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Introduction: Antibodies represent a specific class of proteins produced by the

adaptive immune system in response to pathogens. Mining the information

embedded in antibody amino acid sequences can benefit both antibody

property prediction and novel therapeutic development. However, antibodies

possess unique features that should be incorporated using specifically designed

training methods, leaving room for improvement in pre-training models for

antibody sequences.

Methods: In this study, we present a Pre-trained model of Antibody sequences

trained with a Rational Approach for antibodies (PARA). PARA employs a strategy

conforming to antibody sequence patterns and an advanced natural language

processing self-encoding model structure. This approach addresses the

limitations of existing protein pre-training models, which primarily utilize

language models without fully considering the differences between protein

sequences and language sequences.

Results: We demonstrate PARA’s performance on several tasks by comparing it

to various published pre-training models of antibodies. The results show that

PARA significantly outperforms existing models on these tasks, suggesting that

PARA has an advantage in capturing antibody sequence information.

Discussion: The antibody latent representation provided by PARA can

substantially facilitate studies in relevant areas. We believe that PARA’s superior

performance in capturing antibody sequence information offers significant

potential for both antibody property prediction and the development of novel

therapeutics. PARA is available at https://github.com/xtalpi-xic.
KEYWORDS

antibody pre-training, sequence representation learning, protein language models,
computational immunology, deep learning in immunology
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Introduction

The adaptive immune system generates antibodies of immense

diversity to specifically recognize and neutralize invading

pathogens. Antibodies are Y-shaped protein complexes that

contain several functional regions, including Fab, Fc, and Fv

regions. Among them, V(D)J gene recombination contributes to

the initial diversity in the Fv region, while antigen-specific affinity

maturation drives somatic hypermutation to enhance diversity

throughout the entire protein (1). Being able to model the

complexity of antibody diversity will facilitate the study of

immune system as well as benefit the computer-aided antibody

drug design.

Currently, self-supervised pre-training on large-scale unlabeled

data enables the achievement of robust model performance.

Numerous studies are presently focusing on the pre-training of

protein sequences. Some research has indicated that language

models trained on protein sequences can effectively capture the

structural, functional, and co-evolutionary information of proteins.

Recently, based on large pre-trained models of protein sequence

data, researchers have developed novel protein structure prediction

models that replace multiple sequence alignment in AlphaFold with

protein pre-training models, yielding satisfactory results (2, 3).

There are several available pre-trained models for antibody

sequence, including representative models such as AntiBERTa,

AntiBERTy, and ABLang (4–6). AntiBERTa is a model pre-

trained on 57 million human antibody sequence data (42 million

heavy chains and 15 million light chains), featuring a structure and

hyperparameters identical to those of RoBERTa. The authors

demonstrated AntiBERTa’s effectiveness by constructing a model
Frontiers in Immunology 02
that uses the latent representations of antibody sequences from

AntiBERTa to predict the probability of a residue serving as an

antigen-binding site on the antibody. AntiBERTy is another pre-

trained model with a structure and hyperparameters identical to

BERT, trained on 558 million antibody sequences. By obtaining

antibody sequence representations from AntiBERTy, researchers

can cluster antibodies into trajectories similar to affinity maturation.

ABLang shares the same model structure as RoBERTa and has

trained heavy chain and light chain models on the heavy and light

chains of Observed Antibody Space (OAS) (7), respectively.

In addition to showcasing the potential applications of the

latent representations provided by ABLang, the authors also

emphasized the model’s impressive performance in recovering

missing fragments in antibodies. These works resulting in pre-

trained models for antibody sequences that have achieved

satisfactory performance in certain downstream tasks. However,

these pre-training models were trained without fully considering

the difference across antibody regions (e.g. Fv vs Fc), so we

hypothesize that they can still be improved.

In this study, we propose a novel antibody pre-training model

(Pre-trained model of Antibody sequences trained with a Rational

Approach for antibodies, PARA, Figure 1), which demonstrates

superior performance across multiple tasks compared to existing

models. Our training dataset comprises approximately 18 million

human antibody sequences, including 13.5 million heavy chains

and 4.5 million light chains. PARA is built upon the general

DeBERTa (8) model architecture, and was trained under a

rational approach by considering the unique characteristics of

antibody sequences. For example, the antibody framework (FRs)

within the Fv region display limited variability, while the CDRs
FIGURE 1

The training and prediction process of PARA. We engineered a pre-training task that is targeted at antibody sequences to yield a specialized model
for antibody sequence analysis. The model serves two primary functions: firstly, it aids in predicting the masked regions of antibody sequences,
which is instrumental in antibody engineering by narrowing down the vast number of potential sequence combinations. Secondly, the latent
representations of antibody sequences obtained through PARA encoding can be utilized as input for downstream tasks, particularly beneficial when
the dataset for such tasks is limited in size.
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exhibit higher variability, shaped significantly by the antibody

