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Introduction:Osteosarcoma (OS) is a malignancy of the bone that mainly afflicts

younger individuals. Despite existing treatment approaches, patients with

metastatic or recurrent disease generally face poor prognoses. A greater

understanding of the tumor microenvironment (TME) is critical for enhancing

outcomes in OS patients.

Methods: The clinical and RNA expression data of OS patients were extracted

from the TARGET database. The single-cell RNA sequencing (scRNA-seq) data of

11 OS samples was retrieved from the GEO database, and analyzed using the

Seurat package of R software. Copy number variation (CNV) was analyzed using

the InferCNV software. The potential interactions between the different cells in

the TME was analyzed with the CellChat package. A multi-algorithm-based

computing framework was used to calculate the tumor-infiltrating immune

cell (TIIC) scores. A prognostic model was constructed using 20 machine

learning algorithms. Maftools R package was used to characterize the genomic

variation landscapes in the patient groups stratified by TIIC score. The human OS

cell lines MG63 and U2OS were used for the functional assays. Cell proliferation

and migration were analyzed by the EdU assay and Transwell assay respectively.

CLK1 protein expression was measured by immunoblotting.

Results: We observed higher CNV in the OS cells compared to endothelial cells.

In addition, there was distinct transcriptional heterogeneity across the OS cells,

and cluster 1 was identified as the terminal differentiation state. S100A1, TMSB4X,

and SLPI were the three most significantly altered genes along with the pseudo-

time trajectory. Cell communication analysis revealed an intricate network

between S100A1+ tumor cells and other TME cells. Cluster 1 exhibited

significantly higher aggressiveness features, which correlated with worse

clinical outcomes. A prognostic model was developed based on TIIC-related

genes that were screened using machine learning algorithms, and validated in

multiple datasets. Higher TIIC signature score was associated with lower

cytotoxic immune cell infiltration and generally inferior immune response and

survival rate. Moreover, TIIC signature score was further validated in the datasets

of other cancers. CLK1 was identified as a potential oncogene that promotes the

proliferation and migration OS cells.
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Conclusion: A TIIC-based gene signature was developed that effectively

predicted the prognosis of OS patients, and was significantly associated with

immune infiltration and immune response. Moreover, CLK1 was identified as an

oncogene and potential therapeutic target for OS.
KEYWORDS

osteosarcoma, intratumor heterogeneity, prognosis, immunotherapy, immune
cell markers
1 Introduction

Osteosarcoma (OS) is the most common bone malignancy, and

accounts for over 50% of bone sarcoma cases (1). It predominantly

affects the long bones and is characterized by the de novo formation

of osteoid tissues (2). Most patients are affected at a relatively

younger age (3). OS is currently managed through adjuvant

chemotherapy and surgery. Nevertheless, the 5-year survival rate

for OS patients with metastases is lower than 20% (4). Given the

challenges and limitations in the current treatment strategies for

OS, there is a crucial need to identify new therapeutic targets that

can enhance clinical efficacy and improve patient survival.

There has been an increasing focus on the tumormicroenvironment

(TME) for developing novel treatment strategies against cancer (5). The

TME includes malignant cells, stromal cells, and the extracellular matrix

(6), and plays a key role in tumor growth, metastasis, immune escape,

and therapy resistance (7–10). In fact, the microenvironment of OS has

been identified as a key determinant of patient prognosis (11). The

stromal cells in the tumor tissues, particularly cancer-associated

fibroblasts, directly contribute to immunosuppression (12). Numerous

studies have developed TME-based models using machine learning

approaches to predict prognosis and the response to immunotherapy

(13–15). In this study, we utilized machine learning algorithms to

establish a gene signature based on tumor-infiltrating immune cells

(TIIC) for the prognostic stratification of OS patients.

