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Adaptive anti-tumor immunity is currently dependent on the natural immune

system of the body. The emergence of tumor immunotherapy has improved

prognosis and prolonged the survival cycle of patients. Current mainstream

immunotherapies, including immune checkpoint blockade, chimeric antigen

receptor T-cell immunotherapy, and monoclonal antibody therapy, are linked to

natural immunity. The cGAS-STING pathway is an important natural immunity

signaling pathway that plays an important role in fighting against the invasion of

foreign pathogens and maintaining the homeostasis of the organism. Increasing

evidence suggests that the cGAS-STING pathway plays a key role in tumor

immunity, and the combination of STING-related agonists can significantly

enhance the efficacy of immunotherapy and reduce the emergence of

immunotherapeutic resistance. However, the cGAS-STING pathway is a double-

edged sword, and its activation can enhance anti-tumor immunity and

immunosuppression. Immunosuppressive cells, including M2 macrophages,

MDSC, and regulatory T cells, in the tumor microenvironment play a crucial role

in tumor escape, thereby affecting the immunotherapy effect. The cGAS-STING

signaling pathway can bi-directionally regulate this group of immunosuppressive

cells, and targeting this pathway can affect the function of immunosuppressive

cells, providing new ideas for immunotherapy. In this study, we summarize the

activation pathway of the cGAS-STING pathway and its immunological function

and elaborate on the key role of this pathway in immune escape mediated by the

tumor immunosuppressive microenvironment. Finally, we summarize the

mainstream immunotherapeutic approaches related to this pathway and explore

ways to improve them, thereby providing guidelines for further clinical services.
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1 Introduction

The emergence of tumor immunotherapy has significantly

improved the prognosis and prolonged survival of cancer patients

over the past decade (1). Current mainstream immunotherapies

include immune checkpoint blockade (ICB) (2), chimeric antigen

receptor T-cell (CAR-T) immunotherapy (3), and monoclonal

antibody therapy (4). The goal of most immunotherapies is to

enhance adaptive anti-tumor immunity. Indeed, adaptive anti-

tumor immunity is highly dependent on strong innate immunity

(5). Innate immunity, the first immune barrier of an organism,

plays an important role in combating the invasion of foreign

pathogenic microorganisms and maintaining homeostasis (6).

The cGAS-STING pathway has emerged as a critical part of the

innate immune defense of the host, and its role in tumor immunity

has been elucidated. Numerous studies have demonstrated that

activating the cGAS-STING pathway can influence the efficacy of

tumor immunotherapy. The combination of STING-related

agonists significantly improves patient prognosis and reduces the

occurrence of immunotherapy resistance (7, 8). Drugs targeting this

pathway may become more widely available, as evidence suggests

that the cGAS-STING pathway is an excellent tumor target.

Tumors continuously promote the fusion of surrounding

tissues during their initiation and development, creating a

microenvironment conducive to tumor growth known as the

tumor microenvironment (TME) (9). Tumor-associated immune

cells, including M2 macrophages (10), MDSC (11), regulatory T

(Treg) cells (12), immune factors, extracellular matrix, and other

components, interact with tumors to form an immunosuppressive

microenvironment, mediating tumor immune escape and leading to

immunotherapy failure (13). The cGAS-STING pathway can

bidirectionally regulate the effects of immunosuppressive cells,

and targeting the cGAS-STING pathway can influence the

function of immunosuppressive cells.

In this study, we reviewed the immune function of the cGAS-

STING pathway, elaborated on its key role in the immunosuppressive

microenvironment-mediated immune escape of tumors, summarized

the relationship with mainstream immunotherapeutic approaches,

explored ways to improve these immunotherapies to further serve the

clinic, and provided guidance suggestions.
2 cGAS-STING pathway activation and
its immune function

The cGAS-STING signaling pathway is an innate immune

defense pathway that has evolved to combat pathogenic microbial

infections (14). It is multifunctional, and dysregulation can disrupt

cellular and organismal homeostasis by triggering various abnormal

innate immune responses associated with pathology (15).

Increasing evidence suggests that the cGAS-STING pathway is

involved in tumorigenesis, metabolism, immunomodulation, and

immunosuppression and can modify the TME to participate in

tumorigenesis (16). The cGAS is a cytosolic DNA sensor or receptor

that binds directly to DNA and is activated in the presence of
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cytosolic DNA (17). The cGAS has two double-stranded DNA

(dsDNA) binding sites, and upon binding to DNA, it dimerizes

from its inactive to active form and undergoes a conformational

change (15, 18, 19). The cGAS dimer catalyzes the formation of a

phosphodiester bond between ATP and GTP, forming 2′3′-cGAMP

(20). Post-translational modifications can regulate cGAS activation

at the transcriptional level, with acetylation and phosphorylation

affecting cGAS activation, allowing the possibility of modulating the

cGAS-STING signaling pathway (19, 21, 22). The 2′3′-cGAMP is a

cyclic dinucleotide that acts as a second messenger that translocates

into the endoplasmic reticulum (ER) and activates the

transmembrane receptor protein STING (23). Due to its

conformational specificity, 2′3′-cGAMP has also been reported to

transfer from one cell to another via cellular gap junction proteins

to activate the STING cascade signaling in other cells (24). STING is

an ER membrane-bound protein with binding sites for TANK-

binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3).