antigen specificity (1). As a result, there’s a pronounced

redundancy of information in the FRs of antibody sequences,

whereas the CDRs, and particularly CDR3, contain more

information and contribute significantly to the diversity of

antibody sequences. Such regional differences of antibody

sequences suggest the classic way of training natural language

models might not suitable for antibody sequences. Hence, to train

PARA model, we employed a combination of span masking and

random word masking during the pre-training phase, with an

increased probability for CDR-H3 masking (see Methods). Such

training strategies emphasize more on the CDR-H3 region, which

result in higher CDR-H3 and FR recovery accuracy. In the tasks for

heavy-light chain pairing and antibody binding prediction, utilizing

PARA’s latent representations also yields higher prediction

accuracy. These observations suggest our unique rational

approach for training PARA allows the model to learn more

meaningful antibody representations.
Methods

Antibody sequence processing

Our training data consist of the Fv fragments of human

antibodies sequences derived from the Observed Antibody Space

(OAS) dataset (7). Within the unpaired data of the OAS dataset, we

first employ Linclust to cluster the heavy and light chain sequences

with 80% sequence identity (9). This clustering step is crucial as it

aims to eliminate highly similar antibody sequences, thereby

enhancing the quality of our training data and reducing the

volume of training material in a meaningful way. Numerous

studies have highlighted that the removal of low-quality and

highly redundant data can significantly improve the training

process (6, 10, 11). Subsequently, we retain clusters with multiple

members and select the longest sequence as the representative for

each cluster. To fully utilize the data, we re-cluster single-member

clusters at 50% sequence identity and retain clusters with multiple

members once again. The selected sequences are then randomly

divided into training, validation, and test sets. The training set

comprises 13 million heavy chain sequences and 4 million light

chain sequences, the validation and test set both include 175,000

heavy chain sequences and 57,000 light chain sequences.

To further enhance the robustness of our model, we have

adopted a data augmentation that involves the random truncation

of 0 to 3 amino acids from the N-terminus and C-terminus of the

antibody sequences. This trick is analogous to the common practice

in natural language processing where language sequences are

randomly truncated to improve the model’s ability to handle

variable-length inputs and to prevent overfitting to sequence.

For tokenizing and encoding the sequences, we added two

special tokens, [CLS] and [SEP], at the beginning and end of the

sequence, respectively. For the sake of convenience, we did not train

the heavy chain sequences and light chain sequences separately like

ABLang, nor did we add corresponding special tokens to

deliberately mark their differences.
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The PARA architecture

Our PARAmodel is grounded in the DeBERTa (8) architecture, a

variant within the transformer model family, which forms the

structural foundation for our antibody sequence modeling task.

The transformer framework is adept at processing sequential

data, primarily through its self-attention and feed-forward

network components. DeBERTa enhances this framework with a

disentangled attention mechanism that effectively integrates the

relative positional relationships and categorical information of each

token in a sequence, thereby augmenting the model’s capabilities.
Transformer architecture
In our work, we construct a neural network architecture using

multiple layers of Transformer units to form an encoder. This

encoder processes the input sequences, leveraging the self-attention

mechanisms within the Transformer layers to capture the intricate

dependencies among the data. The encoded representations are

then fed into a linear layer, which serves as the final step in our

model to predict the categories of the masked tokens.

The attention mechanism in the Transformer model is defined

as follows:

Attention(x) = softmax 
Q(x)K(x)⊤

a

� �
V(x) 1

, where Q(x), K(x), and V(x) are distinct representations of each

token’s latent information within the sequence, obtained through

separate linear transformations. These transformations are initially

derived from the token embeddings. Notably, additional details

such as relative positional encodings can be integrated into Q, K,

and V to enhance the model’s performance. The scaling factor a,
represented by a, is used to stabilize the gradients during training.

The feed-forward network (FFN) is an essential component of the

Transformermodel. It consists of two linear transformations separated

by a non-linear activation function. The FFN can be defined as:

FFN(x) = Act(xW1 + b1)W2 + b2 2

, where x represents the input to the FFN, Act denotes activation

function, and W1, b1, W2, and b2 are learnable parameters (weight

matrices and bias vectors).

To sum up, the Transformer layer architecture includes the

attention mechanism and the feed-forward network together with

the input embedding, which can express as the following

operations:

x0 = Attention(x) + x

x00 = FFN(x0) + x0
3

, where x0is the transformation after considering the attention

mechanism, which serve as input to the FFN and output x00.

Disentangled self-attention with relative position
encoding (DeBERTa)

In sequence-based neural network models, position encoding is

essential for providing the model with information about the order
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of elements. There are two main types of position encoding:

absolute and relative.

Absolute Position Encoding assigns a unique identifier to each

position in a sequence, allowing the model to recognize the order of

inputs. This method is simple and effective but can be limited by

fixed sequence lengths and may not generalize well to longer

sequences not seen during training (12).

Relative Position Encoding encodes the position of tokens

relative to each other, focusing on the distance between pairs of

tokens. This method is more flexible, as it is not bound to fixed

positions and can handle variable sequence lengths. It is particularly

useful for tasks where the relationship between tokens is more

important than their individual positions (13).