The efficacy of the model was validated in multiple datasets. We

also found that higher TIIC score was associated with significantly

lower infiltration of cytotoxic immune cells. In other cancer types, a

lower tumor immune infiltration signature score correlated with a

better immune response and survival rate. Moreover, we identified

CLK1 as an important factor in OS development and a potential

therapeutic target.
2 Methods

2.1 Acquisition of transcriptomic data

The clinical and transcriptomic data of 85 OS patients were

retrieved from the TARGET database. In addition, the microarray
02
chip data of OS samples were obtained from the GEO database,

including the GSE16091 (n=34), GSE21257 (n=53), and GSE39055

(n=37) datasets. The normalizeBetweenArrays function of the

limma package was used to correct the chip data.
2.2 Acquisition of scRNA-seq data

The single-cell RNA sequencing (scRNA-seq) data of 11 OS

samples was downloaded from the GEO database (GSE152048

dataset). Batch effects were addressed using the harmony method.

Dimensionality reduction was performed using UMAP and t-SNE,

as well as the Louvain clustering algorithm through the

Seurat package.
2.3 Cell annotation

The immune cell clusters were separated using Sc-Type

software for automatic annotation.
2.4 CNV and pseudo-time analysis of
OS cells

The CNVs of tumor/OS cell subsets were analyzed using the

InferCNV software with endothelial cells as a reference, and the

CNVscore of each subgroup was calculated. Pseudo-time analysis of

OS cell subsets was conducted using monocle2 software.

Dimensionality reduction was performed using the DDRTree

algorithm with default parameters to capture the cell

differentiation process.
2.5 Intercellular communication analysis

The CellChat package was used to assess potential intercellular

communication. The normalized gene expression matrix was

imported using the CellChat function to create the CellChat

object. The data was preprocessed using multiple functions.
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2.6 Functional annotation of TIIC
signature score

The acquisition of TIIC-related genes and cell annotation have

been described in the additional file 1. The immune infiltrating cells

were quantified using the tumor immune estimation resource

(TIMER) algorithm (6 immune cells), ssGSEA algorithm (28

immune cells), MCPcounter algorithm (10 immune cells), and

expression data ESTIMATE algorithm. Gene-set variation analysis

(GSVA) and gene-set enrichment analysis (GSEA) were conducted

to identify the GO terms and KEGG pathways. Enrichment analysis

was performed using Metascape. GSVA was also performed to

quantify 114 metabolic pathways from previous literature.
2.7 Identification and functional annotation
of differentially expressed genes

The differentially expressed genes (DEGs) between the TIIC groups

were screened using the limma package, with a screening threshold of

P<0.05. The upregulated genes were subjected to GSEA using the

clusterProfiler package. The gene sets related to KEGG and GOBP

were enriched from theMSigDBdatabase. The enrichment plot package

was utilized for visualization when the BH corrected p-value was < 0.05.
2.8 Mutation analysis

The ‘maftools’ package was used to evaluate the difference in

mutation load between the two groups and generate waterfall plots.

The genes with differential mutation frequencies between the two

groups were analyzed by the chi-square test. The CNV results were

visualized using the ‘ggplot2’ package.
2.9 Development of TIIC-related
risk signature

The candidate prognostic TIIC-related genes were screened

through univariate Cox proportional hazard regression analysis. The

significance of these genes was evaluated using three machine learning

classification algorithms - random survival forest (RSF), least absolute

shrinkage and selection operator regularized Cox regression

(LassoCox), and Cox model based on possibility enhancement

(CoxBoost). Furthermore, 20 machine learning algorithms were used

for scoring, including RSF, conditional random forest (CForest),

LassoCox, elastic net regression (Enet), Ridge regression, gradient

boosting using regression tree (BlackBoost), parametric survival

model regression (SurvReg), conditional inference tree (CTree), Cox

proportional hazards model (CoxPH), ObliqueRSF, StepwiseCox,

SurvivalSVM, generalized boosting regression model (GBM), Ranger,

Cox model, and partial least squares regression of related technologies

(PlsRcox). The most reliable model was selected on the basis of the

comprehensive C index. The TIIC signature score based on the

prognostic genes was developed using the RSF algorithm.
Frontiers in Immunology 03
2.10 Cell culture

The human OS cell lines MG63 and U2OS were obtained from

Procell Life Science and Technology Co., Ltd (Wuhan, China). The

cells were cultured in MEM medium supplemented with 10% fetal

bovine serum (FBS; Procell, Wuhan, China) and maintained at 37°C in

an incubator with 5% CO2. The cell lines were transfected with CLK1-

specific siRNAs or CLK1 overexpression vectors using Lipofectamine

3000 (Invitrogen, Carlsbad, CA, USA) as per the instructions. The

medium was discarded 24 h later, and the cells were harvested and

cultured overnight till confluency for the subsequent experiments.
2.11 EDU incorporation assay

