
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Dunfang Zhang,
Sichuan University, China

REVIEWED BY

Sweta Ghosh,
University of Louisville, United States
Liliana C. Patiño Molano,
National Institute of Dental and Craniofacial
Research (NIH), United States

*CORRESPONDENCE

Heidi Noels

hnoels@ukaachen.de

Ulrike Schulze-Späte

ulrike.schulze-spaete@med.uni-jena.de

RECEIVED 23 July 2024

ACCEPTED 06 November 2024
PUBLISHED 09 December 2024

CITATION

Schulze-Späte U, Wurschi L,
van der Vorst EPC, Hölzle F,
Craveiro RB, Wolf M
and Noels H (2024) Crosstalk
between periodontitis and
cardiovascular risk.
Front. Immunol. 15:1469077.
doi: 10.3389/fimmu.2024.1469077

COPYRIGHT

© 2024 Schulze-Späte, Wurschi, van der Vorst,
Hölzle, Craveiro, Wolf and Noels. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 09 December 2024

DOI 10.3389/fimmu.2024.1469077
Crosstalk between periodontitis
and cardiovascular risk
Ulrike Schulze-Späte1*, Ludwig Wurschi1,
Emiel P. C. van der Vorst2,3,4,5, Frank Hölzle6,
Rogerio B. Craveiro7, Michael Wolf7 and Heidi Noels2,3,8*

1Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital
Jena, Jena, Germany, 2Institute for Molecular Cardiovascular Research (IMCAR), Uniklinik RWTH
Aachen, RWTH Aachen University, Aachen, Germany, 3Aachen-Maastricht Institute for Cardiorenal
Research (AMICARE), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany,
4Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany,
5Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich,
Munich, Germany, 6Department of Oral and Maxillofacial Surgery, School of Medicine, Uniklinik RWTH
Aachen, Aachen, Germany, 7Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen,
Aachen, Germany, 8Biochemistry Department, Cardiovascular Research Institute Maastricht (CARIM),
Maastricht University, Maastricht, Netherlands
Recent demographic developments resulted in an aged society with a rising

disease burden of systemic and non-communicable diseases (NCDs). In

cardiovascular disease (CVD), a NCD with high morbidity and mortality, recent

preventive strategies include the investigation of comorbidities to reduce its

significant economic burden. Periodontal disease, an oral bacterial-induced

inflammatory disease of tooth-supporting tissue, is regulated in its prevalence

and severity by the individual host response to a dysbiotic oral microbiota.

Clinically, both NCDs are highly associated; however, shared risk factors such

as smoking, obesity, type II diabetes mellitus and chronic stress represent only an

insufficient explanation for the multifaceted interactions of both disease entities.

Specifically, the crosstalk between both diseases is not yet fully understood. This

review summarizes current knowledge on the clinical association of periodontitis

and CVD, and elaborates on how periodontitis-induced pathophysiological

mechanisms in patients may contribute to increased cardiovascular risk with

focus on atherosclerosis. Clinical implications as well as current and future

therapy considerations are discussed. Overall, this review supports novel

scientific endeavors aiming at improving the quality of life with a

comprehensive and integrated approach to improve well-being of the aging

populations worldwide.
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Introduction

Within the ageing global population, the disease burden

of systemic and non-communicable diseases (NCDs) is increasing

(1, 2). Cardiovascular disease (CVD) represents most cases in this

context and it is globally the leading cause of death, being

responsible for 32% of all global deaths in 2019 (3). Hence,

defining effective ways for prevention and treatment of CVD is of

great importance. This often involves detailed analysis of local and

systemic tissue pathogenesis in association with the disease. Among

the diseases associated with CVD, periodontitis (PD) is particularly

common. PD is a chronic inflammatory disease affecting the tooth-

supporting tissues (4) and severe PD is present in approximately

19% of the global population older than 15 years, representing more

than 1 billion cases, which makes it one of the most common NCDs

(5). By itself, PD has been associated with all-cause mortality as well

as with mortality following cardiovascular events (6). By

researching influencing factors, the noticeable association of both

diseases has been continually established and will be described in

detail in this review. Specific focus will be on the missing links of

this multifaceted crosstalk that potentially could affect outcome,

address therapeutic resistance and open novel avenues for

preventive measures in the aging population.
Periodontitis: pathophysiology

General pathophysiology

PD is a disease of the tissues attaching the teeth, where dental

plaque accumulation and the propagation of bacterial key

pathogens within an oral dysbiosis provoke an escalated

inflammatory host response and impaired resolution of

inflammation, leading to periodontal tissue damage and
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subsequent loss of alveolar bone and teeth (7–10) (Figure 1). It is

part of the spectrum classifying inflammatory diseases of the

periodontium categorized in a collaborative work by the

American Academy of Periodontology (AAP) and European

Federation of Periodontology (EFP) (11, 12). Its characteristic

clinical symptoms comprise gingival bleeding, attachment loss,

dental hypermobility, halitosis and subsequent loss of alveolar

bone and teeth (11). Besides these local symptoms, PD leads to

systemic consequences (10) and its connection to conditions such as

type II diabetes mellitus (T2DM), rheumatoid arthritis, obesity and

CVD has been of rising interest in the past decades CVD (13–15).