In DeBERTa, the self-attention mechanism is augmented to

encode more precise positional relationships between tokens. This

enhancement is realized by disentangling the attention computation

into distinct streams: ‘content-to-content’, ‘content-to-position’,

and ‘position-to-content’ interactions. Specifically, the model

encodes each token using two vectors—a ‘content vector’, which

captures the semantic meaning of the token (essentially the token’s

representation in the sequence), and a ‘position vector’, which

encodes the token’s position within the sequence. The attention

mechanism then calculates scores that integrate this semantic

content with their relative positions, allowing the model to

maintain a nuanced understanding of both the meaning of each

token and its context within the sequence.

Specifically, the disentangled self-attention mechanism for a

single head can be expressed as follows:

Qc = H �Wq,c, Kc = H �Wk,c, V = H �Wv,c

Qr = H �Wq,r , Kr = P �Wk,r

A0
i,j = Qc,i � K⊤

c,j + Qc,i � K⊤
r,d (i,j) + Qr,i � K⊤

c,j

Ho = softmax  A0ffiffiffiffiffi
3dk

p
� �

V

4

Here, H ∈ RN�d denotes the input hidden vectors, Ho ∈ RN�d

is the output of self-attention, and Wq,c,Wk,c,Wv,c,Wq,r ,Wk,r ∈
Rd�dk are the projection matrices for the content’s query, key,

and value, and for the relative positions’ query and key, respectively.

A0 ∈ RN�N is the attention score matrix, Nis the sequence length, d

is the dimension of the hidden states, and dk is the dimension of the

key vectors. The relative position embeddings are represented by

the matrix P ∈ R(2k+1)�d , where each row corresponds to a relative

position embedding vector. The relative position index d (i, j) is

computed as:

d (i, j) = clamp(i − j,−k, k) + k 5

, where clamp (x,min,max) is a function that limits the value of

x to the range ½min,max�. The term k is a hyperparameter (in this

work k=128) that defines the maximum relative distance considered

by the model. This clamping ensures that the relative positions are

represented within a fixed range, allowing the model to generalize to

sequences with length beyond those in the training set.

The attention scores A0are scaled by 1ffiffiffiffiffi
3dk

p before applying the

softmax function to normalize them. This scaling factor is used to

stabilize gradients during training, as it accounts for the increased
Frontiers in Immunology 04
variance introduced by the summation of three different dot

products in the attention computation.

DeBERTa effectively models the interplay between content and

position by focusing on these key interactions, leading to its strong

performance on language understanding tasks (For further details,

refer to the discussion section). Absolute position encoding and

relative position encoding utilize the same underlying information,

yet relative position encoding more closely resembles the antibody

sequence numbering system we employ.
Pretraining strategy for enhanced
PARA performance

High proportion of masking
Given the limited variation in the conserved region of antibody

sequences, the model can readily predict the masked portions.

However, when difficulty of the pre-training task is too low, the

training level becomes insufficient, hindering the model from

achieving optimal performance. Conversely, if the pre-trained

data contains less but valid information, the model will strive to

explore patterns, resulting in a more robust feature extraction and

generalization capability (14–16). In natural language tasks, mask

language model(MLM)-based self-encoding models like BERT and

T5 typically employ a 15% masking rate, a setting followed by most

self-encoding models (17).

Recent studies, however, have demonstrated that a larger

masking rate, combined with a larger model and learning rate,

may yield better training outcomes of the final model (18). In

computer vision (CV), Mask Image Models (MIM) such as MAE,

models adopt substantially higher masking rates (70%-90%),

outperform those with lower masking rates (19).

The crux lies in the amount of effective information present in

the data. Compared to text, which is highly condensed and

semantically rich, images are less semantically dense and contain

a larger volume of information that may not be directly relevant to

the task at hand, such as classification. This excess of information in

images, much of which does not contribute to the understanding

required for the classification task, constitutes redundant

information. This redundancy can impede the model’s ability to

efficiently learn key features, as it has to sift through and process a

vast amount of extraneous data to identify the salient features that

are truly informative for the task. In antibody sequences, numerous

residues are conserved, exhibiting minimal variation and a strong

correlation with their absolute positions in the sequence. If only

15% of the region is masked, domain experts with a solid

understanding of antibody sequences can effectively predict the

masked region, especially within the conserved areas, through

sequence alignment. For models with a large number of

parameters, performing MLM tasks using this information is

relatively straightforward. Nonetheless, it is desirable for the

model to uncover the latent information between residues in the

sequence to predict the types of residues at the masked positions.

Based on the aforementioned analysis, we trained the PARA

model using several different masking rates, 15%, 30%, 50%,70%

and 90%, to evaluate their respective performances.
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PARA mask
The PEGASUS framework employs a unique pre-training

strategy to enhance model performance in text summarization

tasks (20). Unlike the random token masking approach in MLM

tasks, PEGASUS masks the first, last, and central sentences with the

highest correlation to other sentences, significantly improving

model performance in text summarization tasks. In the antibody

Fv region, CDRs exhibit high variability, particularly in CDR-H3.