Cell proliferation was assessed using the EdU (5-ethynyl-2’-

deoxyuridine) assay kit (Beyotime Biotechnology) according to the

manufacturer’s instructions. Briefly, the OS cells were seeded in 24-well

plates at the density of 1 × 10^5 cells/well in complete medium. After

incubating for 24 h, the cells were fixed with 4% paraformaldehyde for

15 minutes at room temperature, and then permeabilized with 0.3%

Triton X-100 in phosphate-buffered saline (PBS) for 10 minutes. The

cells were incubated with the EdU labeling solution as per the kit

instructions, washed with PBS to remove excess EdU, and

counterstained with DAPI (4’,6-diamidino-2-phenylindole) to stain

the DNA. The stained cells were observed under a fluorescence

microscope (Olympus or similar) using the FITC channel for EdU.
2.12 Colony formation assay

The suitably treated OS cells were seeded in 6-well plates and

incubated at 36.7°C for 9 days. The cells were fixed and stained, and

the colonies were counted.
2.13 Transwell assay

The suitably treated OS cells were seeded in the upper chambers

of a Transwell insert (Corning, USA) in serum-free medium, and

the lower chambers were filled with complete medium (with 10%

FBS). Following overnight incubation, the cells adhering to the

inner surface of the Transwell membrane were carefully removed,

and those that migrated to the lower surface were fixed, stained with

0.5% crystal violet solution, and counted under a light microscope.
2.14 Immunoblotting

The cell lysates were heated at 96°C in 5× SDS loading buffer for 12

minutes. The denatured proteins were separated through SDS-PAGE

and then transferred onto PVDF membranes (Millipore, USA). After

blocking with 4% non-fat milk for 48 minutes, the membranes were

incubated with primary antibodies specific for CLK1 (20439-1-AP,

Proteintech, 1:1000) and ACTIN (81115-1-RR, Proteintech, 1:10000).
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3 Results

3.1 Single-cell expression profiling of OS

The scRNA-seq data of the OS samples exhibited a stable and

similar cell distribution with low batch effects (Figure 1A). Using the t-

SNE algorithm, we classified all cells into 36 clusters (Figure 1B). The
Frontiers in Immunology 04
expression pattern of the marker genes of each cell type are shown in

Figures 1C and D, and the distribution of 11 cell types across the OS

samples is shown in Figure 1E.We detected OS cells, tumor-infiltrating

lymphocytes (TILs) and fibroblasts in all samples, along with an overall

high abundance of myeloid cells (Figure 1F). The heat map shows the

CNV scores of OS cells with endothelial cells as reference (Figure 1G).

Furthermore, the OS cells had higher CNV scores compared to the
FIGURE 1

Detailed classification of OS cells. (A) t-SNE plot displaying the origin of the sorted OS cells. The different samples are color-coded. (B) t-SNE plot
displaying the OS populations. The different clusters are color-coded. (C) Correlation matrix of marker gene expression in each cell cluster.
(D) t-SNE plot showing unique expression of different marker genes in each annotated cluster. (E) Bar plot indicating the composition of different
cell types from individual patients. (F) t-SNE plot illustrating the annotation results of cell types. (G) CNV heatmap of OS cells (endothelial cells as the
internal reference). (H) CNV scores of different OS cell clusters. (I) t-SNE plot displaying the classification of identified OS cells based on CNV scores.
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endothelial cells. In particular, the clusters 0, 1, 2, 3, 6, 8, 10, 14, 16, and

19 had increased CNV, and clusters 4, 12, 18, and 20 showed decreased

CNV (Figures 1G, H). The OS cells in these clusters were further

divided into three subclusters (0–2) using t-SNE dimensionality

reduction (Figure 1I).
Frontiers in Immunology 05
3.2 Distinct trajectories of OS cells

