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Periodontitis is a highly prevalent chronic disease. Despite decades of extensive

research on the topic, a complete understanding of its immunopathogenesis,

especially when linked to other inflammatory comorbidities, is lacking. Ex vivo

human and in vivo animal experiments have shown the host inflammatory

response’s crucial role in both the disease’s onset and its systemic implications.

These approaches, however, remain questionable when translating these

findings into real-world scenarios linked to periodontitis. A clear need for new

in vivo human models is discussed, especially within the context of

understanding the host response to key pathogens linked to periodontitis,

such as Porphyromonas gingivalis (P. gingivalis). Therefore, a skin blister model

was employed to describe the stages of the host immune response in humans

after challenges by microbial and/or sterile insults. A novel human challenge

model using UV-killed P. gingivalis holds promise in producing new evidence and

bridging the gap of the host response to periodontitis and its links with other

common chronic diseases.
KEYWORDS
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1 Introduction

Periodontitis is a chronic inflammatory disease characterized by

an altered homeostasis between the subgingival microbiome and the

host gingival inflammatory response in susceptible individuals (1).

A recent report from the World Health Organization (WHO)

estimates that the severe form of the disease has affected more

than a billion cases worldwide and up to 1/5 of the global adult

population (2). Periodontitis is characterized by the progressive

destruction of hard and soft tissues supporting the tooth (gingiva,

periodontal ligament, and alveolar bone) (3). If left untreated, it will

inevitably result in tooth loss, masticatory impairment, and a severe

impact on individuals’ quality of life (4). The global burden of this

disease across the United States and Europe is estimated to be over

$150 billion (5). Its treatment relies upon self-performed improved

dental hygiene practices as well as professional dental biofilm

removal, with a small minority of patients requiring more

sophisticated procedures aimed either at resolving resistant

gingival inflammation (localized gum surgeries) and/or

attempting to rebuild in part the lost hard and soft tissues

supporting the dentition (6). The relevance of periodontitis as a

global health problem has reached greater attention over the last 30

years, confirming firm links with a substantial host response

characterized by a sustained low-grade systemic inflammation (7)

and an altered circulating inflammatory cell profile (8). Over

decades, studies have reported that periodontitis is independently

associated with numerous inflammatory disorders, such as

cardiovascular disease, type-2 diabetes, and rheumatoid arthritis,

amongst others (9).

For decades, researchers have tried to understand the

pathogenesis of periodontitis, and its possible causal association

with other common inflammatory comorbidities has been heavily

researched. The latest efforts have focused on the host-pathogens

interplay using genetic susceptibility and single-cell transcriptomic

analyses, revealing that polymorphisms of inflammatory response

genes (10) and innate immune cell dysfunction (11) confer

susceptibility of the host to periodontitis. Despite periodontal

tissue inflammation resolution following the periodontitis

management, the augmented level of some systemic inflammation

markers persists, and circulating inflammatory cells still retain their

altered periodontitis-associated phenotypes, including increased

counts of peripheral blood-derived immune cells (12)

demonstrating enhanced inflammatory responses (13, 14).

Collectively, the evidence highlights the crucial role of host

inflammatory responses (immune cells and their inflammatory

mediators) to periodontitis and the underappreciated potential

contribution of host immunoinflammatory status to periodontitis-

associated systemic inflammation.

To date, studies exploring human immune responses to a

keystone pathogen Porphyromonas gingivalis (P. gingivalis) focus

on ex vivo human models using tissue cultures (15–19) and local

gingival tissue phenotyping (20, 21). Furthermore, animal models of

periodontitis have been used to describe and understand the

gingival inflammatory response to the pathogen in rodents (22,

23). However, both approaches have numerous limitations, notably
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that they might not translate into the complexity of the in vivo