Our goal is to use targeted masking of CDR-H3 to enhance the

model’s ability to capture high-quality CDR-H3 features.

In many NLP tasks, models trained with Span Mask outperform

those trained with random masking. Span Mask ensures language

continuity, reasonably increases language model learning difficulty,

and encourages deeper exploration of text relationships. The

antibody Fv region sequence comprises distinct partitions,

including FRs and CDRs. We believe the span mask method is

better suited for antibody pre-training.

Based on this, we designed a novel antibody masking strategy

called PARA mask. For the heavy chain, we initially set a 70% mask

rate, masking part of CDR-H3. We then use span mask to randomly

mask remaining regions until the predetermined total masking rate

is achieved. For the light chain, we apply a mask rate and span mask

without targeting specific regions, since the light chain sequences

are generally more conserved. Figure 2 shows masked areas in cyan,

comparing PARA mask with random mask strategy and span mask.

We propose that variations in the conserved regions of the antibody

sequence, such as deletions and misalignments, should not impact

the embedding of CDRs.

Pre-training setting
We trained the model using the PARA mask language model

method. Cosine learning rate decay and warm-up were employed,

and label smoothing technique was applied when calculating cross-

entropy, with the corresponding hyperparameter set to 0.1. Our

model was trained on a V100 with 4 cards and 32GB of memory for

two weeks. For detailed training configurations, refer to Table 1.
Methods for heavy and light chain
matching with PARA

To assess the capability of the PARA model in providing

potential representations of antibody sequences, we applied it as
Frontiers in Immunology 05
an encoder for various downstream tasks. In this study, we

extracted the latent representations of the heavy and light chains

using PARA and performed heavy chain light chain pairing tasks

based on these representations.

Accurate light and heavy chain pairing information is crucial

for antibody research, as different H-L chain combinations affect the

folding, expression, and antigen-binding characteristics of

antibodies (21). We adopted a contrastive learning approach,

using existing antibody pairing data in OAS to train our H-L

chain pairing model that can discern the likelihood of a given H-

L chain pairing occurring in a natural environment.

Specifically, in the data preparation phase, we clustered

approximately 200,000 heavy-light chain pair data in the OAS

database with a threshold of 0.9 and selected the cluster centers,

ultimately obtaining about 40,000 unique antibody sequences.

Based on the clustering results, we randomly selected 90% of the

clusters and their members as the training dataset, with the

remainder serving as the test dataset.

For the training process, positive samples consist of matched H-L

chains, while negative samples are generated by randomly pairing the

heavy chain from the positive samples with light chains from OAS

that have less than 85% similarity. We used a pre-trained antibody

sequence model to extract the latent representations of the heavy and

light chains, then averaged these representations along the sequence

dimension to obtain representations for each chain. These
FIGURE 2

Masking strategies for Antibody sequences. For presentation purposes, we have isolated the segment of the antibody heavy chain Fv region that
includes the CDR-H3, indicated in red. The cyan color signifies the areas that will be masked during pre-training. With the PARA approach, we first
mask portions of the CDR-H3, and then apply span masking to other regions.
TABLE 1 PARA training configurations.

Config Value

Optimizer AdamW

Base Learning Rate 3e-4

optimizer momentum b1, b2 = 0.9, 0.99

Weight Decay 0.01

Batch Size 784

Learning Rate Schedule Cosine decay with warmup

Warmup epochs 15

Training Epochs 200

Label Smoothing 0.1

Mask Ratio 15%, 30%, 50%, 70%, 90%

Augmentation Random truncation
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representations were processed through a dedicated projection layer

containing a two-layer multilayer perceptron (MLP) to map the

latent representations of the heavy and light chains to the same

feature space (Figure 3A). Subsequently, we normalized both latent

vectors using L2 normalization and calculated the cosine similarity

between them, standardizing this similarity to the [0, 1] range. During

the training process, we froze the parameters of the pre-trained

PARA model and only trained the projection layer to focus on

learning the similarity between representations.

Methods for antibody binding prediction
with PARA

We divided the HER2 dataset into 15,098 training samples,

3,236 validation samples, and 3,235 test samples, using the entire

VH sequence as our input. To ensure the reliability of our findings,

we divided the dataset into five separate parts using different

random seeds and calculated the average of the performance

metrics across these five distinct splits for each model to

determine the final results.
Results

First, we compared PARA with AntiBERTy and ABLang to

evaluate their prediction capabilities in the CDR-H3 and FRs. We

then used PARA as a sequence encoder to extract antibody

sequence representions for antibody light chain and heavy chain

pairing tasks and antibody binding prediction tasks.
Ablation studies on PARA model for CDR-
H3 restoration

In our study, we leveraged a pre-trained model designed for

masked data tasks. To avoid data leakage in our experiments, we

curated a test set by randomly selecting 90,096 antibody heavy chain

sequences from the model testing set, ensuring these sequences were

not included in the training dataset used to train PARA. We also

considered augmenting our test set with newly available antibody

sequences from public databases, such as the Structural Antibody

Database (SAbDab), focusing on data published in 2022 or later.