The transcriptional heterogeneity of the OS cells was determined

through trajectory analysis (Figure 2A). The pseudo-time progression

showed that the clusters 0 and 2 spread throughout the entire
FIGURE 2

Trajectory and intercellular communication analysis of OS cells. (A) Differentiation trajectories, pseudo-time distribution, cell cluster distribution
along pseudo-time, and the proportion of each cluster for all OS cells. (B) Relative alteration in the expression of S100A1, SLP1, and TMSB4X along
pseudo-time. (C) Quantity and strength of intercellular communication between S100A1+ OS cells, TMSB4X+ OS cells, SLPI+ OS cells, and other cell
types. (D) Bubble plot illustrating the interaction between S100A1+ OS cells, TMSB4X+ OS cells, SLPI+ OS cells, and the different cell ligands and
receptors. (E) Bubble plot illustrating the interaction between different cell types and S100A1+ OS cells, TMSB4X+ OS cells, SLPI+ OS cells.
(F) Enrichment analysis of S100A1+ OS cells, TMSB4X+ OS cells, SLPI+ OS cells.
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trajectory, while cluster 1 was at the end of 2 branches. As shown in

Figure 2B, S100A1, TMSB4X, and SLPI were the three most

significantly altered genes along the pseudo-time trajectory. S100A1

and SLP1 were upregulated with the increase in pseudo-time value.

The number of interactions between S100A1+ cells (cluster 0),

TMSB4X+ cells (cluster 1), SLPI+ cells (cluster 2), and other cell

types, and the intensity of communication are depicted in Figure 2C.

The S100A1+ tumor cells in particular showed strong interaction

with other TME cells. We also analyzed the ligand-receptor

interactions between the different cells, and found that the S100A1

+ tumor cells interacted with other cell types through the MDK-NCL

receptor-ligand pair (Figures 2D, E). The clusters 0 and 2 were

enriched in multiple biological processes across various pathways,

while cluster 1 showed enrichment in the KRAS_SIGNALING_DN

and ALLOGRAFT_REJECTION pathways (Figure 2F), which may

be associated with immune response.
3.3 Transcription factor analysis of OS cells

The differentially expressed transcription factors in each cluster

are shown in Figure 3A. Cluster 1 was characterized by the

upregulation of YY1, E2F and FOXP1, while cluster 1 showed high

SOX8 expression. The expression of gene regulatory elements in each

cluster is shown in Figure 3B. The heatmaps of the differentially

expressed gene regulatory elements in each cell of the three cell

clusters are shown in Figures 3C and D.
3.4 Functional analysis of epithelial-
mesenchymal transition

The transcriptional factors with highest specificity for clusters 0-2

were integrated into the pseudo-time analysis (Figure 4A). FOXC1 and

SOX8were upregulated in cluster 0, RAD21, SMARCA4 and YY1were

upregulated in TMSB4X+ cells (cluster 1), and TWIST1 and YY1 were

upregulated in SLPI+ cells (cluster 2). The TMSB4X+ cells displayed

significantly higher scores for epithelial-mesenchymal transition

(EMT), indicating enhanced invasion ability (Figures 4B, C).

Additionally, as shown in Figures 4D and E, significant differences in

EMT scores were observed between S100A1+ cells and TMSB4X+ and

SLPI+ cells. Specifically, the EMT score of S100A1+ cells were

significantly higher than that of TMSB4X+ and SLPI+ cells,

suggesting that osteosarcoma cells in the TMSB4X+ cells exhibit a

greater migration ability, possibly associated with an increased

propensity for metastasis.
3.5 Correlation between OS cell clustering
and prognosis

The prognostic relevance of OS cell clustering was determined by

analyzing the survival rates of patients in the TARGET database. The

patients with high abundance of clusters 0 and 2 displayed higher

survival rates. In contrast, cluster 1 was associated with lower survival
Frontiers in Immunology 06
rates (Figures 5A–C). Additionally, we plotted the receiver operating

characteristic (ROC) curves for 2-, 3-, and 4-year survival, and found

that the area under the curve (AUC) for clusters 0 and 2 were above

0.65, indicating good predictive performance. Conversely, the AUC

value for cluster 1 was relatively low (Figures 5D–F). To further assess

the prognostic significance of the OS cell clusters, we performed a

multivariate Cox analysis incorporating patient gender, age, cluster

scores, and survival, and observed a significant correlation between

the cluster 2 score and patient survival (Figure 5G).
3.6 Immune infiltration analysis