human host response to P. gingivalis due to environmental

restrictions in a controlled niche of tissue cultures and different

animal immune systems. For instance, neutrophil extracellular trap

(NET) formation (NETosis) potentiates periodontal inflammation

in mice during experimental periodontitis (24). NETosis is evident

in periodontal lesions in mice and NET removal by systemic

delivery of DNAse-I protects mice from in vivo periodontal bone

loss. Mechanistically, NETosis is regulated by peptidylarginine

deiminase-4 (PAD4)-mediated histone citrullination and this

further confirms the role of NETosis in periodontitis – PAD4 KO

mice displayed significant protection from periodontal bone loss

compared to wild-type (WT) counterparts and in vivo

pharmacologic delivery of CI-amidine to inhibit PAD4-mediated

citrullination protected WT mice from ligature-induced

periodontitis (25). However, the mechanism of NETosis in mice

is different from that in humans, as experiments of human

neutrophils have shown that the cells were still capable of

performing NETosis following the PAD4 inhibitor, Cl-amidine

(26). In terms of DNAse-I treatment, it failed to degrade NETs

purified from neutrophils in humans (27). This conflicting evidence

highlights that the mechanism shown in mice was not confirmed in

humans. Therefore, the generation of new human in vivo evidence

is crucial in unveiling the immunological mechanisms of

periodontitis and its association with inflammatory comorbidities

in humans.

The skin blister model is a recognized in vivo human

inflammation model that is safely and effectively used to study

host-pathogen interactions (28). Using this model, researchers have

unraveled important mechanisms and pathways of the human

immune response to infective agents and chronic inflammatory

diseases. This model involves the intradermal injection of a putative

agent (infective or not) and the subsequent generation of a local

skin blister (using a vacuum machine). The exudate harvested from

the artificial blister offers the opportunity to study the kinetics of the

onset and resolution of human inflammation, including the innate

and adaptive immune responses to the challenge (29, 30). This

review discusses how the skin blister model represents a novel

opportunity to understand more about the human response to a

common pathogen implicated in the pathogenesis of periodontitis

(P. gingivalis) and its close links with other systemic inflammatory

comorbidities. A brief review of the immune responses implicated

in the onset of periodontitis and its systemic consequences is

followed by a description of the novel P. gingivalis human

challenge model, outlining its potential benefits and limitations.
2 Host susceptibility to periodontitis
and its link to inflammatory
comorbidities: the case for
immune response

Periodontitis occurs as a result of polymicrobial synergy and

dysbiosis in susceptible hosts. A combination of impaired immunity
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and systemic and environmental factors could be a vital

determinant of the shift within the gingival ecosystem to

dysbiosis. The local host inflammatory response is responsible for

periodontal tissue destruction (31). For the focus of this review, a

prominent role will be given to the trait of immunologic

susceptibility which not only affects the onset of periodontitis and

its progression but also wound-healing potential during various

treatment steps of periodontitis (32).

Studies on understanding the immunologic susceptibility to

periodontitis have focused on population-level genetic analyses,

including single nucleotide polymorphisms (SNPs) of inflammatory

genes – reviewed extensively in (10) and (33). Recent genome-wide

association studies (GWAS) have contributed to the identification

of novel loci encoding immune response-related genes associated

with periodontitis (34–39). The genome studies have expanded

further using single-cell RNA sequencing (sc-RNA seq), such as in

the experiments of Williams et al. demonstrating the presence of

exaggerated responsiveness in stromal cells along with augmented

neutrophil and leukocytes infiltration in periodontal tissue of

patients suffering from periodontitis (40). Further sub-clustering

of inflammatory cells, particularly myeloid cells, also exhibited the

amplification of inflammatory response. Specifically, macrophages

derived from gingival tissue of periodontitis individuals exhibited

pro-inflammatory phenotype by highly expressing NLRP3, an

inflammasome-mediating IL-1b production (41). Translating the

evidence reported by SNP, GWAS, and sc-RNA seq studies ideally

requires in vivo human evidence on the exact mechanisms of the

pathogenesis of periodontitis.

Refined understanding of the cellular and molecular

mechanisms of host-microbe interactions in the pathogenesis of

periodontitis, as extensively reviewed elsewhere (42–44), has

important implications for the treatment of periodontitis. The

current approach of standard periodontal treatments incorporates

dental biofilm reduction surrounding the teeth and periodontal

tissues (non-surgical and surgical periodontal therapies) (45).

