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Bulk- and single cell-RNA
sequencing reveal KIF20A as a
key driver of hepatocellular
carcinoma progression
and immune evasion
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Lei Wang1* and Zhihua Liu1*

1Department of Radiation Oncology, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer
Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,
2Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian
Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China, 3Department of
Hepatopancreatobiliary Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital,
Fuzhou, Fujian, China, 4Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary
Hospital of Fujian Medical University, Fuzhou, China
Introduction: Kinesin family member 20A (KIF20A) is essential for cell

proliferation and is implicated in promoting tumor progression, but its role in

hepatocellular carcinoma (HCC) remains poorly studied.

Methods: Through the analysis of bulk RNA-sequencing (bulk RNA-seq) and

single-cell RNA sequencing (scRNA-seq) data, the expression of KIF20A and its

relationship with diagnosis, prognosis, and the immune microenvironment were

examined. The association between KIF20A and the malignant progression and

metastasis of HCC was confirmed through in vitro and in vivo experiments.

Furthermore, patient re-staging was performed using Recursive Partitioning

Analysis (RPA) to enhance clinical benefit.

Results: In this study, we firstly found KIF20A was overexprerssed in HCC both by

bulk RNA-seq and scRNA-seq, and then the overexpression of KIF20A

significantly promoted the proliferation, invasion, and metastasis in vitro. In

vivo, the overexpression of KIF20A promoted the growth and lung metastasis

of HCC. Furthermore, gene set variation analysis of bulk RNA-seq and scRNA-seq

revealed that KIF20A might be associated with cell cycle related signaling

pathways of E2F and G2M, and overexpression of KIF20A inhibited the activity

of p21 and bax, as well as shortened G2 phase. Importantly, we found that KIF20A

could induce T cell exhaustion via the SPP1-CD44 axe using scRNA-seq.

Additionally, KIF20A was also correlated with the expression of immune
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checkpoint inhibitors (ICIs), and KIF20Ahigh subgroup might be benefited from

the ICIs therapy.

Conclusion: KIF20A emerges as a pivotal driver of HCC progression, intricately

regulating cell cycle pathways and modulating immune responses, which

position KIF20A as a promising target for HCC management.
KEYWORDS

hepatocellular carcinoma, kinesin family member 20a, single cell RNA sequence, t cell
exhaustion, immune check-point inhibitors
1 Introduction

Primary liver cancer is one of the most prevalent malignancies,

with approximately 906,000 new cases diagnosed globally each year,

of which about 90% are hepatocellular carcinoma (HCC) (1). Radical

hepatectomy remains the most cost-effective curative strategy for

HCC, but many patients miss the opportunity for surgery at the time

of diagnosis (2). Despite significant advances in early detection,

surgical techniques, and both local and systemic treatments, the

long-term prognosis remains bleak, with a 5-year survival rate of

only about 20% (3, 4). Recurrence remains the primary cause of

treatment failure in resectable HCC patients, with a 5-year recurrence

rate as high as 75%[4]. The unique biological behavior and complex

pathological mechanisms of HCC contribute to this poor prognosis,

but much about these factors remains unknown (5).

HCC treatment has entered the era of molecular targeted

therapy with the introduction of sorafenib (6). Advances in

genomics, proteomics, and transcriptomics have led to the

development of additional targeted agents, such as apatinib and

lenvatinib, with promising results (7). However, challenges persist,

including unsatisfactory objective response rates, fragile treatment

resistance, and the lack of robust biomarkers for predicting

treatment response (3). Following the IMbrave-150 trial, current

guidelines recommend atezolizumab and bevacizumab as first-line

systemic treatments for advanced HCC (8).

Kinesin family member 20A (KIF20A), a protein in the kinesin-

6 family, uses its ATPase hydrolysis domain to regulate microtubule

bundling and protein transport during mitosis (9). KIF20A also

stabilizes and anchors Rab6-positive (GTPase-driven) vesicle

trafficking at the Golgi apparatus (10). Unlike other kinesins,

KIF20A has an additional loop motif in its motor domain,

enabling specific targeting with small molecule inhibitors (11).

While KIF20A has been identified in breast and renal cell cancer

signatures (12, 13), it is significantly underappreciated in HCC.

Nonetheless, while precision medicine has achieved considerable

success in a multitude of cancer types, its implementation in HCC

remains in its nascent stages. Further exploration is warranted to

uncover novel precision therapeutic strategies, encompassing
02
critical domains such as biomarkers, molecular classifications, and

the heterogeneity inherent to the tumor microenvironment (14).