Using the OS scRNA-seq dataset, we identified 12

microenvironment cells along with OS cells (Figure 6A). Further

analysis focused on OS cells and 5 immune cells (Figure 6B). We

identified the potential immune-related RNA (IURNA) for that cell

type. By applying a TSI score threshold of less than 0.45, we further

refined this list to identify IURNA specific to immune cells. To validate

the accuracy of cell classification, we examined the DEGs in immune

cells (Figure 6C). The t-SNE plot displayed the distribution of immune

cells and OS cells (Figure 6D), and DEGs between immune cells and

OS cells were calculated and presented in Figure 6E. The comparison

identified 618 significantly up-regulated DEGs in immune cells, which

were defined as TIIC-RNA. We employed six machine learning

algorithms and identified 177 additional TIIC-RNAs based on

previous TIIC-RNAs (Figure 6F).
3.7 Construction of the TIIC
prognostic model

We identified 22 TIIC-RNAs in the TARGET dataset

(Figure 7A), and screened the prognostic genes using CoxBoost

(Figure 7B), LassoCox (Figures 7C, D), and Random Forest

(Figures 7E, F) algorithms for intersection of mutual significant

genes to determine the prognostic value of the TIIC-RNAs (Figure

7G). We used Venn diagrams to show the prognostic genes

identified by all three ML algorithms (Figure 7G). The most

reliable model was identified by calculating the C index using 20

ML algorithms, of which the Elastic Net (Enet) algorithm exhibited

the highest scoring performance. The TIIC signature score was

calculated from a panel of 20 prognostic TIIC-related RNAs. OS

patients with higher TIIC scores showed poor outcomes in the

TARGET-OS dataset as well as the validation datasets (Figure 7H).

ROC curves of TIIC scores predicting 1-5 year overall survival in

TARGET-OS and other validation datasets show that our model has

good efficacy in the first five years (Figure 7I)
3.8 Comparison of the TIIC signature with
other prognostic models

TheTIICscore correlated significantlywith survival in theTARGET

dataset (Figure 8A), and demonstrated higher C-index compared to age
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FIGURE 3

TF analysis of OS cells. (A) Volcano plot showing the top 5 highly expressed genes in each cluster. (B) Violin plots and UMAP plots of the top 5
upregulated genes. (C, D) Heatmaps displaying the distribution of TFs in the different clusters.
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FIGURE 4

Functional analysis of Aggressive and EMT phenotypes. (A) Cell trajectory analysis showing the expression pattern of different identified TFs in various
differentiation states. (B, C) Invasion levels of the three clusters shown in t-SNE plot (B) and violin plot (C). (D, E) EMT levels of the three clusters
displayed in t-SNE plot (D) and violin plot (E).
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FIGURE 5

Correlation of cell cluster with prognosis in OS. (A–C) Impact of abundance of clusters 0, 1, and 2 on survival. (D–F) Time-dependent ROC curves of
clusters 0, 1, and 2. (G) Forest plot showing the results of multifactor Cox analysis.
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and gender (Figure 8B). We compared the C-index of the TIIC score

with that of 42 prognostic models reported in literature, and found that

the TIICmodel outperformedmost publishedmodels in the TARGET-

OS and validation datasets (Figures 8C–F).
3.9 Putative biological mechanism of the
TIIC model

The TIIC feature score showed a strong positive correlation with

numerous pathways (Figure 9A), especially immune-related pathways

including INF-gamma and alpha activation. We selected eight

pathways from the GOBP and KEGG databases that exhibited

significant differences between the two groups (Figure 9B). We also

examined the enrichment results of up-regulated genes in the TIIC-

high group using Metascape, which revealed their association with

immune response and cell adhesion (Figure 9C). Moreover, GSEA of

the dominant genes showed enrichment of cell growth and

morphogenesis functions in the TIIC-high group (Figure 9D).
3.10 TIIC signature is significantly
correlated with immune-related features