However, the mechanical interventions for periodontitis have

been unable to improve clinical outcomes in certain patients, not

to mention those with systemic inflammatory diseases such as

diabetes - uncontrolled disease is detrimental to periodontal

health and can boost treatment complications (46, 47). Host

modulation therapy, therefore, emerges to overcome the

limitation of mechanical debridement and has been proposed as

an adjunctive therapy alongside the standard treatments (48, 49).

Despite the numerous studies of novel host-modulating agents for

periodontitis, the majority of the agents are still in preclinical

studies and have yet to move forward to clinical applications (50).

Understanding the immunological basis of periodontitis could

also be relevant when assessing the links between the disease and

other common chronic inflammatory diseases. Periodontitis is not

confined to the gingival tissues but has been consistently associated

with increased systemic inflammation and altered circulating

inflammatory cell profiles (8, 51). Clinical evidence confirms that

patients with periodontitis exhibit elevated levels of pro-

inflammatory mediators, including IL-1b, IL-6, TNFa, and C-

reactive protein (CRP), as well as increased neutrophil counts in

peripheral blood when compared to controls (52–55). This
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relationship seems reversible as effective treatment of

periodontitis results in a normalization of some inflammatory

biomarkers, including CRP (56, 57). Some cellular markers,

however, do not seem to be affected by the resolution of local

gingival inflammation as achieved by conventional dental cleaning

sessions (13, 14, 58). Dampening the hepatic systemic response due

to a reduction of local inflammatory cytokines is the most plausible

mechanism explaining a reduction of CRP after treatment of

periodontitis. The lack of resolution of immunologic changes

could result from a trained immunity state induced by

periodontitis-associated systemic inflammation (59). As

previously described, this process could be defined as innate

immune memory involving changes in the hematopoietic stem

and progenitor cells (HSPCs) in the bone marrow after exposure

to certain microorganisms (60).

Both clinical and animal experimental evidence support the

notion that trained immunity could be a key mechanism explaining

the systemic health implications of periodontitis. A recent clinical

study confirmed a possible link between raised periodontal

inflammation and femoral bone marrow activity in patients with

periodontitis compared to controls (61). Ishai and colleagues

provided evidence that increased bone marrow activity could

mediate the relationship between periodontitis and arterial

inflammation (62). Further, two key animal experiments

demonstrated HSPC’s involvement when infection with

pathogens linked to periodontitis was performed. In mice,

continuous release (subcutaneous injection) of a keystone

periodontal pathogen, P. gingivalis, caused increased osteoclast

differentiation in the bone marrow that was IL-6-dependent (63).

Indeed, isolated peripheral blood mononuclear cells from patients

with periodontitis compared to healthy controls are predisposed to

RANKL-induced osteoclastogenesis ex vivo (64). Further

experimental evidence shows that periodontitis-triggered

maladaptive innate immune memory in the bone marrow

produces myeloid cells with enhanced inflammatory responses. Li

and colleagues further confirmed that either experimental

periodontitis or arthritis-induced trained immunity plays a role in

the two-way relationship between periodontitis and arthritis (65).

In this context, enhanced responses in inflammatory cells (e.g.

increased production of pro-inflammatory mediators upon ex vivo

stimulation) are evident in patients with periodontitis; the immune

cells retain these phenotypes following the treatment of

periodontitis – extensively discussed in ref (8). This begs the

question: could trained immunity be triggered by periodontitis in

humans? It remains an important question that warrants

further investigation.
3 The translational potential of skin
blister model in inflammation research

In vivo human inflammation models can be classified into two

categories based on the delivery route of the challenge. The first

group relies upon intravenous injection of bacterial endotoxins (66),

cytokine administration (67), typhoid vaccine (68), and strenuous

exercise (69), for example. Given the potentially robust systemic
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inflammatory reaction and possible side effects, most of these

models require being conducted in highly controlled research

centers. Alternatively, less invasive inflammation models triggered

by local intervention have been developed. Our group has

previously characterized a human model of treatment of

periodontitis (70). A transient systemic inflammatory response of

moderate magnitude has been described extensively (70–72). Local

administration of inflammatory stimuli, for example, in the skin,

has also been proposed as a possible human model to characterize

human reaction to infective agents. This localized tissue

inflammation model facilitates the investigation of leukocyte

migration and accumulation of soluble inflammatory mediators at

the site of injection. In a human lung infection model, different

encounters (e.g. endotoxin, ozone, and rhinovirus) to induce

inflammation have been utilized and can be delivered through

inhalation. Sample isolation is needed to understand the temporal

inflammatory profile after the challenge. However, it can be more

challenging to perform and less comfortable for the participants

(sputum collection) (73), limiting its applicability and reliability.