In this study, we initially identified the clinical significance of

KIF20A in HCC using bulk and single-cell RNA (scRNA)

sequencing. We then assessed its aggressive characteristics

through in vitro and in vivo studies. Furthermore, we explored

the underlying mechanisms by which KIF20A regulates HCC

progression, the tumor immune microenvironment (TiME), and

immune responses using both bulk RNA-seq and scRNA-seq.
2 Materials and methods

2.1 Data acquisition

In this study, we re-analyzed a total of 16 public datasets,

including 15 bulk RNA-seq cohorts (two of which involved

patients receiving immune checkpoint inhibitors) and one single-

cell RNA-seq (scRNA-seq) cohort. Additionally, hepatocellular

carcinoma (HCC) tissue microarrays (TMAs) were obtained from

Shanghai Outdo Biotech Co., Ltd (Shanghai, China) along with

corresponding clinical-pathological data and follow-up information

(Ethics No.SHYJS-CP-1707015). From these, 87 samples underwent

quantitative PCR (qPCR) and 66 samples were subjected to

immunohistochemistry (IHC) analysis. Detailed information on

these cohorts is provided in Supplementary Table S1, while raw

PCR data from the TMA is cataloged in Supplementary Table S2. To

ensure patient privacy, names and medical record numbers from the

TMA were replaced with new research IDs.
2.2 ScRNA-seq analysis

As previously reported (15), initial quality control of the scRNA-

seq data was performed and is displayed in Supplementary Figure S1.

Raw scRNA-seq data were pre-processed using CellRanger (version

4.0.0) and the Seurat (version 4.0.4) pipeline in R software (version

4.1.0, R-Foundation, Vienna, Austria). The scRNA cohort consisted of
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8 normal and 10 tumor samples, encompassing a total of 63,102 cells.

We retained 47,578 high-quality cells for subsequent analyses based on

the following criteria: 1) genes must be expressed in at least three cells;

2) cells must express at least 50 genes; 3) mitochondrial gene expression

must not exceed 5%. Batch effects were removed using the “harmony”

R package, and scRNA-seq data were normalized using the “Seurat” R

package. We identified the top 1,500 highly variable genes and

performed principal component analysis (PCA) using the “RunPCA”

function. Unsupervised cell clusters were determined using the

“FindClusters” function (selecting the top 20 principal components,

resolution = 1.0) and visualized via uniform manifold approximation

and projection (UMAP) dimensionality reduction. Marker genes for

each cluster were identified using the “FindAllMarkers” function under

the criteria: |logFC| > 1.0 and adjusted P-value < 0.05. Cell clusters were

annotated based on marker genes of various liver cell types from the

Cellmark2.0 database (http://bio-bigdata.hrbmu.edu.cn/CellMarker/

index.html) and canonical cellular markers.
2.3 InferCNV analysis

A raw counts matrix, annotation file, and gene/chromosome

position file were prepared according to instructions on the

InferCNV GitHub page (https://github.com/broadinstitute/inferCNV)

(16). We calculated the somatic large-scale chromosomal CNV

score for each hepatocyte using the R package inferCNV (v1.6.0),

with hepatocytes from normal tissue serving as reference cells.

Default parameters were applied (cutoff = 0; denoise = 0.1).
2.4 Cell-to-cell interaction analysis

Cell-to-cell interaction analysis was performed based on the

expression of specific ligands and receptors using the R package

“CellChat”. This tool quantitatively infers and analyzes intercellular

communication networks from scRNA-seq data (17). By leveraging

manifold learning and quantitative contrasts, CellChat classifies

signaling pathways and delineates both conserved and context-

specific pathways across different datasets.
2.5 Cellular development
trajectory analysis

Monocle 2 (v2.18.0) was used to infer the cellular trajectory of

hepatocytes, assuming a one-dimensional “pseudotime” to describe the

high-dimensional expression values of single cells (18). Cell trajectories

and positions were presented in a two-dimensional plot with a tree

structure after log normalization and DDR tree dimension reduction.
2.6 CIBERSORTx analysis

CIBERSORTx, an analytical tool for imputing gene expression

profiles and estimating the abundances of cell types in mixed cell
Frontiers in Immunology 03
populations, was utilized (https://cibersortx.stanford.edu/) (19). We

uploaded the expression matrix file of the TCGA-HCC cohort and

used the “LM22” signature file to compute the proportions of 22

immune cells.
2.7 Functional analysis

Gene set variation analysis (GSVA) was conducted to estimate

biological functions and signaling pathways in both bulk RNA-seq

and scRNA-seq data (20). The reference molecular signature was

“h.all.v2023.1.Hs.symbols” (downloaded from https://www.gsea-

msigdb.org/gsea/msigdb/).
2.8 Cell culture

Human HCC cell lines Huh7, SNNU398, SNU449, SMMC7721,

SK-HEP1, C3A, and MHCC97H were purchased from the

American Type Culture Collection. Huh7, SMMC7721, SK-HEP1,

C3A, and MHCC97H cells were cultured in DMEM medium

(Gibco, California, USA), while SNNU398 and SNU449 cells were

cultured in 1640 medium (Gibco, California, USA). Both media

were supplemented with 10% fetal bovine serum (FBS) (Gibco,

California, USA). All cells were maintained in an incubator at 37°C

with 5% CO2.
2.9 Plasmids and transfection

KIF20A overexpression (OE-KIF20A) and control lentiviral

plasmids were provided by OBiO Technology (Shanghai, China)

and used to transfect HCC cell lines as previously described (21).
2.10 Orthotopic tumor growth