The immune infiltrating cells and their activity were analyzed

based on the TIIC score using the TIMER, ssGSEA, MCPcounter, and
Frontiers in Immunology 10
ESTIMATE algorithms. As shown in Figure 10A, the activity of most

immune cells declined with the increase in TIIC score, especially that of

CD8+ T cells and M1 macrophages, whereas the Tregs and MDSCs

showed increased activity. We also compared the TIIC score with the

enriched pathways in KEGG and reactome genes (Figure 10B) and

determined the abundance of tumor-related pathways in the TIIC-high

and TIIC-low groups (Figure 10C). Macrophage activation and

differentiation were both lower in the TIIC-high group, which was

consistent with former observation.
3.11 TIIC signature score can predict
treatment response

The predictive value of the TIIC score for immunotherapy

response was examined in various cancer datasets. As shown in

Figure 11A, low TIIC scores correlated with better survival outcomes

in patients with urothelial carcinoma (UC). Furthermore, UC

patients with high TIIC scores demonstrated a better response to

PD-L1 immunotherapy (Figure 11B). In the Braun dataset, renal cell

carcinoma (RCC) patients with high TIIC feature scores exhibited

improved survival outcomes (Figure 11E), while those with high TIIC

scores responded better to PD-1 immunotherapy (Figure 11F). In the

Nathanson dataset, low TIIC scores correlated with favorable

prognosis (Figure 11I) as well as better response to immunotherapy

(Figure 11J). Similar observations were made in the GSE78220 dataset
FIGURE 6

Identification of TIIC-RNA at single-cell level. (A) t-SNE plot of identified TME cells and OS cells. (B) t-SNE plot of identified OS cells and 5 types of
immune cells. (C) Violin plot showing differentially expressed genes in the identified immune cells. (D) t-SNE plot of identified immune cells and OS
cells. (E) Volcano plot displaying differentially expressed genes between immune cells and OS cells. (F) Venn diagram classifying intersecting genes
identified by six ML algorithms.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1468875
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1468875
(Figures 11K, L). Patients with high TIIC scores in the GSE165252

dataset demonstrated a better response to immunotherapy

(Figure 11N). On the other hand, low TIIC scores were associated

with better response to immunotherapy in the GSE179351 (COAD

and PAAD) (Figure 11C), GSE35640 (Figure 11D), GSE126044

(Figure 11M), GSE91061 (Figure 11G), and GSE103668

(Figure 11H) datasets. Using the TIDE algorithm, we observed that

the proportion of responders was relatively low in the TIIC-low

group in the TARGET dataset (p=0.07, Figure 11O).
Frontiers in Immunology 11
3.12 Prediction of metabolic characteristics
associated with TIIC scores

The metabolic characteristics associated with the TIIC signature

were elucidated by GSVA on metabolic pathways from the KEGG

database. The TIIC score was significantly correlated with several

metabolic pathways (Figure 12A). Notably, riboflavin metabolism

exhibited significantly higher activation rates in the TIIC-low group

(Figure 12B). In addition, the TIIC score was negatively correlated
FIGURE 7

Construction of TIIC prognosis model. (A) Univariate Cox regression analysis of TIIC-related genes. (B–F) Dimension reduction of 22 prognostic
genes using (B) CoxBoost algorithm, (C, D) LassoCox algorithm, and (E, F) random survival forest algorithm. (G) Venn diagram showing prognostic
genes identified by all three ML algorithms. (H) Kaplan-Meier survival curves of OS patients of different TIIC feature scores in TARGET-OS and other
validation datasets. (I) ROC curves of TIIC scores for predicting 1- to 5-year overall survival in the TARGET-OS and other validation datasets.
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with amino sugar and nucleotide sugar metabolism, and other

glycan degradation (Figure 12C).
3.13 Analysis of SNV mutations and
CNV differences

The top 50 mutated genes in the two risk groups are shown in

the waterfall diagram in Figure 13A. We observed higher mutation

rates in TP53 (21.6%), ATRX (10.8%), and MUC16 (10.8%)

(Figure 13A). The TIIC-high group showed a higher frequency of

mutations in ATRX, CXXC1, and TTN, while TP53, MUC16, and
Frontiers in Immunology 12
ATRX were the predominantly mutated genes in the TIIC-low

group (Figures 13B, C). The TIIC-high group also exhibited higher

chromosomal instability, characterized by FGA, although statistical

significance was not observed (Figure 13D).
3.14 CLK1 promotes the proliferation and
migration of OS cells