Skin models of inflammation offer instead a contained and

practical alternative to these systemic challenge models. Indeed,

dermal models are characterized by minimal invasiveness, multiple

sites accessible to monitor during the induction of inflammation,

and easier access for sample/fluid collection. Several types of skin

inflammation models have been established in humans based on the

categorization of agents used, including tuberculin purified protein

derivative (PPD) (74), BCG (75), cantharidin (28), Candida

(candin) antigen (76), varicella-zoster virus (VZV) (77),

Escherichia coli (E. coli) (78), and Streptococcus pneumoniae (S.

pneumoniae) (79) and lipopolysaccharides (LPS) (80). An artificial

blister is created at the inoculation site using a vacuum machine

secured on the skin at selected time points after intradermal

injection. The negative pressure generated by the machine

separates the epidermis from the dermis (Figure 1), allowing

confinement, collection and drainage of an inflammatory exudate
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(81). The intradermal injection of the pathogen resulted in localized

inflammatory responses with complete local clearance of the

pathogen and no systemic dissemination of the pathogen (30, 82).

As a self-resolving inflammatory model in humans, these

experiments have been replicated by several research groups and

have shown good tolerability for participants recruited (including

healthy individuals of different ages and patients with chronic

diseases) (83–85).

For example, in human immunobiology the cantharidin-induced

skin blister model helped to identify impaired efferocytosis in the

elderly. Furthermore, using this model researchers identified oral

intake of losmapimod – a selective p38 mitogen-activated protein

kinase (MAPK) inhibitor – as a therapeutic intervention capable of

reversing this inflammatory resolution defect (84). A similar model

has also been validated to evaluate the anti-inflammatory properties

of anti-TNF (adalimumab) and corticosteroids in reducing innate

inflammatory cell recruitment to the injection site (86).

Amplified acute inflammation onset with delayed resolution

was evaluated in patients with ulcerative colitis when challenged

with UV-killed E. coli and S. pneumoniae prior to suction skin

blister formation (83). Using the same model of UV-killed E. coli

injection, another study reported prolonged immune alterations

following the resolution of inflammation, challenging the notion

that homeostasis is achieved after acute inflammation resolves (78).

Several endogenous specialized pro-resolving mediators (SPMs)

and their receptors have been identified as key regulators of the

initial phase of inflammation resolution, and furthermore the

administration of exogenous SPMs has been shown to boost this

process in humans (87).

The skin blister model has also contributed to a greater

understanding of the dynamics of adaptive immune cells in

humans. When a tuberculin PPD injection (skin blister model)

was utilized to study human T cell recall responses, numerous

regulatory mechanisms for maintaining human memory T cells in

vivo were observed (88). The isolation of antigen-specific memory T
FIGURE 1

Intradermal injection and inflammatory exudate acquisition. A 30 gauge needle attached to a 1-ml syringe is used to administer the inflammatory
stimuli into the dermis just under the epidermis. A suction chamber is then positioned and secured over the injection site at a pre-specified time-
point. The negative pressure generated by an electronic vacuum machine separates the epidermis from the dermis and draws in the accumulated
inflammatory exudate, including inflammatory cells and soluble mediators – in response to the introduced stimulus – at the dermis. As a result, a
unilocular space between the dermis and epidermis containing inflammatory exudate is formed (an artificial blister).
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cells from the suction blister followed by in vitro stimulation to

become regulatory T cells (Tregs) was attainable, and this was

demonstrated to have a suppressing role in inflammation (89).

Synchronized production of IL-2 by CD4+ T cells in blister fluid

and skin biopsy was showed in the model, enabling the non-

invasive characterization of potential defects in adaptive immune

response in the elderly. Blister fluid analyses became a valid

alternative to skin biopsy to characterize the dynamic of host

response to various triggers (74).