Numerous inactive STING dimers exist in the ER, and many TBK1

molecules can bind to STING dimers to form an inactive STING-

TBK1 complex. The 2′3′-cGAMP activates STING upon binding to

STING. Activated STING interacts with TBK1 to promote

autophosphorylation of the TBK1 CTT region, which is also

phosphorylated by TBK1 (25–28). Phosphorylated STING binds

to the positively charged region of IRF3, leading to IRF3 activation

and conformational changes. The activated IRF3 dimer translocates

to the nucleus and activates the transcription of type I interferon

(IFN-I) and IFN-stimulated genes, promoting the cellular secretion

of IFN-I (29).The most direct effect of IFN-I is to induce dendritic

cell (DCs) maturation and mediate anti-tumor immunity (30). IFN-

I can be divided into IFN-a and IFN-b. Both are slightly different in

structure and function (31). Among other things, IFN-a not only

promotes the localization of MHC-I to antigenic storage

compartments within DCs, but also increases the levels of MHC-I

and MHC-II at the cell membrane (32). Tumor cells can induce

their own and DCs to produce IFN-b and thus participate in the

immune response (33, 34). Dan et al. likened IFN-I to the bridge

between the cGAS-STING pathway and CD8+ T cell-mediated anti-

tumor immunity (5). After the uptake of tumor DNA, DCs activate

the IFN pathway by activating STING and inducing tumor antigen

expression via MHC in the TME. Subsequently, DCs can present

tumor antigens to T cells and induce CD8+ T activation (35).

Meanwhile, the activation of natural killer (NK) cells and fibroblasts

is inextricably linked to the cGAS-STING pathway (36) (Figure 1).

However, as the function of the cGAS-STING pathway remains

to be elucidated, there is increasing evidence that it mediates anti-

tumor immunity and plays a key role in promoting malignant

tumor progression. Under normal conditions, eukaryotes maintain

a strict boundary between DNA and the cytoplasm to avoid

autoimmunity caused by unwanted contacts (37). Genomic

instability and DNA damage in tumor cells can lead to the

appearance of abnormal DNA in tumor cells (38). Cancer cell

proliferation causes genomic instability, usually characterized by

the segregation of chromosome mismatches during mitosis. Due to

segregation defects, lagging chromosomes give rise to micronuclei

in a cell cycle-dependent manner (39). The micronucleus envelope

ruptures readily without a stable nuclear membrane, exposing its
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genomic content to the cytoplasm (40, 41). In triple-negative breast

cancer (TNBC), chromosomal instability causes cGAS-STING-

dependent IL-6 production. Upregulated IL-6 and NF-kB prevent

STAT1 and ASK-JNK-mediated cell death, leading to tumor cell

survival (42). DNA damage includes endogenous DNA damage

during mitosis or exogenous DNA damage induced by

radiotherapeutic or chemotherapeutic agents. Deletion of the

MutLa subunit MLH1 disrupts DNA repair. MutLa specifically

regulates exonuclease 1 (Exo1). MutLa can specifically regulate

Exo1, leading to unrestricted excision of DNA due to the altered

structure of MutLa, increased formation of single-stranded DNA,

release of abnormal chromosomal and nuclear DNA into the

cytoplasm, and activation of the cGAS-STING signaling pathway

(41). Exposure to ionizing radiation or chemotherapeutic

treatments, such as platinum-based drugs, can also induce DNA

double-strand breaks and activate the cGAS-STING pathway to

maintain tumor cell survival (43). This may be relevant to tumor

recurrence and drug resistance.

Besides the aberrant production and release of nuclear DNA,

mitochondrial DNA (mtDNA) may activate the cGAS-STING

pathway. In some malignant cells experiencing oxidative stress

and mitochondrial dysfunction, mtDNA may also be released into

the cytoplasm due to excessive oxidative stress and reactive oxygen

species (ROS) or structural damage to the mitochondrial

membrane, thereby mediating the cGAS-STING cascade signaling
Frontiers in Immunology 03
pathway (44). When the mitochondrial protein Lon is

overexpressed in oral cancer, oxidized mtDNA is released into the

cytoplasm and activates the cGAS-STING-IFN signaling loop,

thereby inhibiting T cell activation by upregulating the expression

of PD-L1 and IDO (45). Drp1 overexpression in esophageal

squamous cell carcinoma can cause mitochondrial dysfunction,

inducing mtDNA release to activate STING, triggering autophagy,

and promoting tumor cell proliferation and migration (46). OMA1

is a metalloproteinase located in the inner mitochondrial

membrane. OMA1 interacts with HSPA9 to induce mitochondrial

phagocytosis in gliomas. OMA1 acts as an immune evader by

increasing mtDNA release, activating the cGAS-STING pathway,

and promoting PD-L1 transcription (47). Additionally, tumor cells

can spontaneously take up mtDNA from the TME, promoting

tumor survival by activating the cGAS-STING pathway (41, 48).
3 The role of the cGAS-STING
pathway in tumor immune evasion