Sixteen male Balb/c nude mice (SPF grade; 6 weeks old; 18-22 g)

were purchased from Wu’s Animal Laboratory Center Co., Ltd

(Fujian, China), and all procedures were authorized by the

Nanchang University Approval for Research Involving Animals

(Ethics No. MHCC-AEC-2024-02). Briefly, 5×10^5 SUN449 and

SMMC7721 cells, along with their corresponding OE-KIF20A cell

lines, were resuspended in Matrigel (25 mL) and injected into the

liver capsule of the mice. Mice were anesthetized on day 30, and

liver and lung tissues were harvested for further analysis.
2.11 Cell counting kit-8 assay

Approximately 1×10^4 cells per well were seeded into 96-well

plates and cultured for 48 hours. After 2 hours of incubation with 10

ml of CCK8 solution (MedChemExpress, Shanghai, China), the

absorbance was measured at 450 nm using a spectrophotometer

(Thermo Scientific, Pennsylvania, USA).
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2.12 EdU assay

Following the protocol of the Proliferation Kit (RiboBio,

Guangdong, China), cells were seeded into 24-well plates at a

density of 5×10^4/well and cultured for 24 hours. Cells were then

fixed with 4% paraformaldehyde after 2 hours of incubation with 5-

ethynyl-2′-deoxyuridine (EdU). EdU-positive cells were counted

under an Olympus FSX100 microscope (Olympus, Tokyo, Japan) to

assess cell proliferation.
2.13 Colony formation assay

Briefly, 500 cells per well were plated into 6-well plates and

cultured for approximately 10 days. Once colonies formed, they

were gently washed with PBS, fixed with formalin, and stained with

0.1% crystal violet. Stained colonies were imaged and counted using

ImageJ software (version 2.0.0) to evaluate cloning efficiency.
2.14 Cell migration and invasion assay

As previously reported, 5×10^4 cells were seeded into the upper

chamber (Corning, New York, USA) with (for invasion assay) or

without (for migration assay) Basement Membrane Matrigel

(MG6234, Beijing, China). DMEM with or without 10% FBS was

added to the lower and upper chambers, respectively. After 24

hours, cells were fixed with 4% paraformaldehyde and stained with

0.1% crystal violet solution. A Nikon inverted microscope was used

to image and count stained cells to determine migration and

invasion capabilities.
2.15 Cell cycle detection

The cell cycle was analyzed by flow cytometry (FCM). Cells in

the logarithmic growth phase were stained with propidium iodide

(PI) according to the manufacturer’s protocol and detected using a

flow cytometer (Accuri C6 Plus; BD Pharmingen, Shanghai, China).

Data were analyzed with FlowJo-V10 software (Tree Star Inc,

Oregon, USA).
2.16 Western blot analysis

Proteins were extracted from cells in the logarithmic growth

phase and quantified using a BCA protein assay. Using ACE

FuturePAGE™ Precast Gels, nitrocellulose membranes were

incubated with primary antibodies against p21 (CST#2947,

Massachusetts, USA), p53 (CST#2524, Massachusetts, USA), Bax

(CST#41162, Massachusetts , USA), Bcl2 (CST#15071,

Massachusetts, USA), and Caspase 3 (CST#9668, Massachusetts,

USA) overnight. After incubation with secondary antibodies for 2

hours, membranes were imaged using the ECL system (Thermo

Fisher Scientific, Massachusetts, USA).
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2.17 Immunohistochemistry staining

Tumor and peritumoral tissues were fixed overnight in 4%

paraformaldehyde, paraffin-embedded, sectioned into 4 mm slices,

and stained with hematoxylin and eosin (H&E), Ki67 (CST#62148,

Massachusetts, USA), and KIF20A (CST#67190, Massachusetts,

USA). IHC scores were determined based on the positive rate

score (negative=0, 1–25%=1, 26–50%=2, 51–75%=3, 76–100%=4),

with sections scoring ≥3 points classified as “high expression”.
2.18 Quantitative reverse transcription PCR

Relative quantitation was performed using quantitative reverse

transcription polymerase chain reaction (SuperScript IV Reverse

Transcriptase 18090010, Thermo Fisher Scientific, Massachusetts,

USA). KIF20A-specific primers were: forward 5′-GAAAATCAGC
AACCAAAC-3′ and reverse 5′-GTAAAGCATAAAAGAGACC-3′.
2.19 Statistical analyses

For distributed data, comparisons were made using the Student’s

t-test and the Wilcoxon test, while proportions were compared using

the chi-square test. Component analysis in subgroups was performed

with Fisher’s exact test, and pairwise comparisons were made using

the Mann-Whitney U test. Survival differences between groups were

assessed using the log-rank test, and prognostic factors were

identified using Cox regression analyses. All statistical analyses

were conducted using RStudio version 4.0.3, with a two-sided p-

value < 0.05 considered statistically significant.
3 Results

3.1 Identification and validation of KIF20A
by multi-omics

Firstly, KIF20A RNAwas found to be upregulated in tumor tissues

compared to normal tissues across all datasets (all P<0.05, Figure 1A).