Overall, PD has become a global health problem with an economic

burden due to the global demographic development with a growth

in the aging population and subsequent increasing prevalence in the

elderly (16, 17).
Local pathophysiology

The tissue destructive process of PD is associated with the

establishment of a plaque-induced dysbiosis (18), subgingival

microbial communities, and the presence of responsive immuno-

inflammatory infiltrates (14). Opposite to PD as a tissue destructive

disease of tooth-supporting tissue, gingivitis is a reversible

inflammatory condition of the marginal gingival tissue attachment,

which results from plaque accumulation or manifestation of an

underlying systemic disease (19). In gingivitis, the inflammatory

response to bacterial plaque is contained within epithelium and

connective tissue without affecting deeper bony compartments. The

prevalent aetiological path is a lack in oral hygiene and insufficient

plaque removal from the tooth surfaces and their surrounding

junctional gingival tissue (20). This plaque provides a substrate for

a variety of bacterial species (21, 22) that are abundant in a planktonic

form within the saliva to colonize these dental surfaces and form a
FIGURE 1

Development and pathophysiology of periodontitis. Plaque deposited on our teeth provides a substrate for a variety of bacterial species. A lack in
oral hygiene and insufficient plaque removal from the tooth surfaces and their surrounding junctional gingival tissue can trigger the development of
gingivitis. Inflammation can then further progress towards the development of mild to severe periodontitis paralleled by establishment of a dysbiotic
biofilm of inflammophilic bacteria. Initially, the periodontal tissue is infiltrated by neutrophils, T-lymphocytes and mononuclear cells such as
macrophages, followed by mainly plasma cells in a later stage. These plaques can potentially expand into a destructive advanced lesion inducing loss
of periodontal ligament and alveolar bone and thus causing the characteristic clinical symptoms of periodontitis.
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matrix that provides protection against elution, phagocytosis,

mechanical stress and antimicrobial salivary factors (23). The oral

cavity is home to approximately 700 predominant bacterial taxa that

only partly have been cultivated in vitro (24).

Gingivitis can, however, be both the precursor, risk factor and

accompanying symptom of a later PD (14). Within the maturing

biofilm, potentially pathogenic species establish themselves and

elucidate a destructive inflammatory response by the immune

system. Bacterial presence is required for PD pathogenesis in the

susceptible host, however, predominantly an ineffective and

dysregulated host response to the microbial challenge drives

periodontal tissue damage (24). Non-resolving inflammation and

the selective support of dysbiotic inflammophilic communities

result in a vicious cycle that is the hallmark of chronic PD and its

associated tissue loss (14). In contrast, a tissue-protective immune

response fosters balanced host-microbe interactions resulting in

tissue homeostasis within a healthy periodontium. Compared to

gingivitis or PD, lower numbers of neutrophils as the early

responder cells are present together with a small population of gd
T cells and innate lymphoid cells (25, 26).

To describe the developmental process of PD and its associated

cellular cascades, Page and Schroeder first established a progressive

model, which subsequent studies used to expand on (27, 28).

Thereby, PD correlates with an increasingly complex cellular

infiltrate- with neutrophils dominating an initial lesion

characterized by beginning degradation of perivascular collagen

and an exudative vasculitis. Neutrophils arrive from the circulation

to the afflicted site and complex molecular interactions with the

endothelium involve distinct chemokine- and selectin-induced

signaling and adhesive b2 integrins cascades (14). Furthermore,

pro-inflammatory mediators such as arachidonic acid derivatives

[e.g. Prostaglandins and leukotrienes (29)], and complement

activation products, e.g. anaphylatoxins C3a and C5a, can influence

neutrophil extravasation and drive pathogenesis of PD (30).

Subsequently, inflammation progresses into an early lesion, where

periodontal tissue is infiltrated by T-lymphocytes and antigen-

presenting cells such as macrophages and dendritic cells (DCs).

Ultimately, B and plasma cells dominate the periodontal infiltrate

in a fully established lesion, although bone loss does not commence

yet (14). This established lesion may remain stable for a prolonged

period, but it potentially expands into a destructive advanced lesion

inducing loss of periodontal ligament and alveolar bone - thus

causing the characteristic clinical symptoms of PD (11, 31).
The oral microbiome

Previous analysis of the oral microbiome in PD patients

involved systematization of the bacterial communities based on

adaptation to aerobic versus anaerobic conditions and bacterial

virulence factors during different stages of disease progression (32).

With mineralization of the plaque and its progression into the

sulcus, the inflammatory focus moves into the deepening gingival

crevice, which corresponds to establishment of an increasingly

anaerobic milieu. Thus, presence of Streptococcus species such as
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S. mitis, S. oralis, S. intermedius and S. gordonii, followed by

Actinomyces naeslundii and odontolyticus, Veillonella parvula and

Fusobacterium nucleatum and subsequently Porphyromonas

gingivalis (P. gingivalis), Treponema denticola and Tannerella

forsythia together with Aggregatibacter actinomycetemcomitans

(A. actinomycetemcomitans) were described in decreasing order.

However, recent findings focused on the identification of specific

key pathogens (e.g. P. gingivalis) within the polymicrobial

community and the establishment of dysbiosis, an alteration in

abundance and influence of individual species within the biofilm

(14). Keystone pathogens, assisted by accessory pathogens in the

provision of nutrients and colonization, can initially escape host

immunity, which allows them to establish a dysbiotic microbiota

that also includes commensal-turned pathobionts. Ultimately,

polymicrobial dysbiotic communities over-activate the

inflammatory host response and periodontal tissue loss progresses.
From local to systemic inflammation

Additionally, generalized spread of causative bacteria, bacterial

products and mediators of non-resolving inflammatory pathways

could compromise systemic tissue homeostasis. Hence, locally

produced pro-inflammatory cytokines such as tumor-necrosis

factor alpha (TNFa), interleukins (IL)-1 or IL-6 and prostaglandin

E2 could move via systemic circulation to distant organs (33) and

contribute to cellular disbalance far away from the side of infection.