This approach aimed to minimize the likelihood of the task model

having previously encountered the data. However, the scarcity of

such data, compounded by further reductions post-similarity-based

clustering, would not permit a comprehensive evaluation of the

model’s performance. Consequently, we opted to utilize the pre-

established test set, confirming that PARA had no prior exposure to

these sequences.

The primary goal of our research was to pre-train a model adept

at extracting robust latent representations of antibody sequences,

with an emphasis on the CDR-H3 region. To achieve this, we

conducted ablation studies on the PARA model’s design choices

within the CDR-H3 restoration task, focusing on two main aspects:

the effect of different masking strategies and the role of

positional embeddings.
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In our masking strategy ablation studies, we considered two key

factors: the sequence masking rate and the targeted masking of the

CDR-H3 region. We experimented masking rates of 15%, 30%,

50%, 70%, and 90%. The model’s performance was evaluated using

top-1 and top-3 prediction accuracies. Notably, for the 15%

masking rate, we employed the settings used in BERT, which are

commonly adopted in NLP for masked language modeling tasks.

The results of these experiments are presented in Figure 4A, an

asterisk (*) following a masking rate denotes the use of a uniform

random masking method rather than the PARA mask method. We

observed that increasing the masking rate from 15% to 70%

improved the model’s ability to restore CDR-H3, aligning with

our initial hypothesis that a reasonable increase in task difficulty

enhances predictive capabilities. However, at a 90% masking rate,

the model’s performance declined, likely due to an excessive portion

of the sequence being masked, resulting in insufficient information.

Comparing the mask-50 and mask-50* experiments, we found that

targeted masking of CDR-H3 significantly improved restoration

rates. Yet, as the masking rate increased further, this improvement

diminished, as seen in the comparison between mask-70 and mask-

70*. We believe this is due to a high masking ratio increasing the

likelihood of CDR-H3 being masked. Based on these findings, we

selected the mask-70 setting as the default for subsequent use

with PARA.

For the positional embedding ablation studies, we utilized a 70%

masking rate with targeted CDR-H3masking. We compared the use

of absolute positional encoding (Abs.Pos.Enc.) and the relative

positional encoding (Rel.Pos.Enc.) from DeBERTa. To further

assess the impact of different positional encodings, we truncated

the antibody sequences at various points, with notations such as 10:-

5, 10:-10, and 20:-5 indicating the start and end points for

truncation before predicting the masked CDR-H3. The

experiments (Table 2) demonstrated that relative positional

encoding improved the model’s performance even with only

CDR-H3 masked. When sequences were truncated, models with

absolute positional encoding experienced a significant drop in

predictive capability, whereas those with relative positional

encoding were minimally affected. This suggests that relative

positional encoding allows the model to better learn the

interactions between amino acids rather than rigidly memorizing

the distribution at absolute positions. In machine learning, overly

strong features can prevent a model from being adequately trained.
PARA demonstrates a strong robustness
with a high CDR restoration capacity

We compared the ability of different models to recover CDR-

H3. Figure 4B shows the prediction accuracy of the three models,

PARA, ABLang, and AntiBERTy. PARA represents the model

mask-70 in Figure 4A. Top1 and Top3 refer to the Top1 and

Top3 accuracies.

It can be observed that when CDR-H3 is completely masked,

PARA has the highest accuracy in restoring it. When the antibody

sequence is truncated, the performance of all models decreases, but

the change in PARA is the smallest, with a significant decrease only
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at 10:-10, and a decrease of only 0.4% at 10:-5 and 20:-5. The

performance of the ABLang and AntiBERTy models decreases

significantly when the sequence is truncated.

Furthermore, we tested the masking of CDR-H1, CDR-H2, and

the simultaneous masking of both CDR-H1 and CDR-H2

(Figure 4C). The masking rate was approximately 8% for

individual CDR-H1 or CDR-H2, and 16% when both were

masked simultaneously. The results were similar across these

tests, so we only present the findings for the simultaneous

masking of CDR-H1 and CDR-H2. Notably, the predictions for

CDR-H1 and CDR-H2 across the three models were very close,

likely due to the relatively small variations in these regions.

Although the pre-trained models have good memory and

capability for generalization, the predicted results still differ from

the true distribution. Here, we compare the distribution of amino

acids in the CDR-H3 with the amino acids distribution predictions

made by other pre-trained models, and find that the distribution

given by PARA is closer to the true distribution (Figure 5).

We believe that by increasing the masking rate, PARA training can

infer most of the information of the entire sequence with only a small

amount of input information. From another perspective, the masked

sequence can be seen as a compression of the information in the complete

sequence, making it less susceptible to the issue of information

redundancy. Excessive redundancy may lead to overfitting during

model training, resulting in more uniform output results.