This upregulation serves as a biomarker to distinguish HCC with an

AUC ranging from 0.916 to 1.000 (Figure 1B). The overexpression of

KIF20A in HCC was further confirmed through both paired and non-

paired samples from TMA using qPCR (both P<0.05, Figures 1C, D).

Additionally, the AUC of KIF20A for diagnosing HCC was notably

high at 0.977 (95%CI 0.951-1.000, Figure 1E) in the TMA cohort. IHC

analysis also confirmed KIF20A upregulation in tumor tissue of the

TMA cohort (P<0.05, Figures 1F, G).

Furthermore, we analyzed KIF20A expression at the single-cell

level. Initially, all cells underwent quality control and dimensionality

reduction clustering, resulting in 44 distinct clusters (Supplementary

Figures S1A–C). Based on the expression analysis of marker genes

specific to each subgroup, the cells were categorized into NK/T cells,

B cells, myeloid cells, endothelial cells, hepatocytes, and hepatic

stellate cells (HSC) (Supplementary Figure S1D, Figure 1H). To
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further verify the upregulation of KIF20A in HCC cells, we isolated

8,497 hepatocytes from primary tumors and normal tissues, dividing

them into 12 clusters (C0-C11, Supplementary Figure S1E). Cluster

C09 was predominantly composed of normal tissue cells and used as

a reference, while other clusters showed higher CNV scores

(Supplementary Figure S2). Thus, C09 was identified as normal
Frontiers in Immunology 05
hepatocytes, and other clusters were identified as HCC cells

(Figure 1I). Transcriptomics analysis revealed that HCC-related

genes, such as CDKN2, MET, and MLH2, as well as KIF20A, were

upregulated in the malignant cluster compared to the nonmalignant

cluster (Figure 1J). Collectively, the upregulation of KIF20A in HCC

was confirmed by both bulk RNA-seq and scRNA-seq.
FIGURE 1

KIF20A was up-regulation in HCC cells. (A) The differential expression of KIF20A between normal and tumor tissues in multiply cohorts. (B) ROC curves of
KIF20A for predicting the HCC in multiply cohorts. Differential expression of KIF20A among paired samples (C) and unpaired samples (D) in the TMA
cohort by qPCR. (E) ROC curves of KIF20A for predicting the HCC in TMA cohort. (F) Typical staining histochemical results and (G) differential H score
between normal and tumor tissue in the TMA cohort. (H) UMAP plot displayed cell types for all samples. (I) UMAP plot exhibited the distribution of
hepatocyte and HCC cell. (J) The differential expression of KIF20A and HCC-related genes between normal hepatocytes and HCC cells. Data are
presented as mean ± SD. Statistical significance was calculated by the Mann-Whitney U test. ns indicates no statistical difference, ***P < 0.001; **P <0.01.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1469827
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2024.1469827
3.2 KIF20A promotes cell proliferation,
migration, and invasion in HCC Cells
in vitro

We determined the expression of KIF20A in 7 HCC cell lines via

western blot and found that KIF20A expression in SMMC-7721 and

SNU449 was significantly lower compared to other HCC cell lines

(Supplementary Figure S3). Hence, we upregulated KIF20A
Frontiers in Immunology 06
expression in SMMC-7721 and SNU449 cell lines using short

hairpin RNAs, confirmed by western blot (OE-KIF20A-SMMC7721

and SNU449, Figure 2A). We then conducted CCK8, EdU, clone

formation assays, invasion and migration experiments in these two

OE-KIF20A HCC cell lines. Results showed that overexpression of

KIF20A in SMMC7721 and SNU449 increased cell proliferation (both

P<0.05, Figure 2B). The number of clones in OE-KIF20A cell lines was

also increased, as shown by EdU (both P<0.05, Figure 2C) and clone
FIGURE 2

KIF20A promotes cell proliferation, migration, and invasion in HCC cells in vitro. (A) The efficiency of KIF20A overexpressed has been testified by
Western blot in SMMC-7721 and SNU449. The proliferation of SMMC-7721 and SNU449 cells with KIF20A overexpressed was detected by CCK8
assay (B), Edu assay (C) and plate clone assay (D). (E) The cell migration and invasion of SMMC-7721 and SNU449 cells with KIF20A overexpressed
was detected by transwell assays. Data are presented as mean ± SD. Statistical significance was calculated by the Mann-Whitney U test. ns indicates
no statistical difference, **** P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05.
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formation assays (both P<0.05, Figure 2D). Similarly, overexpression

of KIF20A resulted in increased invasion and migration in

SMMC7721 and SNU449 cell lines (all P<0.05, Figure 2E).
3.3 KIF20A promotes HCC progression and
metastasis in vivo

We established an in situ model by injecting 5×10^5 HCC cells

under the liver’s subcapsular region (Figure 3A). Four weeks later,
Frontiers in Immunology 07
mice were euthanized by ether inhalation. Median tumor volumes

in the OE-KIF20A groups were significantly larger than in the

control groups (both P<0.05, Figure 3B), as well as tumor weight

(both P<0.05, Figure 3C). Additionally, the lungs of each mouse

were dissected, revealing more lung nodules in the OE-KIF20A

groups compared to the control groups (both P<0.05, Figure 3D).

