope (71), TCRs responding to
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RLQ epitopes tend to be predominantly “private” and exhibit

greater diversity (Table 2). The recognition of A*02-RLQ by

receptors with diverse CDR3a and CDR3b pairings diminishes

the publicity of A*02-RLQ responses between individuals, enabling

them to recognize MHC and peptide in a manner that reduces the

likelihood of identical or very similar V(D)J rearrangements in

different individuals (28).
4.4 Cross-reactiveness of T cell repertoire
in human coronavirus

Based on the genomic similarities between SARS-CoV-2 and

HCoVs, cross-reactive T cells may underlie the extensive

heterogeneity observed in COVID-19 disease. SARS-CoV-2 T cell

reactivity was mostly associated with CD4+ T cells, with a smaller

contribution by CD8+ T cells (9, 10, 139, 140). Nevertheless, some

reports provide the basis for a limited representation of cross-

reactive CD8+ T cell responses (19, 60, 84, 85, 141). Minervina et al.

detected certain T cell clones in memory fragments at pre-infection

time points, suggesting participation of pre-existing cross-reactive

memory T cells in the immune response to SARS-CoV-2 (19).

Francis et al. reported that the clonal diversity of T cell responses to

HLA-B*07:02 allele correlates with pre-existing immunity, allowing

efficient presentation of homologous epitopes from both SARS-

CoV-2 and HCoVs (84). Cytotoxic T cell responses against SPR-

HLA-B*07:02 (N105-113, SPRWYFYYL) are often associated with

mild cases of COVID-19 (80, 84, 142–145). Augusto et al., found

that T cells from pre-pandemic samples from individuals carrying

HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2

spike-derived NQK epitope (60). Additionally, Shimizu et al. found

that CD8+ T cells in response to a selected dominant QYI epitope

display multifunctionality and cross-functionality across HCoVs in

HLA-A24+ donors (141).

The HLA-B*07:02-restricted SPR epitope is one of the most

cross-reactive epitopes, showing a high frequency in unexposed pre-

pandemic samples (80, 145). Notably, the SPR peptide sequence is

identical in SARS-CoV-2 and SARS-CoV-1, differing by only one

residue in OC43-CoV-1 and HKU-1-CoV-1 (LPR), three residues

in 229E (SPK) and four in NL63-CoV-1 virus (PPK), as shown in

Figure 3A. Lineburg et al. reported that CD8+ T cells exhibit cross-

reactivity between SARS-CoV-2 SPR and OC43/HKU-1-derived

LPR peptide, but CD8+ T cells were unable to cross-recognize SPK

and PPK peptides (85). The crystal structures of SPR-HLA-B*07:02

and SPK-HLA-B*07:02 elucidate these outcomes. Despite sharing

common motifs in P1-2 (SP) and P6-9 (FYYL), differences in

peptide sequences at P3-5 result in distinct conformations for

SPK and SPR (Figure 3B). In the structure of SPR-HLA-B*07:02,

four of the five aromatic residues create an interaction network,

forming a compact and substantial binding surface for potential

interaction with TCRs (Figure 3C). In comparison, the SPK peptide

predominantly exposes the three carboxyl residues (P6-8) at the C-

terminus (Figure 3C). Due to their high sequence identity, the LPR

peptide (from OC43 and HKU-1) may adopt a conformation

similar to that of SPR peptide (found in SARS-CoV-1 and SARS-

CoV-2), providing the foundation for cross-reactivity among CD8+
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T cells in HLA-B7+ individuals. However, despite sharing >55% (5/

9) sequence identity, the distinctive structures account for the

relatively low-level CD8+ T cell cross-reactivity observed between

these peptides.

Most NQK-specific reactive T cells display a memory

phenotype, exhibit highly polyfunctional, and cross-react to a

peptide from seasonal coronaviruses (60, 61). The NQK peptide

of SARS-CoV-2 differs by only one residue in SARS-CoV-1, OC43-

CoV-1, and HKU-1-CoV-1, and by three residues in 229E-CoV-1

and NL63-CoV-1 virus (Figure 3D). Crystal structures of peptide-

HLA-B15 complexes reveal that the peptides NQKLIANQF (from

SARS-CoV-1) and NQKLIANAF (NQK-A8, from OC43-CoV and

HKU1-CoV) have similar stabilization properties (Figures 3E, F).

