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Once thought to be in a terminally differentiated state, macrophages are now

understood to be highly pliable, attuned and receptive to environmental cues

that control and align responses. In development of purpose, the centrality of

metabolic pathways has emerged. Thus, macrophage inflammatory or reparative

phenotypes are tightly linked to catabolic and anabolic metabolism, with further

fine tuning of specific gene expression patterns in specific settings. Single-cell

transcriptome analyses have revealed a breadth of macrophage signatures, with

some new influencers driving phenotype. CD36/Scavenger Receptor B2 has

established roles in immunity and lipid metabolism. Macrophage CD36 is a key

functional player in metabolic expression profiles that determine phenotype.

Emerging data show that alterations in the microenvironment can recast

metabolic pathways and modulate macrophage function, with the potential to

be leveraged for therapeutic means. This review covers recent data on

phenotypic characterization of homeostatic, atherosclerotic, lipid-, tumor- and

metastatic-associated macrophages, with the integral role of CD36 highlighted.
KEYWORDS
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1 Introduction

CD36, also known as Scavenger Receptor B2, is a multiligand receptor found in most cells

and tissues (1–3). In the myeloid lineage, CD36 is expressed by monocytes, macrophages,

dendritic cells, megakaryocytes, microglia and platelets. Versatile in function, CD36 recognizes

and binds danger- and pathogen-associated molecular patterns (DAMPs and PAMPs) as a result

of cell infection or pathology, apoptotic cells, native and modified forms of lipoproteins,
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fatty acids, Thrombospondin-1, Histidine-Rich Glycoprotein,

diacylglycerides, amyloid-b and azapeptides (4–19). Extensively

studied, CD36 remains an enigma due to its chameleon-like quality

to adapt its behavior to circumstances, and its ability to perform

multiple functions within the same cell.

CD36 plays a key role in innate immunity against infectious

diseases by recognizing infected host cells due to PAMPs and through

recognition of alterations in the phospholipid bilayer (e.g. oxidation,

nitrosylation, exposure of inner leaflet phospholipids, etc.) (20). CD36

in its capacity as a pattern recognition receptor contributes to

macrophage phagocytic clearance of infectious pathogens (21). As a

result, CD36 may influence the course of diseases caused by bacteria,

virus, fungus and parasites. A few examples: In malaria, CD36 plays

several roles, including endothelial cell-mediated parasite

sequestration, macrophage phagocytic clearance and modulation of

immune cell cytokine release. These actions do not result in parasite

eradication, but may decrease host mortality by controlling

parasitemia levels (22–25). CD36 protects against Klebsiella

pneumoniae infection by enhancing lipopolysaccharide (LPS)

responsiveness, boosting cytokine production and phagocytosis (20).

CD36 might influence the uptake and processing of viral particles.

Human immunodeficiency virus (HIV)-1 viral proteins, including

negative factor (Nef) and p17, can affect the innate immune system by

impairing the oxidative burst response and phagocytosis by

monocytes/macrophages through regulation of CD36 (26, 27).

CD36-specific antibodies block HIV-1 release from infected primary

macrophages and thus viral transmission to T cells (28). HIV-1

infected patients exhibit increased lipid levels and monocyte

activation, with greater CD36 and TLR4 expression on monocytes,

indicating a key role in inflammation (29, 30). In patients with

impaired T-cell immunity, macrophage CD36 has been shown to

play a critical role in the recognition of disease-associated b-glucans
associated with yeastsCandida albicans and Cryptococcus neoformans,

which serve as necessary inducers of the innate immune response (31).

Not all actions of CD36 are protective, however. InMycobacterium

tuberculosis infection, CD36 induces M2 macrophage differentiation,

enhances cytokine secretion, and suppresses macrophage migration

and T cell activation, leading to inflammation and immune

suppression (32). Additionally, in the lungs, alveolar macrophage

CD36-mediated uptake of surfactant provides lipid for increased

cellular demands as a result of mycobacteria infection, and supports

parasite growth (33). In this review, we will focus on emerging roles of

CD36 in macrophages that impact metabolism.
2 CD36 essentially contributes to
metabolic pathways that define
macrophage phenotypes in
homeostasis and disease

2.1 Homeostatic macrophages

CD36’s effects on macrophages are manifold. As a receptor for

lipoproteins, apoptotic cells, PAMPs and DAMPs, and a facilitator

of fatty acid transport, CD36 plays an integral operative role, while
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also influencing differentiation and ultimate phenotype.

Macrophages are functionally heterogeneous; they develop from

bone marrow-derived monocytes or tissue-resident macrophages

along a spectrum in response to situational factors and retain

plasticity (34). They include those that prioritize pathogen killing,

have immunosuppressive functions, or are involved in tissue

homeostasis and wound healing. In the classic M1/M2 paradigm,

CD36 is more highly expressed in macrophages associated with

tissue homeostasis, remodeling and repair after injury (35–38).

These homeostatic and tissue restoration macrophages store and

oxidize fatty acids for the intermittent or extended energy needs

involved in efferocytosis, phagocytosis of tissue debris and synthesis

of degradative enzymes. Indeed, phagocytosis of cells couples with

fatty acid oxidation by providing substrate that would otherwise

contribute to excess lipid accumulation. Reparative macrophages

show greater uptake of apoptotic cells than those involved in

pathogen killing, and in this way decrease tissue exposure to

necrosis and mitigate inflammatory responses (39). In a model of

ischemia-induced brain injury, infiltrating blood monocyte-derived

macrophages showed greater phagocytic activity, with concomitant

increase in cell membrane CD36 (37). This was accompanied by

elevated expression of lysosomal acid lipase, a critical mediator of the

M2phenotype throughmodulation offatty acid supply for oxidation,

through breakdown of triglycerides and lipoproteins (36). Inhibition

of CD36 with antibody or drug significantly decreased phagocytosis,

and altered the development of tissue-resolution macrophages as a

result (37). In a more recent study, pathogenic polymorphisms in

CD36 that reduced expression by ~50%, predisposed to myocarditis

in patients immunized with the Pfizer-BioNTech BNT162b2 vaccine

against COVID-19 (15). This wasmechanistically linked to impaired

efferocytosis. The authors noted that the effect was predominantly in

M1 macrophages, but this is confounded by the fact that CD36 is

necessary for expression of M2 markers (35, 36, 38). In both these

cases, the functional role of CD36 was aligned with tissue repair and

homeostasis; loss of CD36 function altered phenotype.