Representative H&E images of the liver and lungs in each group

were shown in Figure 3E. Ki67 staining of the liver and lung

indicated that KIF20A increased the proliferation and invasion of

HCC cell lines (Figure 3E).
FIGURE 3

KIF20A promotes HCC progression and metastasis in vivo. (A) Establishing an in situ model via injecting HCC cell lines under the subcapsular of the
liver. (B) The different of tumor volume (B), weight (C) and lung nodules (D) between different groups. (E) Representative H&E images of the liver and
lungs in each groups. Data are presented as mean ± SD. (n = 4). Statistical significance was calculated by the Mann-Whitney U test. ns indicates no
statistical difference, ***P < 0.001; **P < 0.01; *P < 0.05.
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3.4 KIF20A promotes HCC progression by
regulating the cell cycle

To further verify the pro-tumor effect of KIF20A, we conducted

GSEA analysis using bulk RNA-seq. The results showed that cell
Frontiers in Immunology 08
cycle-related signaling pathways, such as the G2M checkpoint and

E2F targets, were upregulated in the KIF20Ahigh subgroup (all

correlation value >0.4, Figure 4A). Additionally, we found higher

KIF20A expression in clusters C05, C06, C08, and C10 in scRNA-

seq data (Figure 4B). Similarly, the G2M checkpoint and E2F targets
FIGURE 4

KIF20 regulated the cell cycle. (A) Correlation bar graphs showed the relationship between KIF20A expression and pathway activity by GSVA.
(B) Heatmap showed the activity of hallmark pathway for hepatocytes clusters stratified by the expression of KIF20A. (C) FCM revealed the different
proportion of cell cycle in control versus OE-KIF20A SMMC2271 and SNU449 cells. (D) Western blot showed the different expression of p21, p53,
Bcl2, Bax and caspase between different groups in control versus OE-KIF20A SMMC-7721 and SNU449 cells. (E) Schematic representation of cell
cycle regulation by KIF20A.
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pathways were upregulated in clusters with KIF20highA expression

(Figure 4B). FCM analysis revealed a significantly shortened G2

phase in OE-KIF20A cell lines compared to control cell lines

(Figure 4C). Proteins such as p21, p53, Bax, and caspase 3 were

downregulated in OE-KIF20A cell lines, while bcl2 expression was
Frontiers in Immunology 09
upregulated (Figure 4D). These findings suggest that KIF20A may

promote HCC progression by disrupting the p53-p21 or p53-E2F-

G2M induced cell cycle arrest and suppressing apoptosis via

blocking the p53-bax-bcl2-caspase3 pathways (Figure 4E), but

further validation is required.
FIGURE 5

KIF20A affects immune cell infiltration in TiME. (A) The differential infiltration of immune cells by CIBERSORTx analysis. (B) The expression of
corresponding markers for different cells. (C) UMAP plot displayed cell types for tumor samples. (D)The bubble plot showed the expression of
KIF20A in tumor samples. (E) UMAP plot exhibited the cell subpopulations of NK/T cells. The different infiltrating of Tmem cells (F), Tex cells (G) and
Treg cells (H) between KIF20Alow and KIF20Ahigh groups. Data are presented as mean ± SD. Statistical significance was calculated by the Mann-
Whitney U test. ns indicates no statistical difference, ***P < 0.001; **P < 0.01; *P < 0.05.
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3.5 KIF20A overexpression induces
T-cell exhausted

TiME plays a crucial role in the tumorigenesis, development,

and prognosis of HCC. We evaluated 22 infiltrated immune cells

between high and low KIF20A subgroups via CIBERSORTx.

Results revealed that the proportions of Tregs and Macrophages

M0 were significantly higher in the KIF20Ahigh subgroup

compared to the KIF20Alow subgroup (both P<0.05, Figure 5A).
Frontiers in Immunology 10
Conversely, CD4 memory resting T cells (Tmem) and naive B cells

were lower in the KIF20Ahigh subgroup (both P<0.05, Figure 5A).

scRNA-seq of 10 HCC tissues confirmed this finding. After quality

control (Supplementary Figure S4), cells were assigned to 6

distinct cell types using known marker genes: HCC, B cells, NK/

T cells, myeloid cells, endothelial cells, and HSC (Figures 5B, C).