This structural similarity of the peptides underpins T cell cross-

reactivity of high-affinity public T cell receptors, providing a

molecular basis for HLA-B*15:01-mediated pre-existing immunity

(60). A similar pattern of peptide binding to HLA was observed

with another dominant epitope, HLA-A24 restricted QYI (141).

The QYI exhibits high sequence homology with SARS-CoV-1,

OC43 (YYV), HKU-1-CoV-1 (MYV), 229E-CoV-1 (TYI), and

NL63-CoV-1 (NYI) (Figure 3G). The cross-reactivity of the QYI

epitope depends on the structural pattern of the peptide-HLA-

A*24:02 complex and the combinations of TCR sequences (141).

The structures of QYI-HLA-A24, TYI-HLA-A24, and MYV-HLA-

A24 are almost identical, with rmsd (root mean square deviation) of
Frontiers in Immunology 10
0.15 Å (QYI and TYI), 0.41 Å (QYI andMYV), and 0.41 Å (TYI and

MYV), respectively (Figure 3H). The side chains of the peptides at

P1, P4, P5, P7 and P8 are directed to the solvent region, and their

structural orientations are slightly different (Figure 3I). This

particular region forms a raised structure and is expected to

interact directly with TCRs by their side chains. It is reasonable

to speculate that some CD8+ T cells targeting seasonal

coronaviruses may exist as long-term memory cells within the

population. If these cross-reactive T cells are stimulated by

COVID-19 vaccine or viral antigen, they could be skewed toward

SARS-CoV-2.
5 CD8 + T cell immune escape by
SARS-CoV-2 variants

5.1 Antigenic mutations and loss of CTL
epitope-specific responses

Given the active role of T cells in combating viral infection,

some mutations could potentially lead to the loss of CTL epitopes

that evade recognition by CD8+ T cells (Table 3). Mutations within

CD8+ epitopes in S protein (YLQ-L270F, LLF-L822F, and SII-

S691P/S691C/I692T), M protein (GLM-L90F), N protein (MEV-

M332I/L331S/L331F) were noted in one study during the course of
FIGURE 3

The structural basis of SPR, NQK, and QYI peptides for selective T cell cross-reactivity. (A) Peptide homologs of other HCoVs compared to the SARS-CoV-2
SPR peptide. (B) Structural superposition of the SPR-HLA-B7 (ID 7LGD) and SPK-HLA-B7 (ID 7LGT). SPR peptide (magenta), SPK peptide (cyan), HLA-B7
(grey). (C) Top view of the SPR-HLA-B7 and SPK-HLA-B7, with stick representation of the SPR and SPK peptides. Blue and black dashed lines indicate intra-
peptide interactions of the SPR and SPK peptide, respectively. (D) Peptide homologs of other HCoVs compared to the SARS-CoV-2 NQK peptide. (E)
Structural superposition of the NQK-HLA-B15 (ID 8ELH) and NQK-A8-HLA-B15 (ID 8ELG). NQK peptide (magenta), NQK-A8 peptide (cyan), HLA-B15 (grey).
(F) Top view of the SPR-HLA-B7 and SPK-HLA-B7, with stick representation of the SPR and SPK peptides. (G) Peptide homologs of other HCoVs compared
to the SARS-CoV-2 QYI peptide. (H) Structural superposition of the QYI-HLA-A24 (ID 7EJL), TYI-HLA-A24 (ID 7EJM), and MYV-HLA-A24 (ID 7EJN). QYI
peptide (magenta), TYI peptide (cyan), MYV peptide (purple blue), HLA-A24 (grey). (I) Top view of the QYI-HLA-A24, TYI-HLA-A24, and MYV-HLA-A24, with
stick representations of the QYI, TYI and MYV peptides.
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acute infections, resulting in loss of epitope-specific responses (20).

Prolonged SARS-CoV-2 infection in immunocompromised hosts

may create a great opportunity for T cell escape. For instance, in the

case of chronic SARS-CoV-2 infection, the NSP3 T504P mutation

has been reported to result in the loss of CTL response (90, 146).