Reparative macrophages synthesize and secrete collagen,

transforming growth factor-b, fibroblast growth factor, platelet-derived

growth factor, and vascular endothelial growth factor (40–42). They are

the conductors of the orchestrated remodeling process, attracting

fibroblasts, stem cells, endothelial cells and others necessary in a

temporal and coordinated manner. M2 macrophages also maintain a

homeostatic environment through the synthesis and secretion of the

anti-inflammatory cytokine IL10, and arginase-1, which converts

arginine to ornithine and in this way thwarts the production of nitric

oxide used in cytotoxic bursts (43). Classically activated (by interferon-g
or lipopolysaccharide) M1 and alternatively activated (by IL4 and IL13)

M2 phenotypes demonstrate starkly different metabolic profiles: the

overall ratio of oxidative phosphorylation to aerobic glycolysis has been

shown to be 10-fold higher in M2 macrophages compared to M1

macrophages (36). Inhibition of fatty acid oxidation using the drug

etomoxir decreased M2 signature gene expression, suggesting that the

M2 phenotype is tightly associated with cellular metabolism (36). In line

with this, delivery of triglycerides to the cell through CD36 was found to

be necessary for M2 differentiation, and cells from mice and humans

deficient in CD36 showed decreased expression of M2 markers (36).

More recently, increased fatty acid oxidation as a necessary contributor to
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the immunosuppressive phenotype has been questioned (44). Differences

in arginine and glutamine metabolism, and the channeling of fatty acids

into anabolic pathways may be more essential in the determination of

M1 vsM2 fate (44). Notwithstanding, uptake of lipids by CD36 remains

a significant factor. A summary of metabolism-driving function for

classical and alternatively activated macrophages is shown in Figure 1.
2.2 TREM2 and lipid-
associated macrophages

Single-cel l RNA sequencing has great ly enhanced

characterization of macrophage subtypes, and revealed key

influencers in their phenotype. Triggering receptor expressed on

myeloid cells (TREM) 2 has emerged as an important driver of

subgroups of macrophages in obesity, metabolic dysfunction-

associated steatohepatitis (formerly non-alcoholic steatohepatitis)

and atherosclerosis (45–47). Lipid-associated macrophages (LAMs),

a distinct population that expand and accumulate in the stromal-

vascular fraction from obese human visceral adipose tissue and

adipose tissue from diet-induced obese mice, have a TREM2-

directed transcriptional signature that includes CD36 and other

genes responsible for lipid uptake and storage (46). Kyoto

encyclopedia of genes and genomes pathway analysis revealed

enrichment of those related to phagocytosis, endocytosis and lipid

metabolism. Other pathways upregulated in LAMs were peroxisome

proliferator-activated receptor (PPAR)- g signaling and oxidative

phosphorylation (46). Deficiency in TREM2 did not alter the
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expansion of the monocyte/macrophage compartment in adipose

tissue, but resulted in loss of the associated biomarkers, indicative of

its obligatory role in specialization of this population (46). In studies

in TREM2-knockout (KO) mice, loss of this macrophage subset had

profound ramifications: “massive” adipocyte hypertrophy, rapid

weight gain, hypercholesterolemia, increased body fat and serum

insulin, and insulin-resistance (46). These data suggest that in the

obese setting, TREM2 LAMs attempt to maintain homeostasis

through adipose tissue remodeling with an important role for

CD36. Unlike homeostatic macrophages, LAMs occur in diseased

states, including obesity, metabolic syndrome, fatty liver and cancer.

They may differentiate from monocytes recruited to the tissue or

from resident macrophages. Homeostatic resident macrophages are

self-renewing. LAMs differ from homeostatic resident macrophages

by expression of a gene program that includes TREM2, FABPs 4 and

5, lipase A, apolipoprotein E (apoE) and CD36, and a focus on lipid

uptake and metabolism (48). Morphologically, LAMs are

distinguished by the presence of lipid droplets.

In single-cell transcriptomic analyses of human atherosclerotic

plaques, studies have consistently identified a distinct myeloid

cluster containing “foamy macrophages” (49–51). These

macrophages are characterized by abundant lipid, upregulation of

fatty acid utilization pathways and a less inflammatory cytokine

profile. Similar analyses done in mouse atherosclerotic lesions

revealed a conserved subtype (51, 52). In both species, expression

of TREM2 was a determining characteristic. Analogous to LAMs,

these macrophages showed enrichment for lipid and fatty acid

uptake and metabolic pathways, activation of liver X receptor/
FIGURE 1

Classically-activated and alternatively-activated macrophages. Selected gene and metabolic pathways in classically-activated and alternatively-
activated macrophages. Macrophage fate is induced according to exposure to diverse stimuli. Classically-activated macrophages are determined by
IFNg or lipopolysaccharide, while alternatively-activated macrophages receive signals from IL4 and IL13. Functionally, this yields upregulation of
either more catabolic and inflammatory pathways or more anabolic and phagocytic pathways. In alignment, CD36 expression is greater in
alternatively-activated macrophages to deliver fatty acids for oxidation and energy, and to provided substrate for the biosynthesis of membranes and
other lipid-derived products. CD36 also plays a role in efferocytosis, through recognition of danger-associated and pathogen associated molecular
patterns (DAMPs and PAMPs). FA, fatty acid; FAO, fatty acid oxidation; iNOS, inducible nitric oxide synthase; LD, lipid droplet; LPS, lipopolysaccharide;
NADPH, nicotinamide adenine dinucleotide phosphate; NO, nitric oxide; oxPhos, oxidative phosphorylation; PPP, pentose phosphate pathway; ROS,
reactive oxygen species; TCA, tricarboxylic acid cycle; UDP-GlcNAc, Uridine diphosphate N-acetylglucosamine. The figure was drawn by
Figdraw (www.figdraw.com).
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retinoid X receptor, which increase cellular lipid efflux mechanisms,