Based on KIF20A expression, HCC tissues were categorized into

KIF20Ahigh and KIF20Alow subgroups (Figure 5D). Given the

disparities in Treg and Tmem between KIF20Alow and
FIGURE 6

KIF20A regulating the T exhaustion. (A) UMAP plot showing different clusters of cells. The network plot showing the number (B) and intensity (C) of
interactions between different cell populations in the TiME. (D) Bubble plots showing the possible ligand-receptor pairs between KIF20Ahigh/low
HCC and other cell subpopulations in the TME. (E) The roles played by different cell populations in the tumor microenvironment in the SPP1
signaling pathway network. (F) The correlation of CD44 and T cell exhaustion markers in T cells, including CD274, CD276, HAVCR2, LAG3, PDCD1,
and TIGIT. (G) Schematic representation of KIF20A regulating the T exhaustion.
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KIF20Ahigh observed in bulk-RNA analysis, we isolated NK/T

cells for further investigation. After dimensionality reduction,

clustering, and annotating, we stratified NK/T cells into NK,

effective T cells (Teff), memory T cells (Tmem), Tregs, and

exhausted T cells (Tex) (Figure 5E; Supplementary Figures S5A,

B). Differential analysis revealed that the KIF20Alow subgroup

exhibited heightened infiltration of Tmem and reduced levels of

Tex and Treg infiltration, corroborating previous findings (all

P<0.05, Figures 5F–H). Cellular development trajectory analysis

indicated that Tmem differentiate into Tex over pseudotime

(Supplementary Figures S6A, B). Collectively, these findings

suggest that KIF20A overexpression may lead to T-cell

exhaustion and subsequent immune escape of HCC.
3.6 Mechanism of KIF20A in regulating
T-cell exhaustion

To explore the mechanism by which KIF20A regulates T-cell

exhaustion, we conducted a cell-to-cell communication network

analysis using the R package “CellChat”. HCC cells were categorized

into KIF20Ahigh and KIF20Alow groups based on KIF20A expression

(Supplementary Figure S7), visualized in Figure 6A. The number and

strength of each cell’s interactions were summarized in Figures 6B, C.

Results indicated robust interactions between KIF20Ahigh HCC and

NK/T cells (Supplementary Figures S8, S9). CellChat is often used to

discover the potential ligand-receptor pairs between cell-to-cell. Totally,

35 significant LR pairs among the 7 cell types were detected

(Supplementary Figure S10). Evidence shows that secreted

phosphoprotein-1 (SPP1) is highly expressed in a variety of tumor

types, which promotes tumor proliferation, invasion, and tumor

stemness (22–24). In this study, several SPP1 ligand-receptor pairs

were identified between KIF20Ahigh HCC and other cells, among

which, SPP1-CD44 between KIF20Ahigh HCC and NK/T cell was the

most relevant signaling pathway (Figure 6D). Moreover, we analyzed

the role of cells in the SPP1 pathway and found that KIF20Ahigh HCC

was a “sender” and NK/T cell was a “receiver” (Figure 6E). Further, we

found that the expression of CD44 was positively correlated with

CD274, LAG3, TIGIT, PDCD1, HAVCR2, and CD276 of NK/T cells,

which are the classic exhaustion biomarker of T cells (all P<0.05,

Figure 6F). Taken together, HCC might induce NK/T cell exhaustion

via the KIF20A-SPP1-CD44 axis and result in an immune escape and

tumor progression but the mechanism deserved further

validation (Figure 6G).
3.7 Genomic alteration stratified by
KIF20A expression

Genomic alterations play a crucial role in carcinogenesis, tumor

progression, and treatment response (25, 26). Somatic mutations

were found in 157 (90.28%) of KIF20Ahigh patients and in 156

(88.14%) of KIF20Alow patients. The top three mutations in

KIF20Ahigh patients were TP53, TTN, and CTNNB1, while in
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KIF20Alow patients, the top mutations were CTNNB1, TTN, and

ALB (Supplementary Figures S11A, B). The most common types of

variant classifications, variant types, and single-nucleotide variant

classes in both subgroups were missense mutations, single

nucleotide polymorphisms, and T>G variants, respectively

(Supplementary Figures S11C, D).
3.8 Immune landscape and immune
response related to KIF20A

To explore the effect of KIF20A on the immune response, we

examined immunogenicity, immune checkpoints, immunophenoscore

(IPS) (27), and tumor immune dysfunction and exclusion (TIDE) (28)

scores, Aneuploidy score, cancer testis antigens (CTA) score,

homologous recombination deficiency (HRD), and intratumor

heterogeneity, all stratified by KIF20A expression. The results

showed that all indicators of tumor immunogenicity, including CTA

score, HRD, and intratumor heterogeneity, were significantly higher in

the KIF20Ahigh group than in the KIF20Alow group (P<0.001,

Figure 7A). Next, TIDE scores were used to identify patients who

would benefit from immune checkpoint inhibitors (ICIs). The TIDE

and exclusion scores were significantly lower in the KIF20Ahigh group,

whereas dysfunction scores and MSI expression were higher (P<0.001,

Figure 7B). Additionally, IPS scores for CTLA-PD1+, CTLA+PD1-,

and CTLA+PD1+ were significantly higher in the KIF20Ahigh group

(P<0.05, Figure 7C). Furthermore, KIF20A was positively correlated

with the expression of immune inhibitors, including CD276, CTLA4,

LAG3, TIGIT, and CD274 (P<0.05, Figure 7D), suggesting that

KIF20Ahigh patients have stronger immunogenicity and may benefit

more from ICIs.