A series of further experiments involving patients with active,

latent, or cured tuberculosis (TB) was able to describe the role of IL-

17A and Th17 responses in patients with active TB, when compared

to those with latent TB (85). When TB treatment was administered

in these patients, the same immune changes resolved, with a

decrease in IL-17A and Th17 responses. In this case, it was skin

biopsy samples following the intradermal injection of tuberculin

PPD that were analyzed (85). Subsequent experiments using this

model enabled the assessment of the safety and specificity of novel

monoclonal antibodies aimed at reducing the recruitment of Th17

during adaptive immunity (90). When candin was used as an

inflammatory insult, the skin blister model revealed that restricted

immunosurveillance by memory T cells in the ageing population is

dependent on the reduction of macrophage-derived TNFa
production (76). Finally, when using VZV as an insult,

researchers showed how regulatory T cells may be derived from

memory T cells during localized inflammatory responses (91).
4 Intradermal injection of UV-killed
P. gingivalis: an in vivo human skin
inflammation model to investigate
periodontitis and its link to
systemic diseases

4.1 Skin inflammation model triggered by
P. gingivalis in periodontal research

For over three decades, mice studies have utilized a skin

inflammation model to assess host response to P. gingivalis, a

common Gram-negative anaerobe implicated in the development

of periodontitis. The most common model is the subcutaneous

chamber model, which involves implanting a titanium coil chamber

beneath the skin in the dorso-lumbar region of the mouse. After the

coil placement has healed, P. gingivalis is injected into the chamber,

allowing researchers to evaluate the host response to the bacterial

challenge (92). When P. gingivalis injection was repeated on the

model, researchers were able to understand the initiation of

adaptive immune response in a time-dependent manner (93, 94).

Moreover, studies using this model demonstrated how P. gingivalis

can evade the host oxidative immune response and survive

by escaping host antimicrobial killing (95, 96). Thanks to this

model, researchers were able to demonstrate how P. gingivalis

(through the function of gingipain) stimulated a specific

inflammatory response and, at the same time, inhibited the

antimicrobial killing and neutrophil phagocytosis resulting in an
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oral microbial dysbiosis which could ultimately lead to the

development of periodontitis (97).

Although skin inflammation models using cantharidin (28),

tuberculin PPD (29, 77), varicella zoster virus, E. coli (30), or S.

pneumoniae (79) have been successfully used before, experiments

using P. gingivalis in humans have not been attempted to date.

Cantharidin is a vesicant secreted by blister beetles and 24 hours

after its application onto the skin, a blister is formed on the skin and

accumulates in the subsequent 72 hours. The 24 hour skin blister

represents the acute phase of inflammation while the resolution of

inflammation can be observed in the blister 72 hours after dermal

cantharidin application (84, 98). When using other inflammatory

insults, the induction of an artificial blister on the skin is needed

with the help of a small electronic vacuum machine. Specifically,

negative pressure generated by this machine is applied over the

injection site, generating an artificial blister (Figure 1). The timing

of blister formation is dependent upon the inflammatory insult and

experimental design of the study (29, 30, 77, 79). For example,

artificial blister formation was performed 7 days after the injection

of either tuberculin PPD or VZV to investigate T-cell recall profiling

and responses in humans (29, 77). When using E. coli or S.

pneumoniae it took 4- and 48-hours post-injection to evaluate the

acute response and inflammation resolution (30, 79). Host effects

when challenging the skin has been previously reported. For

example, when challenging participants with UV-killed E. coli,

moderate swelling and mild discomfort in the axillary region were

reported, but receded after 24 hours, with a complete resolution

within 48 hours (30). Furthermore, when adopting the artificial

blister creation, skin pigmentation has been reported and resolves

within 4-6 weeks in Caucasians participants, although it could

persist longer in darker skin types (30).
4.2 The potential benefits and limitations
of the P. gingivalis-induced skin
inflammation model

Research investigating the immunological mechanisms

involved in the pathogenesis and progression of periodontitis and

its link to other systemic chronic diseases has primarily used human

ex vivo or animal in vivo models. Whilst on the one hand, these ex

vivo and animal experiments allowed us to understand the changes

that occur within the gingival tissue in response to dental biofilm

accumulation and its potential systemic implications, the

translation of this evidence into humans remains to be confirmed.