These findings are limited to a few cases and suggest the need for

more prospective cohort studies to systematically assess the risk of T

cell escape in certain patient populations.

As the T cell responses target epitopes across the SARS-CoV-2

genome, the footprint of T cell escape is more broadly distributed

than antibody-driven changes. In multiple SARS-CoV-2 lineages,

some mutations within the immunodominant ORF1a (TTD-

T1637I, T1638I, P1640S, P1640L, P1640H) ORF3a (FTS-Q213K)

and N protein (QRN-P13L/S/T, KTF-T362I, P365S) CD8+ T cell

epitopes resulted in a complete loss of recognition (88). Among

these mutations, the N protein P13L mutation is present in

Omicron within B*27:05-restricted CD8+ epitopes. Given the

hypothesis that VOCs arise in chronic infections, it is tempting to

speculate that the presence of P13L in Omicron reflects selection

due to T cell stress during chronic infection, in addition to the

constellation of spike mutations that are likely driven by antibody

pressure. The mutant YLQ-P272L epitope could not be recognized

by over 120 YLQ-specific TCRs, which may allow viral variants to

escape from vaccine-induced T cell responses (28, 29). Spike-

encoded L452R and Y453F led to the loss of HLA-A24-restricted

CTL responses (91). In addition to evading antibodies and

enhancing ACE2 binding affinity (147), the role of T cells in

driving this change is uncertain. The extent to which these

observations also represent incidental effects of mutations driven

by other stresses on T cell responses is currently unknown.
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5.2 Mechanisms of CTL immune escape by
SARS-CoV-2 variants

T cell escape can occur through several mechanisms. Amino

acid changes within epitopes or flanking regions can disrupt antigen

processing (148), and changes to anchor residues can interfere with

MHC/TCR binding to epitopes (29, 92, 149). Both these

mechanisms can result in irreversible loss of T cell responsiveness

to a particular epitope. To better understand the mechanism of

CTL immune escape achieved by alterations in the binding

between ligands and receptors, researchers have resolved several

crystal structures of TCR-pHLA ternary complex and pHLAs

loaded with original or mutant SARS-CoV-2 peptides,

including YLQ, YLQ-P272L, RLQ, RLQ-T1006I, NYN, NYN-

Y453F, KIA, KIA-K417T peptides (Table 4). All of eight TCR-

pMHC ternary complexes loaded with SARS-CoV-2 peptides are

symmetrically docked on pHLAs in a canonical diagonal

orientation (Figure 4).

Mutations within the epitope may destabilize or reassemble the

pHLA complexes (20, 92). For example, our previous study showed

that the K417N and Y144del mutations lead to failure in the

formation of the KIA-HLA-A2 and GVY-HLA-A11 complexes,

respectively, blocking the first step in antigen presentation (92).

Additionally, structural analysis shows that the positively charged

side chain of N-terminal lysine forms a p-cation interaction with

the indole ring of W167 of HLA-A2, and K417N/T mutations at

this position (K417T) are expected to abolish the p-cation
interaction at this position (92). The loss of this key peptide-HLA

interactions may provide SARS-CoV-2 variants with an

opportunity to evade cellular immunity.
TABLE 4 Published crystal structures of TCR-pHLA and pHLA associated with SARS-CoV-2 CTL immune escape.

Peptide
sequence

pHLA (ID) TCR (ID) TCR-pHLA complex (ID) TRAV, TRAJ, TRBV, TRBJ

YLQPRTFLL
YLQ-HLA-A2

(7P3D, 7N1A, 7RDT, 7N6D)