We then compared the amino acid distribution in the CDR-H3

region as predicted by PARA and AntiBERTy with the actual

distribution. Here, we focused on these two methods because they

demonstrated comparable performance, both significantly surpassing
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ABLang, in antibody sequence prediction (Figure 4B). In order to

eliminate the impact of different models’ prediction accuracy on the

prediction distribution, we deliberately sampled from the test set to

ensure that the accuracy of the two models in the sampled samples is

comparable. To brief the process, we divide the heavy chains in the

test set by the IGHV gene and CDR-H3 length. We statistically

obtained the true distribution of amino acids in the CDR-H3 for the

same V gene and the same CDR-H3 length. We obtained two other

distributions from the prediction results of the statistical model. We

obtained two other distributions from the prediction results of the

statistical model and show that the predicted result of PARA, unlike

AntiBERTy, is closer to the real antibody sequence (Figure 5).
PARA demonstrates a strong robustness
with a high FR restoration capacity

In developing PARA’s training strategy, we implemented span

masking on the CDR-H3 region to bolster the model’s proficiency

in processing highly variable regions. This approach, however,

prompted a concern regarding its potential impact on the model’s

accuracy in predicting the more conserved FRs. Given the

significant conservation of FRs, experts can typically deduce the

masked segments within these regions through sequence alignment

with notable accuracy. Our goal was for PARA to demonstrate a

similar, if not superior, level of accuracy.

To evaluate the model’s resilience, we conducted tests where we

selectively masked FR1 and FR2 and truncated the sequences. PARA

consistently maintained accuracy across these modifications,
A B

FIGURE 3

(A) Heavy and light chain matching model. We utilize different pre-trained models to extract the latent representations of heavy and light chains.
During training, each training sample consists of one positive sample and multiple negative samples. We calculate their matching scores separately
and compute the loss using infoNCE loss. (B) Antibody binding prediction model. We designed an antibody affinity prediction model, as illustrated in
the figure. Firstly, we employed a pre-trained deep learning model to extract the latent representation of the antibody VH sequence. Subsequently,
we selected only the latent representation of the CDR-H3 and reduced its dimensionality and flattened it using a single-layer multilayer perceptron
(MLP) projection layer. Finally, this representation was fed into a two-layer MLP classification layer for a binary classification task, where antibodies
with affinity were labeled as 1 and those without affinity were labeled as 0. We used cross-entropy as the loss function to optimize the model.
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outshining the counterparts. The minimal impact of targeted

masking and sequence truncation on PARA’s performance is

substantiated by the data in Figures 4D–F.

For a more streamlined analysis, we limited our testing to two

scenarios: truncating either the first 20 or the last 20 residues of the
Frontiers in Immunology 08
sequence. We excluded the truncation of the last 20 residues for

FR4, given its position at the end of the FV sequence. These tests

lend further support to the notion that antibody sequences exhibit

significant redundant information, and that a modest masking rate

might be insufficient for thorough model training. Moreover, an

expert with knowledge of antibody sequences could likely

reconstruct the conserved regions in FV that have been masked,

using sequence alignment.

It is particularly noteworthy that PARA’s performance remained

robust across varying sizes of masked FRs, whereas the performance

of AntiBERTy and ABLang deteriorated as the masked region

expanded. Despite an increased masking of FR4, there was no
TABLE 2 Results of the ablation study on positional embeddings
with PARA70.

CDR-H3 Top1 Top3 10:-5 10:-10 20:-5

Abs.Pos.Emb. 46.8 64.3 38.2 31.4 41.7

Rel.Pos.Emb. 48.7 65.7 48.3 38.4 48.3
FIGURE 4

Model performance in antibody sequence prediction. Top1 and Top3 denote the highest accuracy and the average of the top three accuracies,
respectively. Specific subsequences of the antibody sequences were masked to test model robustness, with Top1 accuracy compared using slice
notation, e.g., “10:-5” for masking from the 10th to the 5th position from the end. (A) PARA Mask ablation study evaluated recovery accuracy in the
CDR3 region, with “*” indicating random masking and no “*” indicating PARA Mask. PARA 70 was selected as the standard configuration after
showing superior performance at various masking ratios. (B) PARA outperformed other open-source models AntiBERTy and ABLang in CDR-H3
masking prediction, maintaining high accuracy even with truncated sequences. (C) All models showed high Top-1 and Top-3 accuracies in CDR-H1
and CDR-H2 regions, despite sequence truncation. (D) PARA and AntiBERTy outperformed ABLang in FR1 and FR2 region masking prediction.
(E) PARA excelled in masking prediction accuracy in FR1, FR2, and FR3 regions. (F) PARA maintained high accuracy in FR1, FR2, FR3, and FR4
regions, even with extensive sequence masking, outperforming other models. PARA consistently achieved the best results in experiments
(B–F), demonstrating optimal and stable performance under sequence truncation or extensive masking, unlike the significant performance
decline in other models.
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significant decline in the model’s performance, underscoring PARA’s

exceptional ability to handle sequence alterations within conserved

regions (Figures 4E, F).
Results of heavy and light chain matching
model with PARA

We then posed a question: Given a heavy chain H1 and two

light chains (L1, L2) with sequence information and H1 is known to

pair with L1, can the model accurately identify which light chain
Frontiers in Immunology 09
more commonly pairs with H1 when the sequence similarity

between L1 and L2 is low?