A specific human model of inflammation in periodontal research

could therefore improve our understanding of how humans

respond to challenges of individual or multiple micro-organisms

implicated with a common oral disease, as well as how it might

impact systemic wellbeing.

Mouse models for periodontitis have been comprehensively

reviewed by Rojas and colleagues (99). The current limitation of the

model encompasses substantial immunological differences between

mice and humans (100). Seok et al. showed that the genomic

responses to different inflammatory stimuli in humans poorly

correlated with mice models (101). Hence, the translational
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projection of results - in particular the investigation of the host-

microbial interactions in periodontitis – to meet human research

frameworks is limited and difficult (99). Moreover, humanized mice

models for immune investigations have been developed, but the

complications due to xenogeneic transfers are ongoing challenges

that researchers need to overcome, not to mention the potential bias

of results owing to xenogeneic immune response (102). Therefore,

human in vivomodels could address those issues as experiments, on

humans offer the benefits of being relevant to the complexity of

human in vivo physiology.

Despite the versatility of animal models in biomedical research

such as transgenic mice, the successful translation of animal studies

for human clinical applications remains questionable. This is

particularly true of inflammation-driven disease studies (103). For

instance, more than 100 clinical trials have failed to reproduce the

successful approach of modulating septic response to infection in

animals revealed by sepsis studies (104). Such preclinical research

can result in expensive and fruitless clinical implications for patient

care. These unreliable findings mean that the overreliance of

animals in preclinical research may not contribute to tangible

clinical benefit, instead becoming an unnecessary and avoidable

research inefficiency (105). Conducting research utilizing human in

vivomodels seems wise to reduce the use of animals in research and

that in compliance with the Three Rs principle (replacement,

reduction, and refinement) that underlies appropriate

involvement of animals in research (humane animal experimental

research) (106).

There would be several advantages in developing a human

experimental model for P. gingivalis. Firstly, it could help compare

individuals’ host response to various types of micro-organism,

including different genetically modified periodontal bacterial

strains (i.e. lacking certain virulence factors such as gingipains

and/or pathogen-associated molecular patterns such as LPS).

Secondly, there is growing interest in understanding the potential

impact of periodontitis on the overall host inflammatory burden

and development/progression of other common chronic diseases

such as diabetes, Alzheimer’s and cardiovascular diseases.

Gathering information on the host response (both cellular and

biochemical) to common pathogens linked to periodontitis such as

P. gingivalis could confirm a number of hypothetical causal

pathways/mechanisms that have been proposed to date. Thirdly,

performing these experiments in individuals presenting with

healthy gingival tissues or already affected by periodontitis could

help understand the different susceptibility traits linked to the onset

and development of periodontitis. Finally, the same model could

provide evidence to support new strategies for addressing

periodontal inflammation and managing patients with

periodontitis. This could enhance approaches to reducing damage

and improving the chances of regaining soft and hard tissues

around teeth (107–110). SPMs in periodontitis are extensively

discussed elsewhere (111, 112). The exact SPMs that humans

produce endogenously are inflammatory stimulus-dependent,

meaning that different microorganisms may trigger distinct

patterns of SPM production (113, 114). A human inflammation-

induced skin model including P.gingivalis could provide insights

into which SPM signatures drive the resolution of inflammation.
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It is also important to note the limitations of using the skin

infection model. First, the use of inactivated bacteria in such a

model will not necessarily correlate with the same responses

expected when challenged by live micro-organisms. Second,

several lines of evidence adapting pathogens to induce skin-

inflammation (30, 79) highlighted a substantial variation in

outcomes between individuals following the challenge, as well as

low numbers of cells retrieved from the blister exudates. Third,

when using pre-specified time points, a novel skin blister model

using periodontal pathogens would be limited to short-lived

exposures to micro-organisms, and researchers could only yield

two samples per participant (30, 79). Multiple sites on the skin

could be used to perform the same challenge (80), but this will

inevitably increase the complexity and potential risk of the model

for potential participants, without mentioning the increased ethical

concerns/considerations (discussed below).
4.3 Intradermal injection of UV-killed P.
gingivalis: practical considerations