YLQ7 (7N1D) YLQ7-YLQ-HLA-A2 (7N1F) AV12-2, AJ30, BV7-9, BJ2-7

* NR1C-YLQ-HLA-A2 (7N6E) AV12-1, AJ43, BV19, BJ2-2

* YLQ36-YLQ-HLA-A2 (7PBE) AV12-1, AJ34, BV7-9, BJ2-2

* SG3-YLQ-HLA-A2 (7RTR) AV12-2, *, BV7-9, *

YLQLRTFLL YLQ-P272L-HLA-A2 (7P3E) * * *

RLQSLQTYV RLQ-HLA-A2 (7N1B)
RLQ3 (7N1C) RLQ3-RLQ-HLA-A2 (7N1E) AV16, AJ39, BV11-2, BJ2-3

RLQ7 (8GOP) RLQ7-RLQ-HLA-A2 (8GOM) AV38-2, AJ29, BV12-3, BJ2-3

RLQSLQIYV * RLQ7 (8GOP)
RLQ7-RLQ-T1006I-HLA-

A2 (8GON)
AV38-2, AJ29, BV12-3, BJ2-3

NYNYLYRLF NYN-HLA-A24 (7F4W) * TCRNYN-I-NYN-HLA-A24 (8YE4) AV12-1, AJ28, BV6-1, BJ2-7

NYNYLFRLF
NYN-Y453F-HLA-

A24 (8ZV9)
* * *

KIADYNYKL KIA-HLA-A2 (7EU2) * * *

TIADYNYKL TIA-HLA-A2 (7UM2)a * * *
*, Not available. a, to be published.
Reference: (7N1A, 7N1B, 7N1C, 7N1D, 7N1E, 7N1F) (28), (7P3D, 7P3E, 7PBE) (29), (7N6D, 7N6E) (150), (7RTD, 7RTR) (81), (8GOM, 8GON, 8GOP) (151), (7F4W, 7UM2) (92), (8ZV9,
8YE4) (149). The bold, colored, and underlined letters in the mutant sequences indicate mutation sites on CTL epitopes.
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Mutations within the epitope may disturb or change the

peptide-dependent TCR contacts (29, 149). For the dominant

YLQ epitopes, the original YLQ peptide forms six intra-peptide

bonds to stabilize TCR binding, while the mutant YLQ-P272L-

HLA-A2 (YLQLRTFLL) structure exhibits fewer internal contacts

(Figure 5A). The P5 arginine of the peptide underwent a significant

conformational shift during the binding of TCR YLQ36 (Figure 5B).

Superimposed structures of YLQ-P272L-HLA-A2 and YLQ36-

YLQ-HLA2 complex revealed that the leucine of YLQ-P272L

might protrude within 1˚ of the YLQ36 CDR3a loop, creating a

steric hindrance between them (Figure 5C). This steric hindrance

could potentially jeopardize the interaction between CDR3a and

YLQ peptide, resulting in the loss of YLQ36 T cell recognition.

Similarly, the spik-Y453F mutation within the NYN epitope is

another dominant mutation that triggers HLA-A24-restricted

CTL immune escape (91). In order to explore the escape

molecular mechanism, we determined the crystal structures of

original NYN-HLA-A24 (NYNYLYRLF) (92), mutant NYN-

Y453F-HLA-A24 (NYNYLFRLF), and a ternary structure of

TCRNYN-I-NYN-HLA-A24 (149). Structural analysis showed that

after mutation or TCRNYN-I binding, the conformation of the NYN

peptide changed significantly, especially P4-Tyr, P5-Leu, and P6-

Tyr/Phe (Figures 5D, E). The hydrophobic phenylalanine in the

SARS-CoV-2 variants may disrupt contact network of the original

tyrosine with TCRNYN-I, suggesting that despite competent

presentation by HLA, the mutant Y453F peptide failed to

establish a stable TCR-pHLA ternary complex due to reduced

peptide: TCR contacts(Figure 5F). Unlike the P272L and Y453F

dominant mutations, the RLQ-T1006I mutation was found to be

tolerated in HLA-A24-restricted CTL activation (28, 30, 151). The

T1006I substitution leads to a structural rearrangement of the HLA

peptide-binding groove and alters the conformation of peptide

residues P3-Gln and P6-Gln (Figure 5G). TCR RLQ7 CDR1a
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engages the N-terminal region of the original RLQ peptide via

two direct and three water-mediated hydrogen bonds (Figure 5H),

while TCR RLQ7 forms two new compensating hydrogen bonds

with mutant RLQ-T1006I peptide (Asp31a with P4-Ser, Asp31a
with P5-Leu) and an additional hydrogen bond with HLA-A2

(Glu29a with Arg66-HLA-A2) (Figure 5I). Similar stabilities of

the two complexes may provide a reasonable explanation for the

limited CTL immune escape.