In general, this supports PD`s crosstalk and association with other

chronic systemic diseases such as diabetes, obesity, cardiovascular

and musculoskeletal diseases (7, 34). The immune reaction shows

great individual variability (35) and it is influenced bymultiple factors

such as genetic, epigenetic, environmental (e.g. smoking, stress, diet)

factors, aging and underlying diseases such as T2DM (36), Papillon-

Lefèvre syndrome (37), osteoporosis, obesity or specifically

atherosclerosis and CVD (13–15).
Cellular and molecular players of the
involved immune response

Certain cellular signaling cascades play a special role in the

immune reaction. At first, a reaction of the innate immune system is

occurring, where bacteria are identified by certain pathogen-

associated molecular patterns via pattern-recognition receptors

such as toll-like receptors (TLR) of DCs or macrophages. These

antigen-presenting cells release a variety of pro-inflammatory

cytokines and chemokines and activate surrounding periodontal

ligament fibroblasts, thrombocytes and polymorphonuclear

leukocytes. The developing cytokine cascade, comprising factors

like TNF-a, IL-1b, IL-6, IL-8, IL-12, IL-17 or Prostaglandin E2,

amplifies the immunological response (38). TNF-a and IL-1b cause

a disinhibition of nuclear factor kappa B (NF-kB), a transcription

factor promoting the transcription of pro-inflammatory

genes. Subsequently this leads to the expression of matrix

metalloproteinases like Collagenase 1 (MMP-1) by macrophages
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and fibroblasts, Collagenase 2 (MMP-8) by macrophages,

macrophage elastase (MMP-12) by T-cells, neutrophils,

macrophages and fibroblasts, Gelatinase A (MMP-2) by

fibroblasts and Gelatinase B (MMP-9) by neutrophils (39). These

MMPs are responsible for the degradation of the extracellular

matrix when the resolution of inflammation fails and a chronic

condition develops. The IL-17-stimulated expression of the receptor

activator of NF-kB ligand (RANKL) by osteoblasts and periodontal

ligament cells leads together with macrophage colony-stimulating

factor to the activation, fusion and differentiation of osteoclast

progenitor cells (40). RANKL is also produced by activated T and

B lymphocytes in the inflamed periodontal tissue. Consequently,

the balance of osteolysis and osteogenesis is displaced and results in

alveolar bone resorption (41). Of note, neutrophils not only support

acute but drive chronic inflammation processes by recruiting and

stimulating Interleukin-17 release via Th17, CD4+ T helper cells

(42). The inflammatory response is counteracted by the network

activation of the inflammation-resolution response that is

promoted by lipid-metabolic factors such as lipoxins, protectins,

maresins, 4-hydroxydocosahexaenoic acid (4-HDHA), 17-HDHA

or resolvin E1 (43, 44). For instance, the application of resolvin E1

has been shown to reduce C-reactive protein (CRP), intima-media

ratio, leukocyte infiltration, formation of arteriosclerotic plaques,

and periodontal inflammation in general (45). Furthermore,

immunomodulatory interventions support direct involvement of

additional lipid-metabolic factors such as fatty acids and associated

ceramides (9), diacylglycerols, triglycerides and stress-reducing

lipokines (1,2-dioleoyl-sn-glycero-3-phospho-(1’-myo-inositol)

[PI(18:1/18:1)]) (46) in periodontal cellular cascades impacting

tissue homeostasis and alveolar bone microarchitecture (9).

In summary, periodontitis involves a chronic oral microbial

dysbiosis and overactivation of the host immune response, which

ultimately result into a locally destructive lesion triggering a

progressive loss of periodontal tissue as well as chronic

systemic inflammation.
Cardiovascular disease and
atherosclerosis: pathophysiology

General pathophysiology

Atherosclerosis is an important underlying pathology of

coronary artery syndrome and refers to the development and

progression of lipid-rich, inflammatory lesions in the arterial wall

(Figure 2). By severely reducing the vessel lumen or by inducing

thrombosis through atherosclerotic plaque rupture or erosion,

atherosclerosis can ultimately trigger acute coronary syndrome,

myocardial infarction and sudden cardiac death. Mechanistically,

atherosclerosis is driven by a combination of hyperlipidemia [with

high levels of low-density lipoprotein-cholesterol (LDL-C) and

triglycerides but reduced levels of high-density lipoprotein-

cholesterol (HDL-C)] and systemic inflammation. Triggered by

initial endothelial dysfunction - characterized by endothelial
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inflammation and increased endothelial permeability -, LDL and

inflammatory leukocytes gradually accumulate into the subintimal

space of the arterial wall, where they drive vascular inflammation

(47). The pro-inflammatory milieu in the vasculature triggers the

oxidation of LDL to oxidized LDL (oxLDL), which drives

macrophage foam cell formation by oxLDL uptake and pro-

inflammatory responses in both macrophages and endothelial

cells (47). Also, polymorphonuclear granulocytes or neutrophils

infiltrate the vascular wall, where they elucidate inflammatory

responses by secreting pro-inflammatory mediators as

myeloperoxidase (MPO), produce reactive oxygen species (ROS)

and contribute to the recruitment and activation of monocytes/

macrophages by secreting chemotactic granule proteins as well as

the production of neutrophil extracellular traps (NETs) (48). Lipid

overload triggers macrophage death and the formation of necrotic

cores with high-inflammatory potential. Smooth muscle cells

(SMCs) can migrate from the media into the atherosclerotic

lesion to form a protective fibrous cap. However, as for

macrophages, lipid loading can trigger a phenotyping switching of

SMCs, which increases their inflammatory potential and can induce

SMC apoptosis and necrosis (48).

Beyond neutrophils and monocytes/macrophages, also DCs and

T-lymphocytes influence atherosclerosis. Among T-cells, Th1 and

Th17 cells drive atheroprogression, whereas regulatory T-cells

(Tregs) are atheroprotective (47, 49). Also, DCs are found in

atherosclerotic lesions, where they contribute to pro-

inflammatory cytokine production and Th1 cell polarization (47).

Upon atherosclerotic plaque progression, the production of

collagenases and other enzymes degrading extracellular matrix

proteins - for example neutrophil elastase produced by

neutrophils - triggers the degradation of the fibrous cap, making

the plaque increasingly prone to rupture. In such case, the content

of the atherosclerotic lesion is exposed to the blood stream, which

triggers instant thrombosis (47). On the other hand, plaque

disruption with subsequent thrombosis can also be caused by

superficial erosion of atherosclerotic lesions, which - relatively to

plaque rupture - is increasing in importance due to the improved

success of controlling LDL levels in CVD patients (50). Clinical data

suggest that plaque erosion may account for around one third of

acute coronary syndrome cases (51, 52). Mechanistically, plaque

erosion is triggered by a disturbed blood flow triggering TLR2-

mediated activation, death and desquamation of the endothelium,

followed by neutrophil adhesion and NET formation (53). Plaque

erosion occurs also in plaques that have a relatively low lipid-

content and inflammatory profile (52).
Endothelial dysfunction, systemic
inflammation and innate immune
activation as link between CVD and
its comorbidities

All combined, this highlights the crucial contribution of

endothelial dysfunction and systemic inflammation to

atherosclerosis and CVD risk, and explains why comorbidities that
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impact on each of these processes, also enhance cardiovascular risk.