To answer this question, we conducted a heavy-light chain

pairing task using three different pre-trained language models as

backbones and tested the Area Under the Receiver Operating

Characteristic (auROC) and Area Under the Precision-Recall

Curve (auPRC) on the test set. As shown in Figure 6, the

experiment results indicate that the heavy-light chain pairing

model trained with PARA outperforms those trained with

AntiBERTy and ABLang in terms of auROC and auPRC on the

test set (with the AUC for random matching being 0.5). Specifically,
FIGURE 5

Amino acid distribution in CDR-H3 We obtained distributions from the CDR-H3 of the real antibody sequences, the CDR-H3 of the AntiBERTy
predicted sequences, and the CDR-H3 of the PARA predicted sequences. In this test, we focused on the diversity of predictions. We tested IGHV1,
IGHV2, IGHV3, IGHV4, IGHV5, IGHV6 and IGHV7 and present some of the results. Using data from the test set, we found that the CDR-H3
distributions derived from PARA are closer to the original distribution.
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Figure 6 illustrates that PARA achieves higher auROC and auPRC

scores compared to AntiBERTy and ABLang, indicating better

performance in predicting correct heavy-light chain pairs. The

“Chance” line in the auROC plot indicates the baseline

performance of a random classifier, with an AUC of 0.5,

signifying that any predictive accuracy above this line is better

than random guessing. Since the model and training parameters

other than the antibody latent representations are consistent, we

believe that PARA’s latent representations may contain more

information about the antibody sequences. Interestingly, ABLang

performs poorly in this task. Unlike AntiBERTy and PARA,

ABLang models the heavy and light chains independently, which

may fail to capture the pairing information coded within the

antibody heavy and light chain sequences.

To mitigate potential biases caused by randomness, we

performed five repeated validations, each time randomly selecting

negative samples and then calculating the average auROC value. We

also included randomly matched heavy and light chains as a control

group for comparison.
Results of antibody binding prediction
with PARA

Antibodies function by binding antigens, and being able to

predict their binding specificity would greatly benefit the

downstream application of the trained large language models. To

evaluate this, we utilized the three pre-trained models to train a

binding prediction model. Mason et al. (22) employed a deep learning

approach to predict antigen specificity from different antibody

sequences. Here, we use their HER2 antibody data to compare

PARA, AntiBERTy, and ABLang as antibody sequence encoders.

These encoders were connected to a projection layer and classification

layer composed of an MLP to predict whether the antibody binds to
Frontiers in Immunology 10
HER2 or not (Figure 3B). The results of the experiments are

presented in Figure 7A. Specifically, we used the best-performing

model on the validation set to make predictions on the test set and

calculated the scores for the test set. The PARA model outperformed

other models on both the test and validation datasets.

Importantly, although the binding prediction models obtained

using pre-trained models perform slightly better than the LR model

used in the original study, the difference is not significant. However,

pre-trained models generally perform better when data size is

limited. To evaluate the robustness of these models with limited

training data, we sub-sampled the training set size by randomly

selecting 150 antibodies (sampling rate: 0.01) as the training set. We

then conducted the same experiments and the results (Figure 7B)

indicate that the pre-trained models outperform the original model,

with PARA showing the strongest generalization capability on this

reduced dataset.

Additionally, we included another dataset from Makowski et al.

(23), which involved generating mutants of Emibetuzumab, resulting

in over 4000 antibody sequences. For this dataset, we randomly

selected 100 antibody sequences as the training set, 1900 sequences as

the validation set, and 2000 sequences as the test set. The purpose of

selecting 100 sequences as the training set is to evaluate the

generalization capability of the models. Similar to the HER2

antibody data, we used the best-performing model on the

validation set to make predictions on the test set and calculated the

scores for the test set. The results (Figure 7C) show that the PARA

model outperformed other models on both the test and

validation datasets.
Discussion

Antibody sequences manifest unique properties when

compared with natural language sequences. Languages comprise
FIGURE 6

auROC and auPRC for Heavy Light Chains Matching. We trained AntiBERTy and PARA as antibody sequences encoder on OAS antibody paired
sequences with contrast learning, respectively. The matching model obtained by PARA performs better with the same training set and training
method. The “Chance” line in the auROC plot indicates the baseline performance of a random classifier, with an AUC of 0.5, signifying that any
predictive accuracy above this line is better than random guessing.
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an extensive lexicon, whereas antibody sequences are constructed

from a canonical set of 20 amino acids. Linguistic sequences are

versatile, with various permutations conveying identical meanings.

In contrast, antibody sequences are comparatively uniform, each

consisting of conserved and variable regions. We hypothesize that

antibody sequences are akin to pixelated image patches, as both

encompass redundant information and demonstrate pronounced

regional attributes. Recent research, including those on Vision

Transformers, has indicated that high-ratio mask pretraining on

images augments model proficiency (19, 24). Our comparative

analysis of different models’ capacity to reconstruct antibodies’

CDRs and FRs suggests that our rational masking strategy is

more apt for antibody sequences than conventional approaches.