The functional role of CLK1 was further investigated through a

series of in vitro experiments. The CLK1 protein was significantly

upregulated in the OS tissues, highlighting its potential as an
FIGURE 8

Comparison of the prognostic value of TIIC score and other prognostic models. (A) Circos plot showing different clinical factors in the TIIC-low and
TICC-high groups. (B) C-index bar plot of TIIC score and various clinical factors in TARGET-OS and other validation datasets. (C–F) C-index plots of
TIIC score and 42 prognostic models in TARGET-OS and other validation datasets.
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oncogene (Figure 14A). Knocking down CLK1 led to a significant

loss in the clonogenic potential of the OS cells, as indicated by the

decrease in the number of colonies (Figure 14B). Conversely, the

overexpression of CLK1 increased their colony-forming capacity,

suggesting that CLK1 is necessary for the growth of OS cells.

Consistent with this, the MG63 and U2OS cell lines exhibited

higher EDU incorporation upon CLK1 overexpression, while

CLK1 knockdown decreased the proportion of EDU+

proliferating cells (Figure 14C). Furthermore, loss of CLK1

decreased the proportion of OS cells in the G2/M state of the cell

cycle (Figure 14D). CLK1 overexpression also promoted the

migration of MG63 and U2OS cells in the transwell assay, while

CLK1 knockout resulted in a decrease in migration capacity

(Figure 14E). Overall, these findings provide mechanistic insights
Frontiers in Immunology 13
into the role of CLK1 in promoting OS proliferation and migration,

emphasizing its potential as a therapeutic target.
4 Discussion

In this study, we examined the genomic and transcriptional

heterogeneity of OS cells and their interactions with other cells in

the TME. The OS cells had higher CNVs compared to endothelial

cells, indicating genetic instability. We also identified distinct

transcriptional subtypes within the OS cells, of which cluster 1

showed characteristics of terminal differentiation. Furthermore, the

expression levels of S100A1, TMSB4X, and SLPI were significantly

altered with the pseudo-time trajectory of the cells. Functional
FIGURE 9

Biological characteristics of the TIIC signature in TARGET dataset. (A) Results of GSVA based on MsigDB showing the biological properties associated
with TIIC score. (B) t-SNE plots illustrating the differences in GO terms and KEGG pathways between TIIC-low and TIIC-high groups. (C) Enrichment
analysis of differentially expressed genes between the TIIC-low and TIIC-high groups based on Metascape. (D) GSEA results depicting the
enrichment of GO and KEGG terms between the TIIC-high and TIIC-low groups.
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analysis showed that cluster 1 cells exhibited greater aggressiveness

and correlated with worse clinical outcomes. We developed a

prognostic model based on TIIC-related genes using machine

learning, and found that higher TIIC signature scores were

associated with lower infiltration of cytotoxic immune cells and

inferior immune response in multiple OS datasets. We also

validated the TIIC model in cancer datasets, and found that lower

scores were associated with superior immune response and survival

rates. This suggests that the immune landscape in the TME could

predict prognosis and response to immunotherapy in OS patients.

S100A1, a calcium-binding protein, was upregulated along the

pseudo-time progression. Moreover, the S100A1+ tumor cells

exhibited active communication with other cells. S100A1 is

overexpressed in ovarian cancer tissues, and is associated with

lymph node metastasis, FIGO stages, and tumor grades.

Furthermore, in vitro experiments have shown that S100A1

promotes the proliferation and migration of ovarian cancer cells
Frontiers in Immunology 14
(16). Likewise, S100A1 is significantly upregulated in papillary

thyroid carcinoma (PTC) tissues, and correlates with tumor size

and lymph node metastasis. Silencing S100A1 in PTC cells inhibited

their proliferation and migration via the Hippo/YAP pathway (17).

Collectively, these findings suggest that S100A1 is a pan-cancer

oncogene and a promising diagnostic and prognostic biomarker for

various tumors. However, the role of S100A1 in the genesis and

progression of OS remains to be elucidated.