The human immune system constantly removes “non-self”

factors to maintain homeostasis. The emergence of tumors

indicates that tumor cells use certain pathways to evade the

body’s surveillance (49). Immune escape of tumor cells has

become a major obstacle in tumor immunotherapy, and
FIGURE 1

Bidirectional immunomodulation using cGAS-STING. When cGAS binds to cytosolic DNA in tumor cells, it can form 2'3'-cGAMP, which translocates
to the ER as a second messenger and activates the transmembrane receptor protein STING. The 2'3'-cGAMP can also be translocated from one cell
to another via cellular gap junction proteins, thereby activating the STING cascade signaling in other cells. Activated STING interacts with TBK1 and
promotes TBK1 phosphorylation, thereby phosphorylating STING. Phosphorylated STING activates IRF3, which translocates to the nucleus and
activates IFN-I gene transcription, thereby promoting IFN-I secretion from tumor cells. However, IFN-I upregulated PD-L1 expression in tumor cells
and reduced the immune response. Additionally, IFN-I induced Treg infiltration by upregulating IL-10 expression, leading to immune escape.
Moreover, STING mediates NF-kB activation and promotes IL-6 secretion, thereby promoting tumor cell survival. DCs in the TME take up broken
tumor DNA, initiating the cGAS/STING/TBK1/IRF3 pathway and promoting MHC molecule expression. Subsequently, DCs can present tumor antigens
to T cells and induce CD8+ T cell activation to exert anti-tumor effects.
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eliminating immune escape may improve the prognosis of tumor

patients (50). Immunoediting and immunosuppressive

microenvironments are key aspects of tumor escape. The former

results in the absence of tumor cell-specific antigens and low

expression of MHC molecules, thereby hindering the recognition

of tumor cells by T lymphocytes. This reduces the immune response

of the body to the tumor via various pathways, including

immunosuppressive cells and cytokines, thereby ensuring tumor

cell survival (51).

The cGAS-STING pathway regulates immune escape through

several mechanisms. Among tumor-associated T cells, LRRC8C-

enriched T cells can mediate immune escape by transporting

cGAMP and activating the STING-p53 axis to suppress T cell-

dependent adaptive immunity (52). Tumors can also mediate T cell

death by activating the STING-IFN pathway in T cells, which can be

blocked using STING inhibitors (53). Overexpression of the

mitochondrial protein Lon releases oxidized mtDNA into the

cytoplasm, mediating immunosuppression by activating the IFN

pathway via cGAS-STING-TBK1, upregulating PD-L1 and IDO-1

expression and inhibiting T cell activation (43). The cGAS-STING

pathway effector molecule, IFN-b, can also exert immunosuppressive

effects. IFN-b in IFN-I induces Tregs infiltration by upregulating IL-

10 expression, leading to immune escape (54, 55). IFN-I can also

induce radiation resistance by promoting the recruitment of

immunosuppressive myeloid cells via the CCR2 pathway (56).

Sustained IFN-I (IFN-a and IFN-b) activation can induce

upregulation of PD-L1 in tumors and DCs, which in turn increases

NOS2 expression, ultimately leading to failure of PD-1

immunotherapy (56, 57). Besides these mechanisms, direct DNA-

mediated activation of the cGAS-STING pathway has been

implicated in immune escape. DNA damage activates STING

signaling, and STING-mediated activation of NF-kB enhances IL-

6-mediated STAT3 expression in TNBC cells, thereby inducing

tumor cell survival and immunosuppression (58). Nucleotidase

ENPP1 selectively degrades extracellular cGAMP to mediate

immunosuppression. cGAMP can generate immunosuppressive

adenosine after degradation, thereby reducing immune cell

infiltration (Figure 1) (59).
4 cGAS-STING signaling in
immunosuppressive cells

4.1 cGAS-STING pathway
and macrophages

TAMs are important immune cells in the TME that play key

roles in tumor invasion, drug resistance, malignant proliferation,

and metastasis. TAMs receive signals from the TME and perform

various immunological functions (60). Generally, naive

macrophages (M0) can be polarized into two primary

subpopulations: M1 and M2. M1 macrophages induce

inflammation and play an important role in eliminating

pathogens, tumors, and foreign bodies. M2 macrophages are key

cells in tumor development because they reduce the immune
Frontiers in Immunology 04
response and promote immune escape (61). Additionally, M2

macrophages can be subdivided into four subpopulations: M2a,

M2b, M2c, and M2d.