In antibody sequence analysis, the CDRs, especially CDR-H3, is

responsible for recognizing specific antigens, which necessitates a

highly variable sequence. The sequence variability of CDR-H3 is

much greater than that of the FRs. To effectively train models to

predict such variable regions, we applied a high-ratio masking

strategy to CDR-H3 during the learning process. This method not

only increases the prediction challenge for this region but also
Frontiers in Immunology 11
minimizes the model’s susceptibility to potential biases in the

training data. Learning from difficult samples is crucial for model

convergence, a fact supported by extensive literature (14–16). Our

targeted masking provides the model with numerous challenging

samples that are both reasonable and consistent with antibody

sequence patterns. As a result of this targeted training strategy, our

model delivers accurate predictions for both the CDRs and FRs.

The selection of position encoding in transformer models

tailored for antibody sequences is crucial. Both absolute and

relative position encodings convey residue order and spacing, yet

they instill divergent biases affecting model behavior. Absolute

position encoding, within a consistent numbering framework,

aligns with the static locations in an antibody sequence. However,

it may inadvertently predispose the model to rely on fixed position

residue distributions, potentially curtailing its ability to generalize to

sequences with non-standard numbering. Conversely, relative

position encoding emphasizes the inter-residue relationships,

independent of their absolute positions. This method is congruent

with the intrinsic variability of antibody sequences, where the

functional significance of residues is predominantly determined
FIGURE 7

(A) Results of Models on HER2 Antibody Dataset. The logistic regression (LR) benchmark is derived from the methodology of Mason et al. To ensure
the robustness of our model evaluation, we employed a repeated random sub-sampling validation approach, where the data was randomly
partitioned into training, testing, and validation sets five separate times. The results tabulated represent the mean performance metrics across these
five iterations. In addition to accuracy, we computed recall and precision metrics to provide a comprehensive analysis of the predictive capabilities
of each pre-trained model under investigation. (B) Results of Models on HER2 Antibody Dataset. HER2 1/100 signifies training with only the top 1% of
the original dataset to compare pre-trained models with a baseline model initiated from scratch in a data-constrained setting. The figure presents
the average validation and test accuracy (Acc), recall, and precision metrics, calculated over five repeated validation trials, for each model. (C) Results
of Models on Emibetuzumab mutants Dataset. The figure presents the average validation and test accuracy (Acc), recall, and precision metrics,
calculated over five repeated validation trials, for each model.
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by their relative, not absolute, positions. It empowers the model to

deduce the types of masked amino acids more efficaciously by

capitalizing on the contextual interactions between residues.

Furthermore, relative position encoding inherently possesses

advantages such as not being constrained by sequence length,

which naturally aligns with the variable lengths encountered in

antibody sequences. This enhances the model’s resilience and

generalization prowess. Human experts are capable of predicting

the types of residues in antibody sequences even when segments are

missing from the N-terminus, C-terminus, or even the middle

regions. This is because experts can infer which positions are

missing by analyzing the relationships between amino acids and

aligning the sequence to the correct numbering. From this

perspective, relative position encoding is more akin to human

behavior and more rational than absolute position encoding.

It is imperative to acknowledge the rationality and value of

established antibody numbering systems for sequence analysis. The

concern is not with the numbering system per se, but with the

model’s dependency on it during training. Our objective is to

cultivate a model that is robust, adaptable, and adept at

encapsulating the quintessence of antibody sequences, which is

more effectively realized through relative position encoding. This

encoding strategy ensures the model’s efficacy when confronted

with sequences that diverge from the anticipated framework,

thereby offering a more encompassing grasp of antibody

sequence variability.

The in silico prediction of antibody binding specificity has great

potential for drug design as well as vaccine development, which can

lead to significant time and cost savings while greatly reducing the

risk associated with downstream clinical applications. In the future,

PARA will be trained with larger models and more data. We will

also further optimize the training strategies by considering both

antibody sequence and structure characteristics, providing latent

representations that better align with the data patterns in biology

We believe PARA’s ability to capture more meaningful antibody

representations would benefit the future improvement of computer-

aided drug design.
Conclusion

PARA is a model pre-training method specifically designed for

antibody sequences, utilizing a Transformer-based architecture and

employing a high mask ratio and span mask for MLM. We

conducted ablation experiments on the adopted strategies and

compared PARA with other existing open-source antibody pre-

training models across several tasks. The results demonstrate that

the latent representations generated by PARA can better capture the

information embedded within antibody sequences and exhibit

robustness. We attribute this to PARA’s training strategy, which

encourages the model to maximize the utilization of partial
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sequence information for predicting masked regions, rather than

overfitting in highly redundant sequences. Moreover, the model’s

training is more targeted, intensifying the focus on the highly

diverse CDR-H3. This enables PARA to perform well in both FRs

and CDRs, as well as multiple downstream tasks.
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