and deceased cholesterol synthesis (45, 52). These cells were further

characterized by expression of smooth muscle cell actin, but in the

context of myeloid-determining transcription factors, and anti-

inflammatory pathways driven by signal transducer and activator

of transcription (STAT) 6, a downstream effector of IL4 (49). As was

the case for TREM2 LAMs in the obese setting, CD36 was

upregulated (45, 49–53). As a receptor for oxidized and native

lipoproteins and fatty acids, it likely plays a major role in the

development of the foamy macrophage morphology.

In both the setting of obesity and atherosclerosis, these TREM2

macrophage subpopulations function in uptake and disposal of

excess lipid. They utilize various pathways: fatty acid oxidation to

burn lipids for power, efflux mechanisms to remove excess, and

finally storage routes. In sustained conditions, however, lipid

overload leads to endoplasmic reticulum (ER) stress and

autophagy (54). Cells deficient in TREM2 were more sensitive to

ER stress; this suggests that the upregulation of TREM2 and

associated genes in early lesions is compensatory and pro-survival

(52, 53, 55). Additionally, macrophage deficiency of TREM2 led to a

greater number of apoptotic cells in atherosclerotic lesions (52). In

mouse atherosclerosis studies in which TREM2 was deficient in

monocytes/macrophages, hematopoietic cells or globally, there was

no consistent change in necrotic core size, however (45, 52, 53). The

discrepancies may have to do with the timing of analysis, the cell

types deficient in TREM2 and the model itself. Increased numbers

of apoptotic cells and increased necrotic core size functionally track

to a defect in efferocytosis. Although not addressed, this may be a

consequence of CD36 downregulation in TREM2 KO cells, as

uptake of apoptotic cells is a scavenger receptor function. This

would suggest that as lesions progress, loss of TREM2 can have

negative consequences. Relevant to this point, in a database analysis

of carotid endarterectomy samples from recent stroke patients and

non-stroke controls, TREM2 was enriched in the non-stroke

patients, suggesting that TREM2 promoted a stable plaque

phenotype (52).

Interestingly, in these studies of global, hematopoietic and

monocyte/macrophage-specific TREM2 KO mice, atherosclerosis

decreased in both the apoE KO and low-density lipoprotein receptor

(LDLR) KO, classic mouse models of atherosclerosis (45, 52, 53).

TREM2 KOmacrophages were shown to have decreased expression

of CD36 in vitro and in plaques, and decreased oxidized LDL

(oxLDL) uptake and lipid accumulation, respectively (45). In

experimental models where TREM2 was targeted with agonistic

antibodies, there was consensus that plaques showed greater signs

of stability and reduced necrotic cores (53, 56). In one model,

however, there was no change in overall lesion size, while in the

other, overall lesion size was greater with increased number of

macrophages, due to better survival and increased proliferation in

plaques (53, 56). Complementary in vitro studies showed that

antibody agonism led to increased oxLDL uptake, increased

cholesterol efflux and cell survival (56). Thus, functionally,

TREM2 induced higher expression of CD36 that then

significantly impacted cellular metabolism. CD36-accrued lipid

was channeled to be metabolized or effluxed as a protective

macrophage survival mechanism, but the accumulation of foamy
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macrophages increased plaque size. Deficiency of TREM2 in

macrophages led to smaller lesions, dependent upon loss of CD36

function, but paradoxically, the cells in those lesions were more

vulnerable to death. A summary of the effects of TREM2 on

metabolism and macrophage function and effects of deficiency are

shown in Figure 2.
2.3 Caspase recruitment-domain
containing protein 9, adenosine
monophosphate activated protein kinase
and atherosclerosis

The significant impact of CD36-dependent lipid uptake on

macrophage phenotype is further illustrated in mice deficient for

caspase recruitment-domain containing protein 9 (CARD9). This

adapter protein is essential for activation of mitogen-activated

protein kinases by Toll-like receptors (TLRs) (57, 58). OxLDL has

been shown by multiple groups to be an endogenous ligand for

TLRs; thus, CARD9 may play a role in amplification of pro-

inflammatory signaling through TLR activation of p38 and Jun N-

terminal kinase (59, 60). There have been several reports on the role

of CARD9 in atherosclerosis with conflicting results (61, 62). Recent

mechanistic investigation, using multiple mouse models (apoE KO,

LDLR KO, recombination activation gene (RAG) 2 KO, CD36 KO,

CARD9 KO and combinations) to rule out effects of the adaptive

immune system and gut microbiota, has shown that CARD9

deficiency increased atherosclerosis lesion burden, with marked

enhancement in macrophage and necrotic core lesion areas (63).

These mice had a less pro-inflammatory cytokine profile and no

significant differences in serum cholesterol levels (63). Further

investigation showed that cells deficient in CARD9 had greater

oxLDL uptake and lipid accumulation, and oxLDL-mediated

apoptosis (63). CD36 cell membrane expression was greatly

increased and shown to be essential to the increase in

atherosclerosis, macrophage and necrotic core areas in vivo (63).

Mechanistically, upregulation of CD36 not only contributed to

increased macrophage foam cell formation, but also resulted in

lipid overload that impaired autophagy pathways, leading to

enhanced and progressed lesion development (63). Autophagy was

impaired as a result of inhibition of adenosine monophosphate-

activated protein kinase (AMPK) and downstream activation of

mammalian target of rapamycin (mTOR) C1/mTORC2 (63).