To validate these findings, we used two additional external

cohorts receiving ICIs. In the IMvigor 210 cohort, 298 metastatic

urothelial carcinoma patients treated with atezolizumab (a PD-1

inhibitor) showed significantly higher complete and partial

response rates in the KIF20Ahigh subgroup compared to the

KIF20Alow subgroup (CR: 11% vs. 4%, PR: 18% vs. 9%; P<0.05,

Figure 7E). Additionally, the AUC for KIF20A in predicting

response to PD-1 inhibitors was higher than for CD274 and

PDCD1 (Figure 7F), a finding confirmed in another cohort of 28

melanoma patients undergoing anti-PD-1 checkpoint inhibition

therapy (Figure 7G).
3.9 Novel clinical staging system based
on KIF20A

Recursive Partitioning Analysis (RPA) is commonly used to

construct prognostic re-staging models and compare their

performance. KIF20A expression was identified as a robust

independent risk factor for HCC in the public cohorts of TCGA-

LIHC, GEO, ICGC, and TMA (P<0.05, Figure 8A), as well as in the

AJCC-T stage (P<0.05, Supplementary Table S3). Using RPA

analysis, we categorized 362 HCC patients into three clusters with
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distinct prognoses: C1 (AJCC T1-3 with KIF20A of 0.05-4.46), C2

(AJCC T3-4 with KIF20A of 0.05-4.46 and T1-2 with KIF20A of

4.47-21.25), and C3 (AJCC T3-4 with KIF20A of 4.47-21.25;

P<0.05, Figures 8B, C). High consistency was observed between

the calibration of 1-, 2-, and 3-year predicted prognosis of RPA

stage vs. observed prognosis (Figure 8D), with improved time-

dependent AUC (Figure 8E). Furthermore, the RPA stage

demonstrated better 1-, 2-, and 3-year survival net benefits than

the AJCC staging system, grade, Child-Pugh, and KIF20A alone, as

shown by decision-making curves (Figures 8F–H).

Drug sensitivity analysis based on RPA stage showed that the

IC50 of doxorubicin, mitomycin C, and gemcitabine in the C1

subgroup were significantly higher than in the C2 and C3 subgroups

(P<0.05, Supplementary Figure S12). Conversely, the IC50 of

axitinib, gefitinib, nilotinib, lapatinib, erlotinib, and sorafenib in

the C1 subgroup were significantly lower than in the C2 or C3

subgroups (P<0.05, Supplementary Figure S13).
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4 Discussion

HCC exhibits high heterogeneity in molecular profiles and

clinical outcomes, prompting ongoing research to identify key

drivers. Bulk RNA-seq is commonly employed to screen

candidate drivers, but systems with substantial internal cell

heterogeneity may lose valuable information on abnormal gene

expression (29). Recent advances in scRNA-seq have enabled the

discovery of new cell subsets and investigation of intercellular

heterogeneity, although the sequencing depth of single-cell

transcriptomics may not match that of bulk samples with a

higher signal-to-noise ratio (30). onsequently, joint analyses of

bulk RNA-seq and scRNA-seq have been attempted to elucidate

uncertain relationships in disease progression.

In prior studies, activated KIF20A was found to promote HCC

proliferation and was linked to poor patient prognosis (31–33). Our

study revealed that KIF20A is upregulated in HCC tissues across
FIGURE 7

The expression of KIF20A can predict the response rate to ICIs. (A) The differential of immunogenicity scores between KIF20A high and low
expression groups. (B) The differential of TIDE scores between KIF20A high and low expression groups. (C) The differential of IPS scores between
KIF20A high and low expression groups. (D) The correlation of KIF20A and the genes of immune inhibitory and stimulatory. (E) Distribution of
immune response to ICIs in different subgroups in IMvigor 210 cohort. ROC curve showing the value of KIF20A for predicting the response to ICIs in
IMvigor 210 cohort (F) and GSE78220 (G). Data are presented as mean ± SD. ns indicates no statistical difference, ***P < 0.001.
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multiple GEO cohorts using bulk RNA-seq, TMA using qPCR and

IHC, and one cohort using scRNA-seq. Notably, KIF20A

demonstrated excellent predictive ability, distinct from published

gene prognosis-predicting signatures. Overexpression of KIF20A in

two HCC cell lines (SMMC7721 and SNU449) enhanced

proliferation, invasion, and metastasis in vitro and in vivo,

underscoring its crucial role in HCC progression.

Cell cycle dysregulation is a hallmark of cancer, disrupting the

balance of oncogenes and tumor suppressor genes, activating

proliferation-related pathways, and promoting excessive cell

division (34). Our study found that KIF20A is highly associated

with cell cycle-related signaling pathways such as G2M and E2F, as

well as apoptosis, using GSEA in both bulk RNA-seq and scRNA-

seq. FCM results revealed that overexpression of KIF20A increased
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the proportion of the G1 phase. Furthermore, apoptosis-related

proteins like p21, p53, bax, and caspase 3 were downregulated,

while bcl2 was upregulated by overexpression of KIF20A. Thus,

KIF20A might not only participate in cell cycle arrest via the p53-

p21 or p53-E2F-G2M pathways but also suppress apoptosis via the

p53-bax-bcl2-caspase3 pathway.