The primary phenotypic markers of M1 macrophages are

CD80/86high, MHCIIhigh, TLR2, TLR4, and CCR7high, which

generally inhibit cancer. The primary phenotypic markers of M2a

macrophages are CD206high, CD209high, Dectin-1high, CD163low-

medium, CD86low, CD14low-medium, and IL-1R, which promote tissue

repair, tumor cell proliferation, metastasis, and invasion. The

primary phenotypic markers of M2b macrophages are CD163low,

CD86medium, MerTKmedium-high, CD16, TLR1, and TLR8, which can

phagocytose apoptotic cells. The primary phenotypic markers of

M2d macrophages are CD163high, CD86low, and CD14high, which

can promote angiogenesis and tumor metastasis (62). Tumor tissues

can recruit and alter the phenotype of macrophages to favor M2

macrophages by remodeling the immune microenvironment (63,

64). The pro-tumorigenic role of M2 macrophages is an important

factor in tumor recurrence after surgical resection (65).

The cGAS-STING pathway and its downstream effects mediate

the polarization of tumor-associated macrophages. The cGAS-

STING pathway inhibits M2 macrophage polarization and

promotes anti-tumor immunity. The cGAS-STING agonists

promote the expression of co-stimulatory molecules in DCs and

reprogram M2 macrophages with immunosuppressive functions

into immuno-activated subtype M1 macrophages (66).

Additionally, the STING agonists, DMXAA and 2′3′-cGAMP, can

repolarize M2 bone marrow-derived macrophages to M1

macrophages in vitro, inducing tumor site-specific vascular

disruption and reducing tumor burden in non-small cell lung

cancer (NSCLC) mouse models (Figure 2A) (67). Worryingly,

phase III clinical trials showed that DMXAA did not improve

first-line efficacy in advanced NSCLC (68). However, it showed

good results in mouse models (69). In colorectal cancer liver

metastasis, STING can activate IRG1, promote nuclear

translocation of TFEB, inhibit the polarization of M2

macrophages, and reduce the ability of macrophages to promote

tumor metastasis (70). Additionally, NAMPT deficiency

significantly reduced the efferocytosis activity of macrophages,

increasing the STING pathway and IFN-I gene expression

activity, promotes IFN-b production, and consequently reduces

M2-type macrophage polarization (71). The hypoxic TME

promotes the release of numerous exosomes from glioma cells

and increases the expression of miR-25/93 in these hypoxia-

derived exosomes. Macrophages take up this group of hypoxia-

derived exosomes and miR-25/93, inhibiting the cGAS-STING

pathway, reducing IFN-b secretion, and downregulating M1

polarization-related gene expression (CXCL9 and CXCL10),

thereby reducing anti-tumor immunity (72). MARCO is a

macrophage receptor with a collagen structure, and its high

expression can enhance the immunosuppressive function of

macrophages (73–75). It is also negatively correlated with the

prognosis of hepatocellular carcinoma. In contrast, MARCO+

TAM has strong phagocytic ability and can rapidly remove dying

tumor cells from the TME, minimizing the accumulation of tumor-

derived cGAMP and ATP. The lack of extracellular ATP inhibits

P2X7R-mediated cGAMP transport on TAM surfaces. It also
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FIGURE 2