CLK1 is a Cdc2-like kinase that was identified as a crucial risk

factor in our TIIC-based model. Knocking down CLK1 in the OS

cell lines inhibited their proliferation, invasion, and migration by

decreasing phosphorylation of SRSF2. Experiments using patient-

derived tumor samples have shown that CLK1 is a potential target

for gastric cancer treatment (18). Furthermore, knockdown of

CLK1 In glioma cells (GL261) increased aerobic glycolysis and

expression of HIF-1a via the AMPK/mTOR signaling pathway

(19). Thus, CLK1 warrants further investigation as a promising
FIGURE 10

Immunological features of the TIIC signature in TARGET dataset. (A, B) Relationship between the TIIC score, immune infiltrating cells and immune
regulatory genes. (C) Abundance of associated pathways in high TIIC group and low TIIC group.
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target for treating OS, although no studies have characterized the

underlying molecular mechanisms so far.

Despite the introduction of neoadjuvant chemotherapy, the

rates recurrence and metastasis remain high in OS patients (20).

B7-H1/PD-1 is a crucial immune checkpoint in OS and other

pediatric solid tumors. Previous studies have indicated that B7-

H1/PD-1 blockade monotherapy is less effective and can lead to
Frontiers in Immunology 15
numerous adverse reactions in OS patients (21–23). On the other

hand, combination of PD-1 blockade with other therapies has

demonstrated more favorable outcomes for OS in cellular and

animal models (24). The TIIC signature score established in our

study displayed satisfactory efficacy in predicting the immune

response across multiple cohorts, and could be integrated into

clinical practice.
FIGURE 11

Prediction of the immunotherapeutic response based on TIIC signature scores. (A) Survival analysis of the IMvigor cohort based on TIIC scores.
(B–D) Correlation between TIIC score and the immunotherapeutic response in the (B) IMvigor, (C) GSE179351, and (D) GSE35640 datasets. (E) Survival
analysis of the Braun dataset based on TIIC scores. (F–H) Correlation between TIIC score and the immunotherapeutic response in the (F) Braun,
(G) GSE91061, and (H) GSE103668 datasets. (I) Survival analysis of the Nathanson dataset based on TIIC scores. (J) Correlation between TIIC score and
immune therapeutic response in the Nathanson dataset. (K) Survival analysis of the GSE78220 dataset based on TIIC scores. (L–O). Correlation between TIIC
score and immune therapeutic response in the (L) GSE78220, (M) GSE126044, (N) GSE165252, and (O) TARGET datasets.
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5 Conclusion

We developed a TIIC signature to predict the prognosis and

immunotherapy response in OS patients. The TIIC score effectively
Frontiers in Immunology 16
stratified OS patients based on prognostic outcomes, and was

significantly associated with immune infiltration and immune

response. Moreover, CLK1 is a potential oncogenic factor in OS

development and a potential therapeutic target.
FIGURE 12

Metabolic characteristics associated with TIIC scores in the TARGET dataset. (A) Results of GSVA based on KEGG pathways for 11 metabolic
categories in the TIIC score groups. (B) Differences in metabolic pathways between the TIIC-high and TIIC-low groups. (C) Correlation between TIIC
feature scores and KEGG pathways in GSVA.
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FIGURE 13

Mutation landscape in the TARGET dataset. (A) Waterfall plot of the top 50 mutated genes in the TARGET dataset. (B) Mutation landscapes of OS
patients grouped by TIIC score. (C) Exclusive and co-occurring mutations in the OS patients with different TIIC scores. (D) Distribution of CNVs in
the OS patients stratified by TIIC score, with FGA, FGG, and FGL as features.
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FIGURE 14

CLK1 promotes OS proliferation and migration. (A) Immunoblot showing CLK1 protein expression in the OS tissues. (B) Colonies formed by the
CLK1-overexpressing and CLK1-knockdown MG63 and U2OS cell lines. (C) The up-regulation and down-regulation of EDU staining of the MG63
and U2OS cell lines under the condition of CLK1 overexpression and knockout, reflecting the proliferating capability of the OS cells. (D) Flow
cytometry assessing the MG63 and U2OS cell lines in the phase of G2/M state and corresponding quantification results. (E) Transwell analysis
assessing the migration of the MG63 and U2OS cell lines under the condition of CLK1 overexpression and knockout and the corresponding
quantification results. (*, denotes a significance level of p < 0.05; **, p < 0.01; ***, p < 0.001).
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