Other studies have also revealed CD36-mediated lipid uptake as

an essential regulator of AMPK activation. AMPK is a cellular sensor

of nutritional status, and through phosphorylation of key effector

proteins, directly or indirectly regulates metabolism with far-

reaching consequences (64). As a general statement, AMPK

activation leads to an increase in catabolic pathways and an

inhibition of anabolic pathways (64, 65). AMPK is phosphorylated

as a result of an increase in the AMP to adenosine triphosphate

(ATP) ratio (64, 65). AMPK increases the activities of glycolysis,

fatty acid oxidation and autophagy, and induces mitochondrial

biogenesis, while inhibiting lipid, protein, glucose, glycogen, sterol

and ribosomal RNA (rRNA) synthesis, to bring the cell back to

homeostasis (64, 65). In order to increase cellular levels of ATP,
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AMPK enhances fatty acid uptake, to couple with catabolic pathways

(66–68). Hence, AMPK activation results in increased CD36

expression and localization to the plasma membrane.

While an association between TREM2 and AMPK in

macrophages was not noted in studies of TREM2 KO mice,

TREM2, SIRT1 and PPAR-g, all necessary for shifts in energy

metabolism in macrophages, have been shown to be tightly linked

to AMPK and required for anti-inflammatory polarization of

microglia, the resident myeloid cells of the brain (69). In

microglia, TREM2 upregulates CD36 to promote phagocytosis of

amyloid-b (70).

Mechanistically, AMPK-mediated increased expression of

CD36 has been studied in cells other than myeloid cells. In

intestinal cells, increased CD36 expression by AMPK was due to

inhibition of polyubiquitination by Parkin (68). In myocytes, CD36

was found in a complex with the Src kinase, Fyn and liver kinase B1

(LKB1) (67). Increased levels of circulating fatty acids led to

displacement of Fyn from the complex, leading to LKB1

phosphorylation of AMPK, and downstream effects (67).

Interestingly, in myocytes, CD36 not only regulated AMPK

activation, but then was itself regulated by AMPK. Stimulated

recruitment of CD36 to the membrane by insulin, contraction or

AMPK was dependent upon AK strain transforming (AKT)

substrate 160 and Rab-GTPase to control vesicular trafficking and

increased plasma membrane localization (66). Whether similar

mechanisms account for AMPK-induced CD36 increased
Frontiers in Immunology 05
expression and localization in myeloid cells remains unknown.

The mechanism of increased atherosclerosis in CARD9-deficient

macrophages is shown in Figure 3.
2.4 Tumor-associated macrophages

A major therapeutic initiative in cancer is targeting lipid

metabolism as a way to reprogram immune cells in the tumor

microenvironment (TME) (71, 72). This niche is unique due to an

often immature and disorganized vasculature that limits supplies of

oxygen and nutrients, and the removal of debris and waste

products, while supporting tumor cell proliferation and immune

cell emigration (73). Given the highly proliferative capacity of

tumor cells, there is a significant increase in anabolic pathways,

including lipid, cholesterol, rRNA and protein (74). Tumor cells

develop strategies for sustained cellular biosynthesis via aerobic

glycolysis (the Warburg effect) and glutamine-dependent

anaplerosis, which provides substrates for a modified tricarboxylic

acid cycle (74–76). While inefficient in generating ATP, it has been

estimated that lactate production from aerobic glycolysis occurs at a

faster rate (10-100x) compared to mitochondrial oxidation; thus,

the net amount of ATP produced would be comparable (77).

Additionally, increased glucose uptake and breakdown are

hypothesized to feed into necessary biosynthetic pathways by

providing carbon for the synthesis of proteins, lipids and
FIGURE 2

Lipid-Associated Macrophages (LAMs) and Triggering receptor expressed on myeloid cells (TREM) 2 KO Macrophages. Selected gene and metabolic
pathways in LAMs and TREM2 KO macrophages. A foamy macrophage subset, labeled lipid-associated macrophages (LAMs), present in obesity and
atherosclerosis have as a driver of gene signature Triggering receptor expressed on myeloid cells (TREM) 2. Upregulation of CD36 intensifies lipid
influx. From a mechanistic perspective, TREM2 restrains the phosphorylation of p38 mitogen-activated protein kinase and peroxisome proliferator
activated-receptor (PPAR) g, consequently enhancing the nuclear transcriptional activity of PPARg and subsequently facilitating the transcription of
CD36. Arg1-arginase 1; FA, fatty acid; LD, lipid droplet; LXR, liver X receptor; NFkB, nuclear factor kappa B; RXR, retinoid X receptor; STAT6, signal
transducer and activator of transcription 6; TGFb, transforming growth factor b; VEGF, vascular endothelial growth factor. The figure was drawn by
Figdraw (www.figdraw.com).
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nucleotides, nicotinamide adenine dinucleotide phosphate

equivalents necessary for de novo fatty acid synthesis, and

regeneration of nicotinamide adenine dinucleotide to keep

glycolysis going (75, 76).

Evidence shows that high-fat diets and obesity contribute tomore

than a dozen cancers (78, 79). Tumor-driven modifications of

adipose tissue enhance tumorigenesis of the breast, ovary, prostate,

lung and bone marrow, amongst others (80–83). While fatty acid

oxidation is disfavored in tumor cells, fatty acids can be utilized and

stored for the biosynthesis of membranes and lipid signaling

molecules (72). Thus, dietary and tumor cell-synthesized fatty acids

are used to produce arachidonic acid, docosahexaenoic acid and

eicosapentaenoic acid, eicosanoids, prostaglandins and

lysophosphatidic acid (72). These can act autonomously or on

other cells in the TME to influence phenotype. Prostaglandin E2

(PGE2), the product of the enzyme cyclooxygenase 2, which is

preferentially expressed in cancer cells (e.g., colon, prostate,

melanoma, breast and lung), has emerged as an important player in

influencing TME cellular immunosuppressive phenotypes (84, 85).