Bidirectional regulation of the cGAS-STING pathway and immune cells in the tumor immunosuppression microenvironment (A) The cGAS-STING
pathway inhibits M2 macrophage polarization and promotes anti-tumor immunity. The STING agonist, PMXAA, promotes DC overexpression of the
co-stimulatory molecule CD86, thereby reprogramming immunosuppressive M2 macrophages into immune-activating subtype M1 macrophages.
Meanwhile, STING agonists, DMXAA and 2’3’-cGAMP, can reprogram M2 macrophages into M1 macrophages in vitro. Additionally, STING activates
IRG1, promotes TFEB nuclear translocation, inhibits M2 macrophage polarity, and reduces immunosuppression. (B) The cGAS-STING pathway
promotes M2 macrophage polarization and immunosuppression. Radiation-exposed tumor cells can produce broken DNA, activate the cGAS-STING
pathway, promote IL-34 secretion, and promote M2 macrophage polarization and recruitment, thereby promoting tumor cell survival.
Simultaneously, tumor cells can release degraded DNA into the TME for macrophage uptake. Macrophage uptake activates the cGAS/STING/TBK1/
STAT6 signaling pathway, inducing the generation of M2 macrophages and promoting apoptosis of M1 macrophages. (C) Activation of the cGAS-
STING pathway induces inactivation of MDSCs, reducing their immunosuppressive function. The c-di-GMP activates the cGAS-STING pathway in
MDSC, converting immunosuppressed MDSC subpopulations into an IL-12-producing immunostimulatory phenotype that enhances the CD8+ T
cell-mediated immune response. Additionally, STING signaling activates SOCS1 protein, physically interacting with STAT3, preventing its
phosphorylation and dimerization, and reducing the immunosuppressive function of MDSCs by inhibiting the production of GM-CSF and IL-6.
(D) Activation of the cGAS-STING pathway also promotes the recruitment of MDSCs, thereby exerting their immunosuppressive function. After
irradiation, tumor cells activate the STING/IFN-I pathway and release the chemokines CCL2, CCL7, and CCL12 via the CCR2 pathway to recruit
MDSCs. The recruited MDSCs reduce the immune response of T cells and exert immunosuppressive functions. (E) Activation of cGAS-STING
attenuates Treg-mediated immunosuppression. In Tregs, activation of STING decreased GATA3/NOS2 expression, which is associated with
immunosuppression, increased CD4+ T cell infiltration, and reduced immunosuppression. (F) Activation of the cGAS-STING pathway promoted Treg
cell-mediated immunosuppression. Tumor-derived exosomes activate the cGAS-STING pathway in initial lymphocytes, activate Foxp3, STAT5, and
SMAD3, and promote the conversion of initial CD4+ T cells into Treg cells, thereby mediating immunosuppression.
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inhibits activation of the cGAS-STING pathway, reducing IFN-I

secretion by macrophages and immunosuppression (76).

In addition, the cGAS-STING signaling pathway is involved in

forming M2 macrophages. Tumor cells may shed broken DNA or

particles into the TME for macrophage uptake. After uptake,

macrophages can activate the cGAS/STING/TBK1/STAT6

pathway, inducing the formation of an M2 phenotype and

promoting apoptosis of M1 macrophages (77). In esophageal

squamous cell carcinoma, irradiation of tumor cells can activate

the cGAS-STING pathway and promote IL-34 secretion, thereby

promoting the polarization and recruitment of M2 macrophages

and tumor cell survival (Figure 2B) (78). Activation of the cGAS-

STING pathway in macrophages induces IFN synthesis and

secretion, leading to overexpression of BST2 in macrophages.

BST2+ macrophages secrete CXCL7 via the ERK pathway and

bind to CXCR2, activating the AKT/mTOR pathway and

promoting CD8+ T cell exhaustion, thereby contributing to the

poor prognosis of pancreatic ductal adenocarcinoma (79).

Additionally, Zhang et al. demonstrated that circASPH promotes

M2 macrophage polarization by stabilizing the IGF2BP2 protein

and increasing the stability of m6A-modified STING mRNA (10).

In lung adenocarcinoma, IFITM1 upregulates the expression of IL-

1a/1b, VEGFA, and IL-6 by activating the STING-TBK1-IRF3

pathway, promoting monocyte recruitment, and M2 macrophage

polarization, resulting in immune suppression (80).
4.2 cGAS-STING pathway and MDSC

MDSCs are a heterogeneous population of immature bone

marrow cells that induce T cell inactivation and mediate

immunosuppressive responses. MDSCs are rarely found in the

blood of normal individuals but appear when the body is exposed

to severe immune disorders, pathological injury, inflammatory

storms, and others (81, 82). MDSCs consist of two primary

subpopulations: monocyte-like MDSCs (M-MDSCs) versus

granulocyte-like MDSCs (PMN-MDSCs or G-MDSCs). The

molecular markers of M-MDSCs are CD11b+, CD33high, HLA-

DR−, CD14+, and CD15−. The molecular markers of PMN-MDSCs

and G-MDSCs are CD11b+, CD33medium, HLA-DR−, CD14−,

CD15+, and CD66b+ (83). M-MDSCs are predominantly

mediated by the high TGF-b, arginase (Arg1), and iNOS

expression levels to mediate the non-specific inactivation of T

cells. PMN-MDSCs primarily produce high ROS levels and

mediate immunosuppression through direct cellular contact with

T cells, reducing antigen-specific T cell responses without affecting

the response to non-specific stimuli (84). Due to the highly

heterogeneous nature of MDSCs and the complexity of their

function, the mechanism of the role of MDSCs in tumor

immunosuppression is currently unknown and requires

further investigation.