This has for example been shown for chronic kidney disease (CKD),

which elicits endothelial dysfunction and a chronic, low-grade

systemic inflammation along with increased cardiovascular risk

(54–57). Similarly, T2DM as important risk factor for CVD triggers

endothelial dysfunction, systemic inflammation and oxidative stress

(58) and also caloric intake and obesity induce an increased

mobilization of monocytes (59, 60) and neutrophils (59) into the
Frontiers in Immunology 05
periphery, where these myeloid cells contribute to increased

inflammatory and cardiovascular risk. In recent years, an

increasing number of studies revealed that inflammatory triggers

can prime hematopoietic stem and progenitor cells (HSPCs) in the

bone marrow for adaptation towards increased myelopoiesis, a

pathological mechanism that has now been recognized to crucially

contribute to increased cardiovascular risk induced by cardiovascular

risk factors like obesity, hyperlipidemia, chronic stress or sleep
FIGURE 2

Development and pathophysiology of atherosclerosis. Atherosclerosis is a progressive disease driven by lipid deposition and inflammation into the
arterial wall. Initial endothelial dysfunction triggers LDL leakage in the vessel, where it is oxidized to oxLDL. Also, it induces the recruitment and
adhesion of leukocytes (neutrophils, monocytes, T-lymphocytes) and their migration into the vascular intima. Here, oxLDL drives monocyte-derived
macrophages to lipid uptake and foam cell formation, triggering a pro-inflammatory profile and ultimately, lipid overload and cell death. Neutrophils
elucidate inflammatory responses by secreting pro-inflammatory mediators as MPO, produce ROS and contribute to the recruitment and activation
of monocytes/macrophages by secreting chemotactic granule proteins as well as the production of NETs. Vascular SMCs migrate from the vessel
wall into the developing atherosclerotic lesion, where they form a protective fibrous cap. Upon plaque progression and increasing inflammation, the
fibrous cap thins, which makes the atherosclerotic plaque prone to rupture and trigger thrombus formation. LDL, low-density lipoprotein; MPO,
myeloperoxidase; NETs, neutrophil extracellular traps; oxLDL, oxidized LDL; ROS, reactive oxygen species; SMCs, smooth muscle cells.
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interruption, amongst others (61). For example, in obesity, adipose

tissue-derived S100A8/A9 triggers IL-1b production by adipose tissue
macrophages, which then signals to IL-1 receptor-expressing bone

marrow myeloid progenitor cells to increase neutrophil and

monocyte production (59). Chronic stress triggers sympathetic

nervous system activation and noradrenaline production, which

signals to bone marrow niche cells over the b3 adrenergic receptor

to reduce CXCL12 production in the bone marrow and increase

HSPC proliferation, resulting in a higher production of monocytes

(monocytosis) and neutrophils (neutrophilia) (62). Of note, HSPCs

can retain this capacity for increased myelopoiesis for a prolonged

time even after resolution of the initial trigger. This process - referred

to as ‘trained myelopoiesis’ - has now been acknowledged as a very

important aspect of maladaptive innate immune adaptation.

Mechanistically, it can be induced by epigenetic changes in HSPC

triggering bone marrow memory. For example, hyperlipidemia was

shown to trigger long-lasting NLRP3-dependent transcriptional and

epigenetic reprogramming of granulocyte-monocyte progenitor cells

with increased responsiveness to inflammatory triggers (63).

In summary, hyperlipidemia, endothelial dysfunction, systemic

inflammation and innate immune activation are important drivers

of atherosclerosis.
Clinical association of periodontitis
and atherosclerosis

The association between cardiovascular and periodontal

disease is supported by an increasing evidence reviewed by Sanz

et al. in a consensus report based on a collaborative work of AAP

and EFP (64). When PD is present, the risk to develop CVD is

generally increased, being possibly raised by 25%, and the likelihood

to suffer particularly from a myocardial infarction (MI) or to

develop a first MI is elevated too (65–67).

Furthermore, edentulism as a severe symptom of chronic PD is

associated with CVD as well (6, 68, 69), however other causes of

edentulism besides PD exist. On the contrary, a comparatively lesser

degree of tooth loss correlates favorably with systolic blood

pressure, glomerular filtration rate, levels of blood glucose or

LDL-C, waist circumference and high-sensitivity C-reactive

protein (hs-CRP), risk factors and parameters of CVD and

metabolic syndrome (70). The degree of severity, represented by

the stage of PD, also associates with the risk for CVD (71) and older

patients with CVD reversely show signs of periodontal infection

(72). Furthermore, patients suffering heart failure, a pro-

inflammatory syndrome with multi-organ involvement caused by

the inability of the heart to meet the metabolic demands of the body,

exhibit more severe periodontal disease associated with increased

bone turnover markers when compared with control patients (73).

As a limitation of these clinical studies, the co-existence of

periodontitis and CVDmay be triggered by shared risk factors, such

as smoking, obesity, T2DM and chronic stress. These factors

influence the progression of both PD (14) and atherosclerotic

CVD (74), and may thus be potential confounders in the

association of both diseases.
Frontiers in Immunology 06
From shared risk factors to PD-
induced pathophysiological effects
contributing to atherosclerotic risk

However, in addition to a simultaneous development due to

shared risk factors, PD pathogenesis could also by itself be responsible

for the detected associations since the oral dysbiosis could influence

cardiovascular health and existing atherosclerotic lesions directly and

indirectly, as discussed below and visualized in Figure 3.
Bacteraemia

Periodontal tissues are intensely perfused and the hyperaemia

in case of inflammation could cause both clinically visible bleeding

on probing and bacteraemia, where microbes originating in the

dental biofilm enter the bloodstream through vascular lesions. In

patients with PD, nearly half of them showed bacteraemia after

therapeutic periodontal treatment (75). In this way, periodontal

bacteria can spread throughout the body, where they can promote

inflammatory processes by disrupting immune surveillance

mechanisms of the host, as discussed in detail elsewhere (4, 76, 77).