Tumor-associated macrophages (TAMs) are found abundantly

in solid tumors and evidence suggests that they play a significant

role in modulation of other immune cells in the microenvironment

through the expression of cytokines, growth factors and other

products (44). As is true of macrophages in general, the

phenotypes of TAMs exist along a spectrum, with pro- and anti-

tumorigenic properties (86). Tumor-derived mediators and

products activate signaling pathways that define both the
Frontiers in Immunology 06
metabolism and behavior of TAMs (86). Although numerous and

with the capacity to mount an anti-tumor immune response, TAMs

are often pro-tumorigenic.

Isolated TAMs from various human and mouse cancers have

been shown to be lipid-rich and to functionally have enhanced lipid

uptake via CD36 (87). Metabolism of fatty acids is an essential

determinant of TAM phenotype (87, 88). Interfering with fatty acid

oxidation, for example, using the drug etomoxir, blocked the

development of immunosuppressive TAMs (87, 88). Concomitant

with increased suppressive phenotypes was increased expression of

CD36 (87). Significantly, etomoxir-treated TAMs or those isolated

from CD36 KO tumors did not have a suppressive phenotype and

blocked the proliferation of multiple tumor cell types in in vitro co-

culture experiments (87).

In the analysis of human tumors, single-cell sequencing data

from breast and lung cancers revealed that CD36 is predominantly

expressed on TAMs, and that these TAMs have significantly higher

expression of CD36 compared with control tissues (87). Elevated

expression of CD36 in TAMs correlated with genes involved in

TAM differentiation and fatty acid oxidation (87). Published gene

array datasets from renal cancer patients again showed that CD36

expression correlated with a TAM gene expression signature (87).

In gene array datasets from glioblastoma patients, there was a

strong correlation between the genes involved in fatty acid

oxidation and CD36 (87). This supports work in mice as relevant

to human cancers, and that metabolic programming of TAMs is

CD36-dependent. Taken together, these data provide support for
FIGURE 3

Caspase Recruitment-Domain Containing Protein 9 (CARD9), adenosine monophosphate activated protein kinase (AMPK) and Atherosclerosis.
Mechanism of increased atherosclerosis in CARD9 deficient macrophages. In atherosclerosis, oxidized low-density lipoprotein (oxLDL) is a ligand of
Toll-like receptor (TLR). CARD9 is an adapter protein that links TLR to p38 and jun N-terminal kinase (jnk) to amplify pro-inflammatory signaling
pathways (left side of diagram). Card9 deficiency (right side of diagram) increases CD36 expression leading to greater uptake of lipid and foam cell
formation. Lipid overload subsequently results in endoplasmic reticulum (ER) stress. Adenosine monophosphate activated protein kinase (AMPK)
phosphorylation is decreased and mammalian target of rapamycin (mTOR) activation is increased in CARD9 KO macrophages, leading to impaired
autophagy, increased apoptosis and necrotic core, and overall, accelerated atherosclerosis. A, autophagosome; FA, fatty acid. The figure was drawn
by Figdraw (www.figdraw.com).
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immunomodulation through metabolic manipulation as a potential

therapeutic approach in cancer.
2.5 Metastasis-associated macrophages

The liver is a major site of tumor cell metastasis and patients with

liver metastases have an overall poor prognosis. Similar to TAMs,

metastasis-associated macrophages (MAMs) have been phenotypically

characterized in mice and humans and the data compellingly suggest

an essential role for CD36 in an immunosuppressive, pro-tumorigenic

role (89, 90). Metastatic Lewis lung carcinoma cells injected

intraperitoneally into the spleen resulted in fewer metastatic nodules,

overall decreased tumor area, reduced tumor proliferation and blood

vessel number in CD36 KO mice compared to controls. Contribution

from hepatocyte CD36 was ruled out using liver-specific CD36 KO

mice (90). Depletion of macrophages with clodronate liposomes

suppressed liver metastasis; liver metastases were also markedly

reduced in macrophage-specific CD36 KO mice (90).

MAMs isolated from tumors had an increased number of lipid

droplets compared to macrophages isolated from non-diseased liver

(90). MAMs had higher expression of CD36 and increased uptake

of fatty acids. Notably, the expression of other fatty acid uptake

proteins (Fatty Acid Binding Proteins 1-6) was unchanged or

decreased (90). In this model, the investigators uncovered a novel

delivery mechanism for fatty acids derived from tumor cells:

extracellular vesicles (90). These vesicles were shown to transfer

fatty acids to MAMs, and they were subsequently trafficked to the

mitochondria. Uptake of these tumor-derived vesicles correlated

with CD36 expression and was significantly decreased in CD36 KO

MAMs (90).

Like TAMs, MAMs were predominantly immunosuppressive.

This suggests that the TME in some way promotes such a phenotype.

Analysis of lipids in the liver metastatic TME showed enrichment for

unsaturated and monounsaturated fatty acids; in vitro experiments

demonstrated that CD36 expression was required for the

immunosuppressive phenotype mediated by these lipids (90). In

particular, oleic acid was shown to have an anti-inflammatory effect

on bone marrow-derived myeloid cells and promoted the

development of immunosuppressive dendritic cells and

macrophages (88, 91). The mechanism was linked to metabolism:

upregulation of pathways related to mitochondrial respiration, fatty

acid oxidation, lipid droplet formation and downregulation of fatty

acid synthesis pathways and desaturases. Oleate decreased the

expression of mature macrophage markers, increased expression of

signature TAM markers, including those associated with an

inhibitory phenotype, and induced high levels of arginase activity

(88, 91). Remarkably, these experiments revealed that oleate alone

was sufficient to induce the differentiation of TAMs at phenotypical

and functional levels. In vivo, short-term feeding of mice a diet

supplemented with oleic acid increased macrophages with a

suppressive phenotype in mesenteric adipose tissue (92).