Disruption or inhibition of antigen processing by mutation is a

third mechanism of T cell immune escape. The components of the

antigen processing pathway have preferences for their optimal

amino acid sequences (152). It has been demonstrated in HIV-

related studies that differences in amino acid sequence in the region

flanking the epitope impaired the intracellular processing and

presentation of epitope (153, 154). In the context of SARS-CoV-2

infection, a study proposed that variants may disrupt the HLA-I

antigen presentation pathway by depleting proteasomes and

altering the activity of ubiquitination enzymes, thereby preventing

infected cells from presenting antigen proteins (148). A deeper

understanding of the mechanisms by which SARS-CoV-2 evades

host immune surveillance through the ubiquitin-proteasome

system and HLA-I presentation warrants further investigation.
6 Conclusion

T cells are the backbone of the immune system and play a

crucial role in the progression of COVID-19. HLA allele-related

studies are essential for assessing the role of HLA in the immune

response against SARS-CoV-2. Although some studies have

demonstrated that HLA alleles were associated with differential

susceptibility, these results were not consistent across studies. The

lack of large-scale HLA typing in samples has limited the scope of
FIGURE 4

Schematic view of the TCR-pMHC I ternary complex. (A, B) Side view of YLQ7-YLQ-HLA-A2 (ID 7N1F). MHC-a (grey), b2m (sand), YLQPRTFLL-
peptide (magenta), TCRa (teal), TCRb (salmon), CDR1a (red), CDR2a (orange), CDR3a (yellow), CDR1b (light pink), CDR2b (light blue), CDR3b (green).
(C) Footprint of TCR YLQ7 on YLQ-HLA-A2. (D) Cartoon comparison of eight TCR-pMHC ternary complexes presenting SARS-CoV-2 CD8+ T cell
epitopes, including YLQ7-YLQ-HLA-A2 (ID 7N1F, cyan), YLQ36-YLQ-HLA-A2 (ID 7PBE, slate), NR1C-YLQ-HLA-A2 (ID 7N6E, magenta), SG3-YLQ-
HLA-A2 (ID 7RTR, sand), RLQ3-RLQ-HLA-A2 (ID 7N1E, green), RLQ7-RLQ-HLA-A2 (ID 8GOM, salmon), RLQ7-RLQ-T1006I-HLA-A2 (ID 8GON, grey),
TCRNYN-I-NYN-HLA-A24 (ID 8YE4, light pink).
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research, with most studies involving sample sizes fewer than 190.

Future large-scale studies are needed to provide a comprehensive

understanding of the association between HLA genotypes and the

evolving SARS-CoV-2 variants, thus improving our understanding

of the association between antigen presentation and disease

progression. Moreover, T cells carry a natural “barcode” sequence

in their variable TCR region, specifically in the CDR3 component.

Gene mutations and recombination endow the TCR repertoires

great diversity and poly-clonality. Studies related to TCR-seq

provide evidence for the close relationship between TCR diversity

and anti-viral immunity. In the context of viral infection, the

preferential selection of T cell clones narrows the TCR repertoire

for antigen selection. Nevertheless, the full influence of SARS-CoV-

2 on the TCR repertoire remains to be evaluated.

Although the characteristics of HLA polymorphisms and TCR

repertoire in SARS-CoV-2 infection have been initially elucidated, the

emergence of immune evasion variants complicates a comprehensive
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understanding of these relationships. Since the onset of the pandemic,

SARS-CoV-2 has continued to evolve and adapt to its host, remaining

a relatively new coronavirus. These variants are more prone to cause

immune escape and vaccine escape. Studying the mechanisms of

immune and vaccine escape remains a significant challenge. There is

a need to conduct ongoing assessment of vaccine efficacy against

these evolving variants, which may contribute to elucidate the drivers

of the spread and evolutionary success of circulating variants.

Addressing these unresolved issues promptly is crucial to ending

the current pandemic and preparing for potential future ones.
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