For example, the prominent parodontopathogens A.

actinomycetemcomitans and P. gingivalis could be detected

within7nbsp;atherosclerotic plaques and viable specimens of A.

actinomycetemcomitans and P. gingivalis have been isolated from

arteriosclerotic tissue (78–80). CVD patients showed a comparatively

more extensive and diverse microbial infection of atheromatous

plaques in case of comorbidity with PD (81). Also, PD altered the

gut microbiota in an atherosclerosis mouse model and in parallel

increased intestinal permeability and atherosclerosis severity,

suggesting a role for altered gut microbiota in the link between PD

and atherosclerosis (82).
Systemic inflammation

Furthermore, the quality of a systemic inflammatory condition

becomes clear when leukocyte numbers and levels of pro-

inflammatory markers are determined. Patients with PD

displayed increased leukocyte numbers in blood (83) and a large

prospective study with a follow-up of 11 years revealed that white

blood cell count was longitudinally associated with periodontal

disease severity (84). Furthermore, serum concentrations of CRP

were elevated in patients affected by PD (85), but also in cases of PD

and acute coronary syndrome (86). Moreover, interleukin 6 (IL-6),

being a pro-inflammatory cytokine inducing CRP production and

mediator of the acute phase response to infection, has been

described to increase in case of PD, which might influence

comorbidities (87–89). Levels of hs-CRP are used in the clinic to

quantify cardiovascular risk that is remaining after intensive lipid-

lowering therapy, being referred to as ‘residual inflammatory risk’

(90), and high hs-CRP levels in patients without prevalent CVD

were shown to be associated with future adverse vascular events

(91). Also, in the CANTOS trial, MI patients that showed high levels
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of IL-6 despite successful IL-1b blocking suffered from a significant

residual inflammatory risk (92), suggesting an important

contribution of IL-6 to future cardiovascular events.

Besides CRP, serum amyloid A (SAA) is an important acute

phase protein. It supports the cellular inflammatory reaction by its

chemotactic function for neutrophils and monocytes, it promotes

production of pro-inflammatory cytokines via TLR2 signaling in

human gingival fibroblasts and inhibits neutrophil apoptosis (93,

94). Thus, as its involvement in periodontal inflammation has been

described (95, 96), increased levels of SAA in serum and gingival

crevicular fluid are highly associated with chronic PD (97, 98).

Results from an in vitro study on human aortic endothelial cells

suggest the SAA-induced expression of endothelial adhesion

molecules through TLR2 receptors as a possible mechanism

linking PD and atherosclerosis (99). In patients suffering from

comorbid CVD and PD, SAA levels have been found to be

significantly increased, along with an accumulation of SAA and

CRP in samples from carotid atheroma (100). The furthermore

noted interactions between SAA and HDL indicate that SAA is

involved in lipoprotein regulation, which has been identified as an

important element in the pathogenesis of atheromata (101–103).
Innate immune cell activation

Peripheral blood mononuclear cells from PD patients showed

increased expression of pro-inflammatory molecules (such as TNF-

a and CCR2), as revealed by single-cell RNAseq (104). Monocytes

also demonstrated long-term activation upon exposure to P.

gingivalis, with a prior microbial infection triggering increased

production of IL-6 and TNF-a upon a secondary inflammatory

stimulus six days later (83). Furthermore, neutrophils from PD

patients showed a hyperreactivity upon stimulation with either LPS

or P. gingivalis, with increased secretion of IL-8, IL-6, TNF-a and

IL-1b (105), increased ROS production in basal conditions (106) as

well as upon stimulation of the FcgR (107) and an increased

interaction with endothelium (106). Such increased FcgR-
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triggered ROS production could also be induced upon priming

healthy neutrophils with type I interferon (IFN). In this context, PD

patients revealed enhanced circulating levels of IFN-a and an

increased expression signature of type I IFN-induced genes in

peripheral blood neutrophils. Furthermore, periodontitis

treatment could reduce IFN-a plasma levels, and FcgR-stimulated

neutrophil ROS production to levels observed in controls (108).

PD patients also show an increased frequency of myeloid

dendritic cells (myeloid DCs) in blood, and P. gingivalis could

stimulate monocyte differentiation to immature mDCs in vitro

(109). Myeloid DCs from patients with chronic PD as well as

P. gingivalis-infected DCs in vitro display an upregulated

expression of the homeostatic chemokine receptor CXCR4 but a

downregulation of CCR7. Whereas CCR7 confers homing capacity of

DCs to secondary lymphoid organs via CCL19, CXCR4-positive cells

migrate towards the CXCR4 ligand CXCL12, which was shown to be

increasingly expressed by P. gingivalis-infected endothelium in vitro

(110). Also, P. gingivalis-infected DCs showed increased expression of

the chemokine receptor CCR2 (109), an enhanced inflammatory

profile (e.g. with increased expression of C1q, CXCL16 and HSP60/

70), a higher secretion of atherosclerotic plaque-destabilizing MMP-9

(109) as well as a downregulated apoptosis and autophagy (111).

Combined, this may contribute to enhanced microbial dissemination,

atherosclerotic plaque recruitment and inflammatory capacity.

Myeloid DCs infected by P. gingivalis have also been detected in

atherosclerotic lesions within coronary artery biopsies of PD patients

with coronary artery disease (109).
Hyperlipidemia

Patients with PD display increased levels of LDL, oxLDL and

triglycerides but reduced levels of HDL, as concluded from a prior

meta-analysis study (112). In addition, also structural modifications of

both HDL and LDL/VLDL indicative of more pro-inflammatory forms

of these lipoprotein particles have been identified in PD patients (113).