Lipid droplets, which are a prominent common characteristic of

immunosuppressive macrophages, play a key role in maintenance

of phenotype: they provide a reservoir of fatty acids to support the

metabolism and functions of the immunosuppressive state (88).
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Interference with enzymes and associated proteins involved in

mobilization of fatty acids from lipid droplets disrupted the

development of the immunosuppressive phenotype (88, 91, 93).

When the immune cell population of the TME was examined in

macrophage-specific CD36 KO mice compared with controls, there

was a diminished number of MAMs and an increased number of B

cells and T cells, including cytotoxic CD8+ T cells (90). Expression of

interferon-gand granzyme B were also significantly increased in these

cytotoxic CD8+ T cells, suggesting greater anti-tumor potential. In

human hepatic metastases, CD36 expression correlated with an M2-

like, immunosuppressive phenotype in two datasets examined (90).

These studies bolster the hypothesis that CD36 expression is essential

to support the TAM and MAM immunosuppressive phenotype by

contributing to lipid metabolism. Figure 4 summarizes key metabolic

and suppressor pathways in TAMs.

The mechanism of CD36 upregulation in TAMs and MAMs is

likely multifactorial. IL4 is a differentiating cytokine for M2

macrophages. Due to the oxidative stress in the TME, macrophages

are exposed to IL4 in the context of oxLDL, and this has been shown

to have a strong influence on CD36 expression (94). IL13, important

in the differentiation of TAMs, also upregulates CD36 (95). Secretion

of long-chain fatty acids, especially saturated and monounsaturated

classes, likely leads to a feed-forward response that increases CD36

expression (90). Similarly, as the macrophages increase fatty acid

metabolism and oxidation, this also has a feed-forward effect, driving

up the expression of fatty acid uptake receptors, including CD36.

Some of these same molecules also activate PPARg, which again

increases CD36 expression (96).
2.6 Myeloid-derived suppressor cells

In addition to TAMs, there are also myeloid-derived suppressor

cells (MDSCs) in the TME (97–99). MDSCs are divided into

polymorphonuclear (PMN-MDSCs) and monocytic (MO-

MDSCs) subtypes (97, 99). They are recruited to the TME as a

result of signals similar to TAMs. PMN-MDSCs stimulate T-cell

tolerance in an antigen-specific manner, while MO-MDSCs are

potently immunosuppressive and exert effects in an antigen-

independent manner (97, 100). MDSCs are believed to arise in

response to sustained pressure on myelopoiesis as a result of

chronic infections, cancer and autoimmune diseases (100). The

initial proliferation and training of MDSCs occurs in the bone

marrow and spleen, but importantly, the phenotype is then refined

in the peripheral sites of disease, where condition-specific growth

factors, cytokines and derived products exert influence (101).

During differentiation, reports show that MDSCs have high rates

of glycolysis, glutamine uptake and reliance on the tricarboxylic acid

cycle and pentose phosphate pathway for energy (102). Investigations

have shown that activation of MDSCs in the TME led to upregulation

of CD36 via STAT3 and STAT5, and increased lipid uptake (103).

Phenotyping of spleen vs. tumor-infiltrating MDSCs revealed

significant differences in mitochondrial mass, oxygen consumption

and fatty acid oxidation, all increased in those cells educated in the

TME (97). As has been suggested for other immunosuppressive

myeloid cells, fatty acid oxidation was the source of intermediates
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for the biosynthesis of fatty acids, amino acids, proteins and ribose for

rRNA. These feed into biosynthetic pathways for anti-inflammatory

molecules, including IL10, programmed cell death protein-1 and

inducible nitric oxide in MO-MDSCs. The development of PMN-

MDSCs has also been shown to be dependent upon lipid metabolism

to produce reactive oxygen species and myeloid peroxidase, which

limit dendritic cell antigen presentation and T-cell activation (104).

Tumor-secreted PGE2 and fatty acid transport protein (FATP) 2 play

essential roles in their determination (85, 105). Thus, strategies that

interfere with FATP2 or CD36 curb MDSC suppressive effects on

effector cells (105, 106).Whilemanyof these studies have been done in

mouse models, recent single-cell RNA sequencing analyses showed

greater than two-fold increases in CD36 expression in MDSCs from

head and neck and breast cancer (107). A comparison between PMN-

MDSCs and MO-MDSCs is shown in Figure 5.
3 Mechanisms of CD36 expression
and function in
macrophage phenotypes

The PPARg pathway is one of the primary regulators of CD36,

particularly in the context of lipid metabolism and anti-

inflammatory responses in macrophages (108, 109). PPARg is a

member of the nuclear hormone receptor superfamily and is

activated by various ligands, including fatty acids. Upon

activation, PPARg forms a heterodimer with retinoid X receptor

(RXR), which binds to PPAR response elements on the CD36 gene
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promoter, enhancing its transcription. This pathway is particularly

active in tissue-reparative M2 macrophages, where it promotes lipid

uptake, fatty acid incorporation into membranes and organelles,

storage, and anti-inflammatory functions (96). Fatty acids are

inducers of CD36 mRNA and protein levels, consistent with this

(110, 111). Dysregulation of PPARg and subsequent alterations in

CD36 expression are implicated in various metabolic disorders.

In the hyperlipidemic environment of LAMs, free fatty acids and

cytokines, as a result of underlying chronic inflammation, are the likely

drivers of CD36 expression in adipose tissue. The chemokine CCL2

recruitsmonocytes into inflammatory sites, where they differentiate into

macrophages in response to the cytokines macrophage colony-

stimulating factor and IL4; the latter have also been shown to increase

CD36 expression (112–115). This is also dependent on the expression

and activation of PPARg and 12/15 lipoxygenase, which generates 13-

hydroxyoctadecadienoic acid (HODE) and 15-hydroxyeicosatetraenoic

acid, transcriptional activators of PPARg (116).
While the pathway underlying TREM2-dependent CD36

expression in LAMs was not defined, in microglia, in response to

the CD36 ligand, amyloid b, TREM2 induced CD36 expression via

phosphoinositide-3 kinase (PI3K)/AKT signaling, resulting in

upregulation of CCAAT-enhancer-binding protein (C/EBP) a, a
transcriptional activator of CD36 (70). Mutation of the C/EBPa
binding site in the promoter of CD36 suppressed CD36