Studies have demonstrated that activating the cGAS-STING

pathway can induce inactivation of MDSCs, thereby reducing their

immunosuppressive function. The cGAMP, the initiator of the

STING pathway, can activate CD8+ T cells to produce IFN-g and
inhibit ROS and nitric oxide (NO) production in MDSCs, thereby
Frontiers in Immunology 06
attenuating MDSC-mediated immunosuppression. And the

number of MDSCs, PMN-MDSCs and M-MDSCs in tumor tissue

was reduced after treatment with cGAMP (85). The c-di-GMP, a

compound like cGAMP, can act as an activator of STING proteins,

activate the cGAS-STING pathway in MDSC, and convert a

subpopulation of immunosuppressed MDSCs to an IL-12-

producing immunostimulatory phenotype, thereby improving the

CD8+ T cell-mediated immune response (Figure 2C) (86). In

addition, STING signaling can activate SOCS1 protein, which can

physically interact with STAT3 via its SH2 structural domain to

prevent the phosphorylation and dimerization of STAT3 and

reduce the immunosuppressive function of MDSCs by inhibiting

GM-CSF and IL-6 production (87). Besides inactivating MDSCs,

activation of the cGAS-STING pathway promotes the recruitment

of MDSCs to exert their immunosuppressive function. After

irradiation, tumor cells activate the STING/IFN-b signaling

pathway to release chemokines, including CCL2, CCL7, and

CCL12, via the CCR2 pathway to recruit M-MDSC. The recruited

M-MDSC reduced the T cell immune response to exerting their

immunosuppressive function (Figure 2D) (56). CCR2 antibodies

can reduce radiation-induced recruitment of MDSCs and attenuate

their immunosuppressive function. IFN-b, a downstream signal of

the cGAS-STING signaling pathway, can also stimulate tumor cells

to produce CCL2 and CCL7 and affect the recruitment of M-MDSC

(88). Besides the STING/IFN-I pathway, STING-mediated

activation of the NK-kB pathway is closely linked to MDSC

recruitment. For example, galectin-1 maintains NF-kB activation

in tumor cells by enhancing STING protein stability, thereby

promoting CXCL2-mediated PMN-MDSC recruitment (89).
4.3 cGAS-STING pathway and Treg cells

Tregs are involved in forming the immunosuppressive

microenvironment and immune tolerance. They are characterized

by CD4+ Foxp3+ CD25+ CTLA-4+ as their major molecular feature

(90). Foxp3 regulates CTLA-4 expression in Treg cells, which can

bind to CD80/CD86 on APCs, affecting their messaging and

inhibiting T-lymphocyte activity. Anti-CTLA-4 monoclonal

antibodies with ADCC activity can reduce Treg cells in the TME to

attenuate tumor recurrence (91, 92). Additionally, Treg cells regulate

immune function by downregulating co-stimulatory signals,

depleting IL-2, releasing immunosuppressive cytokines IL-10 and

IL-35, and producing immunosuppressive metabolites (93).

Thus, the cGAS-STING-IFN pathway may influence the

immunosuppressive function of Tregs. Activation of cGAS-

STING attenuates Treg-mediated immunosuppression. Sallets

et al. discovered that STING activation reduced the proportion of

tumor-infiltrating CD4+ Foxp3+ Treg cells (94). Domvri et al. found

that decreased STING elevated GATA3/NOS2 expression

associated with immunosuppression in Tregs, reduced CD4+ T

cell infiltration, and increased the risk of subsequent lung metastasis

(Figure 2E) (95). In a mouse model of melanoma, injection of

cGAMP packaged in non-infectious enveloped virus-like particles

preferentially activated STING in DCs, differentiating circulating

tumor-specific T cells, thereby reducing Tregs and exerting anti-
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tumor effects (96). The cGAS-STING pathway bi-directionally

regulates the effects of Tregs, and its activation promotes Treg

cell-mediated immunosuppression. The STING downstream signal

IFN-I enhances immunosuppressive effects by driving tumor-

associated infiltrating Tregs to produce IL-10 (97). Tumor-

derived exosomes activate the cGAS-STING pathway in naive

lymphocytes, activating Foxp3, STAT5, and SMAD3 to promote

the transformation of naive CD4+ T cells into Treg cells, thereby

mediating immunosuppression (Figure 2F) (98). The cGAS-STING

pathway also modulates mitochondrial lipid metabolism in Tregs,

thereby enhancing Treg cell function. FABP5 is a lipid-binding

protein that reduces the b-oxidation rate and accumulates lipid

droplets in monocytes. Monocytes secrete more IL-10 with the help

of FABP5, and elevated IL-10 levels promote PD-L1 expression in

Tregs by activating the JNK-STAT3 pathway. PD-L1 expression

mediates immunosuppression (99). However, in Tregs, FABP5

inhibition triggers mtDNA release and activation of the cGAS-

STING-IFN-I pathway, inducing IL-10 production and promoting

the immunosuppressive activity of Tregs (100). FABP5 plays

different roles in different cells. However, evidence suggests that

FABP5 is associated with activation of Tregs and the cGAS-STING

pathway. Based on these different perspectives, it is important to

comprehensively understand the cGAS-STING pathway involved in

forming the immunosuppressive microenvironment.
5 cGAS-STING pathway
and immunotherapy