Post-translational modifications of lipoprotein particles have been
FIGURE 3

From shared risk factors to periodontitis-induced pathophysiological effects contributing to atherosclerotic risk. The co-existence of periodontitis
and atherosclerosis may be triggered by shared risk factors such as smoking, obesity, T2DM and chronic stress. However, the pathogenesis of
periodontitis could also by itself be responsible for the detected associations since the oral dysbiosis could influence cardiovascular health and
existing atherosclerotic lesions directly and indirectly. Involved mechanisms include bacteraemia, systemic inflammation and leukocytosis, innate
immune cell activation, hyperlipidemia, endothelial dysfunction and reduced vascular elasticity, thrombocyte activation as well as the formation of
neutrophil extracellular traps (NETs). For more details, see text.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1469077
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schulze-Späte et al. 10.3389/fimmu.2024.1469077
increasingly detected in different patient cohorts, including in patients

with severe CVD (114) and patients with chronic kidney disease (115).

Both in CVD and CKD, thesemodifications were able to turn LDL into

an even more atherogenic lipoprotein particle and modify HDL from a

cardioprotective into a detrimental molecule, which contributed to

increased cardiovascular risk (114–116).
Reduced vascular elasticity and
endothelial dysfunction

There are different possible parameters to assess cardiovascular

health and investigating how those are potentially affected by PD allows

to discern further connections, examples being an observed higher

systolic blood pressure in cases of tooth loss or an augmented

likelihood for hypertension in general (117, 118). Considering the

function of blood vessels, an association of PD and dysfunction of the

vascular endothelium as well as a sclerotization and increased thickness

of the intima and media of the carotid artery has been described

(119, 120). Further evidence exists for an increase in pulse wave velocity

accompanying PD, indicating a loss in vascular elasticity and thus an

increased risk of CVD (121, 122). The regenerative capacity of the

endothelium seems to be impaired by the systemic inflammation too:

The number of endothelial progenitor cells negatively correlates with

clinical parameters of periodontal health like number of teeth, probing

depth, bleeding on probing and clinical attachment loss (123).

Pathologically elevated serum levels of homocysteine are described as

a possible causal cofactor of endothelial damage and atherosclerosis

(124, 125). Hyperhomocysteinaemia has been found in cases of PD,

adding another possible path of cardiovascular damage linked to

periodontitis (126).
Thrombocyte activation and neutrophil
extracellular traps

The expression of CD40-ligand (CD40L) on the surface of

thrombocytes is promoted by pathogenic species, especially an

infection with P. gingivalis is associated with elevated levels of

CD40L through TLR 2 and 4 (127). The ligand of CD40 plays a

significant role in the development of atherosclerosis and the

disintegration of atherosclerotic plaques (128, 129). It enhances

haemostasis by stimulating the expression of tissue factor on

endothelial cells and macrophages. In addition, increased levels of

soluble CD40L associate with myocardial infarction and worsened

clinical outcome after acute ischemic stroke (130), making it a

potential biomarker for acute cardiovascular events (131).

Additionally, P. gingivalis infection promotes thrombocyte

aggregation by increasing platelet expression of P-selectin and

induces the formation of NETs (132). NETs emerge when

neutrophil granulocytes release chromatin and granule proteins

and they serve as an innate defense mechanism to catch bacteria,

hindering their sprawl and facilitating their exposure to

antimicrobial factors (133). Recent findings support a direct

interaction of parodontopathogenic species and their products

with NETs, possibly evading or neutralizing the antimicrobial
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potential of the latter. Several species including the potent triad of

P. gingivalis, Tannerella forsythia and Treponema denticola within

the red complex as well as A. actinomycetemcomitans and Prevotella

intermedia have been identified to produce DNAses which degrade

NETs (134–136). P. gingivalis, in particular, is able to citrullinate

NET proteins via a peptidylarginine deiminase, neutralizing their

positive charge and thereby their pathogen-binding property (137).

Despite their primary anti-infective purpose, NETs show possibly

detrimental effects too, for instance by promoting activation of

factor XII and thrombocytes and formation of atherosclerotic

plaques, specifically, if their presence is prolonged and they

remain in lesions for an extended period (138, 139). Patients with

PD showed increased concentrations of extracellular DNA,

nucleosomes and NET-associated myeloperoxidase (MPO) and

neutrophil elastase in saliva (140). Moreover, the decomposition

of NETs is impaired in patients with untreated PD (141) and,

conversely, is amplified after periodontal therapy (142).

Nevertheless, detailed information about their specific role in PD

and its systemic impact, also in relation to PD-associated CVD, is

still missing and requires further investigation.

All combined, these studies reveal an important impact of PD

on pathophysiological processes that drive the development and

progression of atherosclerotic CVD.
Animal studies support a contribution
of periodontal disease
to atherosclerosis

Combined PD-atherosclerosis model

Given the many confounding factors that can jointly influence

PD and atherosclerotic CVD, animal models are essential to

demonstrate a causal role of PD to atherosclerosis and to reveal

underlying pathophysiological mechanisms. In such animal models,

atherosclerosis models are combined with PD induced either by a

ligature around the posterior teeth (ligature-induced PD) or by oral

gavage with human periodontal pathogens, mostly P. gingivalis.