upregulation. C/EBPa is necessary in the development of both pro-

inflammatory M1 and homeostatic M2 macrophages, suggesting a

master role in macrophage polarization (117). This also suggests that

there is other input to define the final macrophage phenotype.
FIGURE 4

Tumor-Associated Macrophages (TAMs). Integration of Metabolic Pathways with suppressive phenotype in TAMs. Selected gene and metabolic
pathways in TAMs that lead to suppressive effects on tumor cells. Arg1, arginase 1; CCL2/5, CC-chemokine ligand 2 or 5; COX2-cyclooxygenase 2;
FA, fatty acid; FAO, fatty acid oxidation; GrB, granzyme B; H+- acid; HIF1a, hypoxia-inducible factor 1a; LD, lipid droplet; mTOR, mammalian target
of rapamycin; OA, oleic acid; oxPhos-oxidative phosphorylation; PGE2, prostaglandin E2; PPARg, peroxisome proliferator activated-receptor g;
STAT3/6, signal transducer and activator of transcription 3 and 6; TAG, triacylglyceride; TCA, tricarboxylic acid cycle; TGFb, transforming growth
factor b; VEGF, vascular endothelial growth factor. The figure was drawn by Figdraw (www.figdraw.com).
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In atherosclerosis, in addition to fatty acids and cytokines,

oxidized lipids, such as oxLDL, and cholesterol crystals drive

CD36 expression. Previous work established that cholesterol

crystals trigger nucleotide-binding oligomerization domain,

leucine-rich repeat and pyrin domain containing (NLRP) 3

inflammasome formation, as well as nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase and xanthine oxidase-

dependent ROS production (118, 119). This, in turn, activates

Bruton’s tyrosine kinase, which phosphorylates p300, which next

activates STAT1 acetylation and binding to the STAT binding site

in the CD36 promoter to enhance its activity. Site-directed

mutagenesis of the CD36 promoter STAT binding site abolished

increased CD36 expression mediated by cholesterol crystals (119).

Induction of CD36 expression by oxLDL, like fatty acids, has

been shown to be due to the activation of PPARg (108, 109). OxLDL
and its components linoleic acid, 9-HODE and 13-HODE, were

established as potent activators of PPARg activity (108).

Atherogenic macrophage expression of CD36 is thus perpetuated

by a cycle in which oxLDL drives its own uptake through

internalization of PPARg ligands and activators, 9-HODE and 13-

HODE, which upregulate expression of CD36. Significantly,

TREM2 has been shown to also impact the PPARg pathway, and

this may underlie the TREM2-CD36-dependent transition to foamy

macrophages. TREM2 was shown to inhibit p38 phosphorylation,

resulting in reduced downstream phosphorylation of cytoplasmic
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PPARg (45). As a result, there was increased transit of PPARg to the
nucleus which increased the transcription of CD36, promoting

cholesterol crystal, oxLDL and fatty acid uptake.

The liver X receptor (LXR) and RXR heterodimer is another

critical regulator of CD36 in macrophages, with significant

implications for cholesterol metabolism, inflammatory responses

and atherosclerosis (120). Upon activation by oxysterols found in

oxLDL, LXR/RXR upregulates CD36 and other genes involved in

lipid handling, enhancing cholesterol efflux and reducing

intracellular lipid accumulation. Impaired LXR/RXR signaling

contributes to foam cell formation and plaque progression. The

LXR/RXR pathway’s influence on CD36 expression underscores its

role in balancing pro- and anti-inflammatory responses in

macrophages. The importance of this pathway in the regulation

of CD36 and other cholesterol-handling genes was recently

demonstrated. Myeloid LXR deficiency was shown to dramatically

increase atherosclerosis, with increased numbers of TREM2 foamy

macrophages (121). Single-cell RNA sequencing uncovered that the

lack of LXR altered the expression of expected TREM2 target genes:

there was a marked switch to a pro-inflammatory phenotype, with

reduction of cholesterol-handling and efflux proteins, promoting

increased atherosclerosis (121). These studies show the intersection

of TREM2 with already established pathways of CD36 expression.

Not only does oxLDL drive an increase CD36 expression, it also

contributes to the reprogramming of macrophages in atherosclerosis.
FIGURE 5

Myeloid-derived suppressor cells (MDSCs). Polymorphonuclear (PMN)-MDSCs and monocytic (MO)-MDSCs are derived from a common bone
marrow precursor (1st cell on left). They are then educated in the tumor microenvironment (TME), dependent upon the factors and products
expressed. Both are dependent upon fatty acid oxidation (FAO) as a primary energy resource. CD36 expression supports the suppressive phenotype
through uptake and delivery of fatty acids (FA), which are stored in lipid droplets (LD). PMN-MDSCs express reactive oxygen species (ROS), myeloid
peroxidase (MPO), transforming growth factor b (TGFb) and vascular endothelial growth factor (VEGF), and other genes downstream of signal
transducer and activator of transcription 1, 3 and 6. They are immunosuppressive in an antigen-dependent manner. They upregulate fatty acid
transport protein 2 (FATP2) to supplement FA uptake by CD36. MO-MDSCs have greater lipid droplet accumulation via CD36 and potent, non-
antigen dependent immunosuppressive activity. They produce IL6, inducible nitric oxide synthase (iNOS), transforming growth factor b (TGFb),
tumor necrosis factor and programmed cell death protein-1 (PD-1), which interacts with programmed cell death-ligand 1 on immune cells to exert
immunosuppressive control. CD36 expression is induced in a STAT3/5 dependent manner. The figure was drawn by Figdraw (www.figdraw.com).
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In a recent report, oxLDL was shown to stimulate increased

intracellular ROS in a CD36-dependent manner, resulting in a

change in macrophage phenotype as a result of ROS-dependent

nuclear factor-kappa B (NFkB) activation (122). Mechanistically,

CD36 altered macrophage metabolism by shifting fatty acids away

from oxidation and instead into the mitochondria, where they

accumulated, leading to ROS generation (122). The resulting

macrophage resembled a pro-inflammatory, pro-atherosclerotic

M1 subtype.