5.1 cGAS-STING pathway and immune
checkpoint inhibitors

Immunotherapy with PD-1/PD-L1 immune checkpoint

inhibitors is an effective cancer treatment (101). The cGAS-STING

pathway-related agonists can synergistically interact with PD-L1

inhibitors to exert anti-tumor immune functions. In a phase Ib

clinical trial (NCT03172936) of advanced/metastatic solid tumors

or lymphomas, the combination of the STING agonist MIW815

(ADU-S100) and spartalizumab (PDR001), a monoclonal antibody

directed against PD-1, significantly reduced patient discomfort and

improved patient prognosis (Table 1) (102). In another Phase I

clinical trial (NCT03010176), the combination of a STING agonist

(MK-1454) and PD-1 antibody (pembrolizumab) prolonged survival

in patients with advanced solid tumors, illustrating its potential for

clinical use (103). The synergistic effect of STING agonist and PD-1

ICB enhances the response of high-grade plasma ovarian cancer to

carboplatin-based chemotherapy in mice and promotes the killing

effect of carboplatin on cancer cells (104). In a mouse model of

cervical cancer, the STING agonist MSA-2, in combination with a

PD-1 monoclonal antibody, significantly prolonged the survival cycle

of mice, and MSA-2 administration remodeled the TME and exerted

anti-tumor activity in mice (105). In a mouse model of breast cancer,

STING agonists promoted the activation of the STING/TBK1/IRF3/

STAT1 pathway, releasing IFN-b, thereby enhancing the efficacy of

the PD-L1 monoclonal antibody. Simultaneously, STING agonists, in
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combination with the PD-L1 monoclonal antibody, increased the

number of CD8+ cytotoxic T cells and decreased the number of

FOXP3+ Treg cells, further prolonging the survival of mice (106). In

another related study, combining the oral STING agonist MSA-2 and

the anti-TGF-b/PD-L1 bispecific antibody YM101 was a novel

immune cocktail therapy for treating unwanted tumors (107).

These data suggest that the synergistic application of STING

agonist PD-1/PD-L1 monoclonal antibodies may be a key factor in

improving patient prognosis.

In two trials of platinum-based drugs for treating tumors, either

carboplatinum or teniposide activated the cGAS-STING pathway

and its downstream classical STING/TBK1/IRF3 pathway, as well as

atypical STING-NF-kB signaling under certain conditions,

enhancing the anti-tumor effect of PD-1 monoclonal antibodies

in tumor immunity (108, 109). The mechanism of action of these

chemotherapeutic agents is to induce DNA fragmentation in tumor

cells, and these broken DNA molecules activate the cGAS-STING

pathway in different ways. Similarly, anti-cancer drugs targeting

ADP-ribose polymerase inhibitor (PARPi) can activate the cGAS-

STING pathway by inducing cytosolic micronuclei, promoting the

secretion of chemokines, such as CCL5, through IFN-g-induced
PD-L1 expression on the tumor cell surface, and the combination of

PARP and PD-L1 monoclonal antibody significantly improves the

prognosis of patients (5). When tumor-infiltrating T cells were

stimulated with a combination of anti-CD3 and anti-PD-1

monoclonal antibodies, the STING/IFN-g pathway was induced

and activated in lung adenocarcinomas, increasing the IFN-b and

CCL5 expression, and an active IFN-g pathway is a common feature

of tumors responding to PD-1/PD-L1 blockade therapy (110).

However, other studies have reported that prolonged IFN-b
stimulation induces NOS2 expression and promotes Treg cell

generation, ultimately leading to the failure of PD-1

immunotherapy (56, 57). Certain intestinal flora also affect the

therapeutic effects of PD-1/PD-L1 antibodies via STING-related

pathways, such as Listeria monocytogenes strain GG (LGG),

inducing cGAS/STING-dependent IFN-b production in DCs and

enhancing the response to PD-1 ICB therapy (111).

The STING-IFN-I pathway activity and antigen-presenting

capacity were significantly reduced in aged mice with TNBC. Age-

related immune dysfunction limits the efficacy of ICB in aged mice

with TNBC. Induction of innate immunity with STING agonists can

restore the response to ICB in aged mice (112). Other studies have

suggested that the integrity of the STING-related pathway is critical

to the outcome of immunotherapy with CTLA-4. A study revealed

that systemic treatment with STING agonists in combination with a-
PD-1 and a-CTLA-4 antibodies disappeared abdominal tumors in

approximately 71% of mice (113).
5.2 The cGAS-STING pathway and
CAR-T therapy

Chimeric antigen receptor (CAR)-T cells are engineered cells

that express CARs against specific tumor antigens (114). CAR-T

cells can be activated in an MHC-independent manner and can

directly kill tumor cells (115). CAR-T therapy has demonstrated
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great therapeutic promise for hematological diseases, including

childhood acute lymphoblastic leukemia and lymphoma (116).