T cell exhaustion remains an ongoing concern in cancer

research (35, 36). Different from traditional views, Rudloff et al

(37) found that CD8+ T cell exhaustion could occur as soon as 6

hours after contact with the tumor. In this study, we first observed a

decrease in CD8+ T cells in the KIF20Ahigh group compared to the

KIF20Alow group using bulk RNA-seq, and subgroups of Tex and

Treg were increased in the KIF20Ahigh group using scRNA-seq.

These findings suggest that KIF20A might induce CD8+ T cell
FIGURE 8

The novel stage can predict prognosis well. (A) The forest plot demonstrating the prognostic value of KIF20A in datasets of TCGA-LIHC, GEO,
ICGC-JP-HCC and TMA. (B) The dendrogram of the current RPA. (C) Kaplan-Meier survival curve of OS between different clusters based on RPA.
(D) Calibration curves showed the concordance between predicted and observed 1-, 2-, and 3-years survival rates. (E) The broken line graph
showing the AUCs of RPA_stage, AJCC_stage and grade. (F–H) Disease curves analysis for RPA_stage, AJCC_stage, grade, child_pugh_grade
and KIF20A at 1-, 2-, and 3-years to assess clinical utility in TCGA-HCC cohort.
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exhaustion. Moreover, while exhaustive T cells may still proliferate

in human tumors (38), the proliferation mechanism remains

unknown. We found that the Tmem subgroup was decreased in

the KIF20Ahigh group compared to the KIF20Alow group using

scRNA-seq, and cellular development trajectory analysis revealed

that Tmem differentiates into Tex over pseudotime. Further,

cellChat analysis suggested that the most correlated signaling

pathway between KIF20Ahigh HCC and NK/T cells was SPP1-

CD44. As a receptor, CD44 was also correlated with exhaustion

biomarkers CD274, LAG3, TIGIT, PDCD1, HAVCR2, and CD276.

Consequently, we speculated that KIF20A might promote the

differentiation of Tmem into Tex via the SPP1-CD44 axis,

resulting in immune escape.

Tumors can influence their TiME by releasing signaling molecules,

promoting angiogenesis, and inducing immune tolerance (39).

Conversely, TiME can affect the growth and development of cancer

cells (40, 41).We found that immunogenicity within KIF20AhighHCC

was higher than within KIF20AlowHCC. KIF20A correlated positively

with immune checkpoint inhibitors CD274, CD276, CTLA4, and

PDCD1. Additionally, KIF20Ahigh patients had lower TIDE and

higher MSI scores compared to KIF20Alow patients, indicating that

KIF20Ahigh patients may benefit more from ICIs, a finding confirmed

by IPS analysis. These findings were validated in the IMbrave cohort of

298 patients receiving ICIs. KIF20A outperformed CTLA4 and PD-L1

in predicting response, suggesting that KIF20A could serve as an

alternative biomarker in ICI decision-making.

The modified TNM staging system, incorporating KIF20A, is

another highlight of this study. After confirming the independent

prognostic value of KIF20A across multiple cohorts, we integrated it

into the current TNM staging system using RPA. The novel staging

system categorized patients into three clusters (C1, C2, and C3)

with distinct prognoses. DCA analysis showed that the novel

staging system offered better clinical net benefits than the current

staging system alone. Additionally, drug susceptibility testing

revealed significant differences in the IC50 of chemotherapy

agents and targeted agents among the three clusters, indicating

that the novel staging system could guide chemotherapy and

targeted therapy management.

However, this study also has some limitations that can be

further explored in future work. Firstly, more detailed in vivo

animal experiment data, including liver-to-body weight ratio, can

provide more information on the impact of KIF20A on tumor

burden. Secondly, the impact of KIF20A on the genome can be

further analyzed through CRISPR screening technology (42).

Finally, multi-dimensional single-cell sequencing technology with

spatial and temporal genomics can provide more reliable evidence

on the impact of KIF20A on the tumor microenvironment (43).
5 Conclusion

In this study, we have established KIF20A as a significant player

in the progression of HCC. Through comprehensive multi-omics

analysis, including bulk RNA-seq and single-cell RNA-seq, we

confirmed the upregulation of KIF20A in HCC tissues. Our in

vitro and in vivo experiments demonstrated that KIF20A promotes
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HCC cell proliferation, migration, and invasion. Mechanistically,

KIF20A influences key cell cycle and apoptosis pathways,

contributing to tumor growth and metastasis. Furthermore,

KIF20A was shown to induce T-cell exhaustion, potentially

facilitating immune escape. Importantly, KIF20A’s correlation

with immune checkpoint inhibitors suggests that KIF20Ahigh

patients could benefit more from immune checkpoint inhibition

therapies. Finally, our novel TNM staging system incorporating

KIF20A expression provided superior prognostic accuracy and

clinical utility, offering a valuable tool for guiding personalized

treatment strategies in HCC. These findings underscore the

potential of KIF20A as both a prognostic biomarker and a

therapeutic target in HCC.
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