Although these models cannot reproduce the natural progression

of periodontitis in humans, they enable to investigate the

contribution of pathophysiological mediators to pathophysiological

mechanisms underlying periodontitis development and/or

progression. Overall, PD promoted atherosclerosis in experimental

models with mice (80, 143, 144), rabbits (145) as well as pigs (146). In

mice, the most applied atherosclerosis models were Apolipoprotein

E-deficient (ApoE-/-) mice on high-fat diet, although also C57BL/6J

wild-type mice on long-term high-fat diet as model of metabolic

disturbance have been studied.
Dyslipidemia

Mechanistically, experimental PD enhanced circulatory levels of

triglycerides (143, 147, 148), total cholesterol (147, 148) and more

specifically VLDL in hyperlipidemic ApoE-/-mice (143), as well as of
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oxidized LDL (80, 143). Others observed also a reduction of HDL

levels upon infection of mice with P. gingivalis (149). However, such

effects on HDL or lipid levels in general were not observed in all

studies, with for example another study not observing lipid changes

in either wild-type or hyperlipidemic ApoE-/- mice subjected to

ligature-induced PD (144), or also HDL remaining unaltered in

other studies of experimental PD (147). In relation to PD-induced

changes in lipid metabolism (and more specifically increased

cholesterol and triglyceride levels), it could be shown that

ligature-induced PD in hyperlipidemic ApoE-/- mice triggered the

colonization of the oral cavity and the liver with F. nucleatum,

which subsequently promoted glycolysis and thereby lipogenesis in

hepatocytes (148).
Vascular inflammation and
endothelial dysfunction

Experimental PD induced vascular inflammation with increased

expression of IL-6, TNF-a and the endothelial activation marker

VCAM-1, as well as with increased activation of the prototypical pro-

inflammatory transcription factor NF-kB (150). Experimental PD

also triggered endothelial dysfunction in rats, evidenced by a reduced

endothelial-dependent vasodilatation (151).

In vitro, P. gingivalis triggered endothelial inflammation and a

dysregulation of the circadian clock genes via TLR-NF-kB signaling,

resulting in increased oxidative stress and inflammatory signaling in

endothelial cells (152). P. gingivalis also induced the shedding of

microvesicles by endothelial cells, with a subsequent pro-

inflammatory effect towards the endothelium (153). Furthermore,

P. gingivalis induced endothelial mitochondrial dysfunction,

evidenced by an increase in mitochondrial fragmentation and

ROS production vs. reduced mitochondrial DNA copy numbers

and ATP levels (154). P. gingivalis also increased endothelial

permeability in vitro and in zebrafish larvae by reducing the

expression of PECAM1 and VE-Cadherin (76), both important

gatekeepers of endothelial cell junctional integrity.

On the other hand, endothelial inflammation in C57BL/6J mice

on high-fat diet and infected by P. gingivalis was only observed after

28 weeks along with the onset of lipid deposition in aorta and early-

stage atherosclerosis, without bacterial infection found in the aortic

endothelium itself (155). Instead, P. gingivalis did colonize

perivascular adipose tissue (PVAT) and triggered PVAT

inflammation, increasing the inflammatory milieu with increased

Th1 but fewer Treg T-cells, increased levels of pro-inflammatory

adipokines (IFNg, leptin, resistin) but reduced levels of the anti-

inflammatory adipokine adiponectin. PVAT inflammation preceded

endothelial inflammation and early atherosclerosis in this mouse

model, suggesting a potential contribution to atherosclerosis

development by increasing systemic inflammation (155).

Treatment with an anti-inflammatory peptide (156) or with

rosuvastatin (157) - which not only lowers LDL cholesterol but is

also anti-inflammatory - counteracted both PD-induced vascular

inflammation and lipid deposition in hyperlipidemic ApoE-/- mice.

Also, topical application of resolvin E1 - a specialized proresolving
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lipid – prevented PD and reduced systemic inflammation (CRP

levels in blood) as well as atherosclerosis upon P. gingivalis infection

of rabbits on high-cholesterol diet (45).
Increased systemic inflammation, innate
immune activation and trained
innate immunity

(Transiently) increased systemic levels of the pro-inflammatory

markers CRP, IL-6 and IL-1b have been observed upon ligation-

induced PD (144, 151), with stronger effects in hyperlipidemic

ApoE-/- mice compared to wild-type mice on high-fat diet (144).

Instead, the atheroprotective factor nitric oxide - which induces

vasodilatation and confers endothelial protective properties - was

significantly reduced in blood in experimental PD (80, 143).

That experimental PD increased systemic inflammation was also

evident from the raised activation status of innate immune cells. PD

activated monocytes/macrophages, with increased expression of

TNF-a and IL-6 in circulating mononuclear cells of rats subjected

to PD (150). In these PD rats, monocytes were also more prone to

adhere to endothelium both in vitro as in vivo, with PD-derived

monocytes able to induce pro-inflammatory NF-kB activation in

endothelial cells (150). Also, P. gingivalis triggered the expression of

lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in

both endothelial cells and monocytes (158), with LOX-1 known to

contribute to atherosclerosis by inducing endothelial inflammation

and monocyte-endothelial interaction (159). Furthermore,

P. gingivalis enhanced macrophage foam cell formation by

increasing the uptake of oxLDL (160) and blocking lipid efflux (161).

Beyond increased innate immune cell activation, PD was recently

shown to trigger inflammation-induced trained myelopoiesis:

Ligature-induced PD triggered myelopoiesis in the bone marrow

along with transcriptional changes in HSPC in the bone marrow.

After resolution of PD and local periodontal inflammation, a

secondary systemic challenge with LPS triggered increased

myelopoiesis in bone marrow and myeloid cell recruitment to the

periphery compared to mice that were previously not subjected to PD

(162). Also, ex vivo, neutrophils and monocytes from PD-trained

mice produced more IL-6 and TNF-a upon a secondary LPS

challenge compared to mice that were not previously subjected to

PD (162). Mechanistically, long-lasting epigenetic rewiring was

identified in HSPC of PD-trained mice (162, 163), with global

hypomethylation (163) - generally associated with increased gene

transcription - and increased chromatin accessibility of genes

suggestive of a biased differentiation towards myeloid cells upon a

secondary stimulus as well as an increased pro-inflammatory profile

in granulocyte-myeloid progenitor cells (162). Such PD-induced

maladaptive training of myelopoiesis was observed along with

increased IL-1b levels in the bone marrow and could be shown to

be dependent on IL1R-signaling in HSPC. Of note, PD-induced

maladaptive innate immune training triggered the susceptibility of

the development of other inflammatory comorbidities, as shown for

experimental arthritis upon bone marrow transfer of PD-trained

bone marrow (162).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1469077
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schulze-Späte et al. 10.3389/fimmu.2024.1469077
Alterations in adaptive immune cells

Besides effects on myeloid cells, P. gingivalis infection increased

Th17 cells but downregulated Treg cells in ApoE-/- mice on high-fat

diet, along with increasing atherosclerosis. Whereas Tregs are

atheroprotective, Th17 lymphocytes contribute to inflammation

and plaque formation by the production of IL-17A (49).
Altered gut homeostasis

P. gingivalis-enhanced atherosclerosis in hyperlipidemic ApoE-/-

mice was associated with changes in the intestinal microflora

(82, 164), increased intestinal permeability (82), as well as with

raised systemic levels of LPS and TMAO (164) or altered

metabolites indicating changes in lipid metabolism and primary

bile acid synthesis (82). TMAO is an oxidation product of the gut-

derived metabolite TMA, and is associated with higher

cardiovascular risk by increasing inflammation (165).