While there is utility in characterizing macrophage phenotypes,

it is also important to understand that in different scenarios, genes

such as CD36 may be more or less expressed but retain significant

roles. M1 macrophages may have lower levels of CD36 expression

than M2, but still have differentiating effects. The nuclear factor

kappa B (NFkB) pathway, a master regulator of inflammation, in

general, has been found to play an opposing role in the regulation of

CD36 (115, 123, 124). NFkB is typically activated in M1

macrophages, characterized by a pro-inflammatory phenotype.

Activation of NFkB by pro-inflammatory stimuli such as LPS,

tumor necrosis factor a, and IL1b leads to the translocation of

NFkB subunits (p65 and p50) to the nucleus, where they promote

the transcription of pro-inflammatory genes while inhibiting CD36

expression (125). This suppression aligns with the inflammatory

role of M1 macrophages, which prioritize pathogen defense and

tissue destruction over lipid handling. This pathway is also relevant

in tumor microenvironments, where M1 macrophages are involved

in tumor suppression and immune activation (126–128).

Conversely, the STAT6 pathway, activated by IL4 and IL13,

promotes M2 macrophage polarization and upregulates CD36,

enhancing lipid uptake and supporting tissue repair and anti-

inflammatory functions (129–131). This pathway is particularly

relevant in fibrotic diseases, such as pulmonary fibrosis, where

CD36-mediated lipid metabolism drives macrophages toward a

reparative but pro-fibrotic phenotype.

The complexity of the tumor microenvironment presents a

challenge to isolate specific signals that upregulate CD36 expression

and stimulate immunosuppressive properties. A multitude of signaling

pathways, including Janus kinase (JAK)/STAT, toll-like receptor and

NFkB, mitogen-activated protein kinase, as well as those downstream

of cytokines, chemokines, growth factors, tumor-secreted products and

metabolites exist. It is much more probable that multiple pathways

regulate the function of CD36 in these circumstances.

A distinctive trait of many solid tumors is hypoxia. Multiple

reports have shown that hypoxia increases CD36 expression. In

macrophages, upregulation of CD36 was dependent upon hypoxia-

inducible factor (HIF) 1a and p38 (132). Sequencing of the CD36

promoter confirmed a HIF1 binding site (133). Lactic acid

production and an acidic milieu are other characteristics of solid

tumor environments. In hepatocellular carcinoma, CD36

expression in tumor cells was positively associated with increased

glycolysis and lactic acid production (134). In this report, CD36 was

observed to induce glycolysis through mTOR and the activation of

the Src/PI3K/AKT signaling axis. Whether this is true of

macrophage CD36 in TAMs and MAMs requires further study.

Oxidative stress is a hallmark of a number of diseases, including

cancer and stroke. The ischemic brain after experimental injury
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shows an influx of monocyte-derived macrophages, and

interestingly, compared with the uninjured hemisphere, these

cells upregulate CD36 expression (37). Stroke-induced increased

CD36 mRNA levels correlated with increased expression of

lysosomal acid lipase, an M2 macrophage marker. Analogously,

oxidative stress in the TME may upregulate macrophage CD36.

HIF1-dependent upregulation of CD36 also resulted in increased

uptake of oxLDL, which is likely present as a result of extensive ROS

found in the TME (135). This then could trigger the feed-forward

loop outlined previously, involving PPARg and its lipid ligands.

The pathways responsible for CD36-dependent suppressive

effects of macrophages in the TME have not been elucidated;

however, there has been extensive study of the role of CD36 in the

suppression of T cell anti-tumor responses (136). The presence of

cholesterol in the TME was shown to increase CD36 expression by

CD8+ tumor-infiltrating lymphocytes in human cancer, and this led

to increased lipid uptake, accumulation, and peroxidation (137, 138).

Cholesterol and lactic acid, as well as oxidized phospholipids, were

shown to lead to CD36-dependent CD8+ tumor-infiltrating

lymphocyte dysfunction (137–139).

Mechanistically, increased CD36 expression in human andmurine

CD8+ tumor-infiltrating lymphocytes correlated with decreased

cytokine production and impaired antitumor activity. The latter was

associated with increased lipid peroxidation, intracellular iron and

ROS levels, and ferroptosis (136). Ferroptosis, an iron-dependent

mechanism of cell death that targets mitochondria, results from a

decrease in the activity of glutathione peroxidase 4, which also

suppresses the metabolism of arachidonic acid, contributing to

phospholipid peroxidation (140). Polyunsaturated fatty acids, which

are abundant in the TME, reduce cytokine production and enhance

ferroptosis, and this is dependent on the expression of CD36 (136).

What remains unknown is whether these same pathways lead to

CD36-dependent suppressive functions in other cell types.
4 Concluding remarks and
future directions

While the transcriptome defines gene expression and cellular

phenotype to a large extent, it has become more increasingly

apparent that macrophage subtypes develop their functionality as

a result of environmental cues and moreover, retain the ability to

metamorphose. A predominant determining and sustaining factor

in phenotypic outcome is cellular metabolism, which is essentially

entwined with functional gene and biomarker expression. The

microenvironment, oxygen-rich or poor, characterized by

apoptotic or necrotic cells and tissue, and encompassing other

cells, secreted products, bioactive mediators and waste, contribute

to the spectrum of macrophage populations. Moving forward, the

challenge will be to harness this knowledge to specifically

reprogram macrophages in disease settings to overcome

suppressive and loss-of-function states. CD36, an essential

element in fatty acid and lipid uptake and metabolism, and in

functions aligned with reparative, homeostatic and suppressive

macrophage phenotypes, may be an attractive target.
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