Although some limitations were previously discussed, the safety

and practical aspects of developing a model of P. gingivalis skin

blister inflammation in humans must be in a full adherence to

ethical standards of medical research involving human participants

as detailed in the Declaration of Helsinki (115). In order to achieve

that, the model must first involve a team of immunologists,

microbiologists and experts in clinical pharmacology confirming

that the research utilizing the model is scientifically sound and

rigorous in design. Supported by the urgency of the need for human

models discussed above, research utilizing the inflammation-

induced skin blister human model may only be conducted if the

importance of the research outcomes outweighs risks and burdens

to the research participants. As the model includes the intradermal

injection of P. gingivalis, measures to minimize risks of the

intervention must be implemented, including deliberate selection

of bacterial strains and their growth media and tolerable reactions

to the participants after the injection (discussed below). Lastly,

appropriate compensation for the volunteers who participate in the

studies using the model must be ensured because the procedure of

intradermal injection and immune reactions that follow are likely to

cause participant’s discomfort and inconvenience.

P. gingivalis was selected as putative pathogen relevant to

periodontitis and able to generate a local inflammatory response.

Indeed, it is a keystone pathogen in periodontitis, and its systemic

effects have been reported in both pre-clinical and clinical studies

(23, 97, 116, 117). The first task to begin the development of the

model includes the selection of which P. gingivalis strain and growth

media to allow safe but effective intradermal injection. The wild-

type strain 2561 could be considered a candidate of P. gingivalis

rather than either strains BAA-308 (W83) or 53978 (W50), in-

keeping with the safety concerns of attempting for the first time the

intradermal injection of a Gram-negative micro-organism, hence a

less virulent strain could be chosen (118–122). Second, the possible

growth media for P. gingivalis; in particular, past experiments

mainly used brain heart infusion (BHI) to culture the bacteria
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(23, 123, 124). This media, however, contains bovine brains, and

safety concerns were evaluated about the possible risk of cross-

contamination during the process of bacterial isolation. Alternative

growth media had therefore been evaluated such as PYG broth

(125–128). This growth media was chosen to grow the bacterium in

anaerobic conditions similar to the BHI media, and it is also free

from animal-derived products (128).

The next step in the development of such a model following the

establishment of P. gingivalis isolates would be to confirm a safe

route of administration of P. gingivalis for human experimental

applications. This could be achieved by generating inactivated,

structurally preserved, and measurable micro-organisms. UV

exposure is selected as a potent technique to inactivate bacteria

without compromising the bacteria’s structural integrity. UV light

only targets bacterial DNA, particularly inducing pyrimidine

dimers between DNA thymine bases. Subsequently, the micro-

organism becomes incapable of replicating without losing their

protein structures, including virulence factors (129). A set of

experiments could then designed to determine the amount of

UV-killed P. gingivalis for intradermal injection that is safe and

sufficient in generating a self-resolving intradermal inflammatory

response. Adequate bacterial quantification experiments should be

completed to enable the generation of a sufficient number of micro-

organisms to use in the model (130). Viable plate counts in

combination with turbidity (optical density) measurements could

be used to plot bacterial growth (130, 131) and appropriate

quantification of UV-killed P. gingivalis. After measurable

inactivated P. gingivalis is established, dose escalation experiments

to determine bacterial numbers that humans could tolerate but

sufficient to generate a reproducible inflammatory response, are

required. Several lines of evidence can be reviewed and used to

complete this part of the experiments using different quantities of

UV-killed P. gingivalis (30, 79, 83).
5 Conclusion

The inflammation-induced skin blister model is a well-established

human model of inflammation that successfully captures the

immunoinflammatory status of healthy and diseased individuals.

Specifically, the model can unveil the complex mechanisms of

human immune responses in chronic inflammatory diseases and/or

in response to specific inflammatory stimuli/infections. The host

laboratory developed for the first time a safe and reproducible UV-

killed P. gingivalis intradermal injection model followed by artificial
Frontiers in Immunology 07
suction blister formation and collection of cellular and soluble

inflammatory infiltrates.

Periodontal research could use this novel model to enhance our

understanding of which immunological mechanisms occur in

humans with periodontitis and shed greater light on the potential

link between this common chronic disease and other systemic

inflammatory disorders.
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