All combined, animal models support a mechanistic contribution

of PD to atherosclerosis by driving pathophysiological mechanisms

that are known to contribute to the development and progression of

atherosclerotic lesions, including endothelial dysfunction, systemic

inflammation and innate immune cell activation.
Beyond atherosclerosis, PD also
increases the risk of cardiovascular
risk factors as diabetes and chronic
kidney disease

Beyond aggravating atherosclerosis, PD also enhances the

progression of chronic kidney disease through inflammatory stimuli

and oxidative stress (166). Experimental PD led to kidney

inflammation with induction of IL-1b and TNF-a, and of tubular

and glomerular injury, as shown in ApoE-/- mice injected with P.

gingivalis-LPS (147). Furthermore, the combination of PD and

hyperlipidaemia aggravated circulating cholesterol and triglyceride

levels as well as kidney inflammation in a synergistic way, with a

strong increase in neutrophil infiltration, IL-1b and TNF-a expression

in kidney tissue beyond levels reached by each disease alone (147).

Also, experimental PD induced in C57BL/6J mice by infection

with the periodontal bacterial species Aggregatibacter

actinomycetemcomitans - a low-abundance gram-negative

periodontal pathobiont - triggered the development of glucose

tolerance impairment and insulin resistance along with alterations

in the gut microbiota, and - under high-fat diet - induced stronger

hepatic steatosis (167). These observations may contribute to the

known association of PD and diabetes (168).

However, additional experimental studies are required to pinpoint

in more detail the key mediators and mechanisms underlying the

association of PD with the aforementioned morbidities.
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Clinical implications & current and
future therapy considerations

The effect of PD treatment on cardiovascular health has been

assessed in a current S3 guideline (169). In patients without systemic

co-morbidities, therapy of PD may reduce the overall cardiometabolic

risk and systemic inflammatory biomarkers. For patients affected by a

co-morbid NCD, periodontal treatment is suggested for a favorable

influence on cardiovascular risk, metabolic control and systemic

inflammation based on moderate evidence. However, in case of a

co-morbid NCD, it is unclear whether periodontal therapy improves

the outcome in severe cases of NCD, as there is no evidence

supporting a significant effect on cardiovascular events (169).

As connections in the pathophysiology of CVD and PD have

been established, it suggests itself that the therapy of one ailment

might prove beneficial for the other. Evidence on the influence of

periodontal therapy on vascular function is diverging. An

improvement in endothelial function after therapy of PD in

patients affected by ST-elevation myocardial infarction has been

described (170–173), while other authors found no significant

correlation (174, 175). In addition, even after successful therapy

the risk for an adverse cardiovascular event remains elevated (176).

Periodontal treatment attenuates systemic inflammation, which

becomes visible through an improvement of particular

inflammatory markers. Accordingly, a lowered concentration of

CRP following treatment of PD could be shown (170, 177–182).

Blood pressure, IL-6, IL-8 and IFN-g correlate in a similar way

(171, 177, 181, 183). The described amelioration of cardiovascular

risk factors by periodontal therapy corroborates the previously

suggested correlations between both diseases.

Overall, due to manifold influencing factors, both diseases cannot

be completely controlled. On the other hand, the identified disease

connections discussed here open various therapeutic ways by

targeting inflammation and innate immune activation as link

between PD and CVD risk. In these areas, the cardiovascular field

is currently investing strong efforts towards clinical translation

opportunities. This has been stimulated by the beneficial, lipid-

independent effects of IL-1b blockade on cardiovascular outcome

in patients with a previous myocardial infarction and high hs-CRP

levels in the CANTOS trial (184). These findings boosted an

increased focus on inflammation and innate immune activation as

targets of therapy in CVD, as recently discussed in detail elsewhere

(57, 185). For periodontitis, novel treatments based on the connection

between periodontal inflammation, immune-regulatory signaling

cascades and the polymicrobial biofilm in the periodontal

microenvironment will complement existing anti-infectious

therapies and thereby improve clinical outcome (186–188). These

current emerging immunomodulatory therapies address

inflammation-resolution, relieve inflammation, reduce platelet

aggregation and establish a viable local immune microenvironment

with subsequent tissue regeneration. Ultimately, this will also be of

benefit to address the pathophysiological interaction between PD and

atherosclerosis. Overall, unraveling key molecular mediators
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underlying PD-induced atherosclerosis in further detail may thereby

further expand therapeutic options in the future and help to resolve

the huge burden of increased cardiovascular risk in PD.

Conclusions

Taken together, mechanistic and animal studies support a

pathophysiological interaction between PD and atherosclerosis

beyond sharing of the same risk factors, with PD driving

pathophysiological processes that support the development and

progression of atherosclerosis. Inflammation and innate immune

activation are a central hub in connecting both diseases. Furthermore,

they may also represent a key connector of PD and other

inflammation-associated diseases such as chronic kidney diseases

and diabetes. It is expected that future developments in these fields –

as currently highly being investigated in the area of CVD – can also

contribute to alleviating comorbid disease presentation. By providing

an overview of the current understanding of PD, atherosclerosis and

their crosstalk, this review aims to support future research efforts that

can uncover novel mechanistic insights into comorbidity

development in PD as important step towards advancing clinical

translation opportunities.
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