Certain barriers to the effectiveness of CAR-T therapy in solid

tumors must be addressed in further clinical trials. These barriers

include the heterogeneity of T cells, difficulties in transporting them

from the blood to the tumor site, immunosuppression of the TME,

and exhaustion of CAR-T cells (117).
Frontiers in Immunology 08
Activation of the cGAS-STING pathway is inextricably linked

to CAR-T therapy; therefore, it appears to be a good target for

improving the prognosis of CAR-T therapy. The STING agonists

DMXAA or cGAMP promote the secretion of chemokines,

including CCL2 and G-CSF, and reduce the suppressive effects of

the immune microenvironment. It also promotes the migration and

survival of CAR-T cells generated by Th/Tc17 cells, which benefits
TABLE 1 Special features of the three immunotherapies.

Types of tumors Veterinary drug
Target ormechanism

of action
Genus Reference

The cGAS-STING pathway
and immune

checkpoint inhibitors

Advanced/metastatic solid
tumors or lymphomas

the STING agonist
MIW815 (ADU-S100)

and spar
talizumab (PDR001)

PD-1

Human [Phase Ib clinical
trial (NCT03172936)]

(102)

Advanced solid tumor
STING agonist MK-1454

and PD-1
antibody pembrolizumab

Human [Phase I clinical
trial (NCT03010176)]

(103)

High-grade plasma
ovarian cancer

STING agonist 2′3′-c-di-
AM and anti-mouse PD-1

antibody (clone
RMP1-14)

Mouse (104)

Cervical cancer
STING agonist MSA-2
and PD-1 antibody

Mouse (105)

Breast cancer
STING agonist c-di-GMP

and atezolizumab
PD-L1 Mouse (106)

Melanoma, colorectal
cancer, breast cancer,

liver cancer

oral STING agonist MSA-
2

and anti-TGF-b/PD-L1
bispecific antibody

YM101

TGF-b/PD-L1 Mouse (107)

The cGAS-STING pathway
and CAR-T therapy

Breast cancer
STING agonist DMXAA

or cGAMP
CAR-T generated by Th/

Tc17 cells
Mouse (104)

Kidney cancer PARP inhibitors (PARPis)
cGAS-STING

signaling pathway
Mouse (123)

Prostate cancer,
pancreatic cancer,

lymphoma, breast cancer

PD-L1 inhibitor
atezolizumab and CAR-T

cGAS-STING
signaling pathway

Mouse (128)

The cGAS-STING pathway
and monoclonal

antibody immunotherapy

Head and neck tumors
STING agonist 2′, 3′-

GAMP
and cetuximab

NK cell activation and
DC maturation

Mouse (133)

NSCLC
Osimertinib with anti-

HER3
monoclonal antibody

cGAS-STING
signaling pathway

Mouse (132)

NSCLC
cetuximab

plus avelumab

NK cell-driven activation
of ADCC and cGAS-

STING
signaling pathways

Mouse (134)

Lymphomas

STING agonist [human
(2’2’-, 2’3’- and 3’3’-
cGAMP) and murine

(DMXAA)] and
anti-CD20 mAb

reverse the inhibitory
effect of lymphoma on

macrophage
FcgR expression

Mouse (133)

Advanced/
recurrent solid
tumors that
express HER2

a STING ADC
drug

XMT-2056

Erbb2 tyrosine
kinase receptor
modulator.
STING

stimulator

Human [Phase 1
Clinical (NCT05514717)]

(141)
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CAR-T cell therapy (118). The expression of the cGAS-STING

cascade response in the peripheral blood CD8+ T cells of cancer

patients was significantly impaired, which may also be related to the

poor prognosis of patients. The cGAS-STING can also maintain

CD8+ T cell stemness by regulating TCF1 expression (119). DNA

damage and repair mechanisms can significantly improve the

efficacy of CAR-T therapy (120). Flap structure-specific

endonuclease 1 (FEN1) is highly expressed in various cancer cells

and plays an important role in DNA replication and repair. A low

dose of the FEN1 inhibitor SC13 increases dsDNA in the cytoplasm.

Cytosolic dsDNA can activate the cyclic GMP-AMP synthase

stimulator of the IFN gene signaling pathway, increase chemokine

secretion, promote CAR-T cell infiltration, and enhance anti-tumor

immunity (121). The PARPi are a class of cancer therapeutic agents

that target PARPs (122). The PARPi stimulates chemokine

secretion and facilitates CAR-T cell recruitment into the TME via

the cGAS-STING pathway, thereby facilitating the efficacy of CAR-

T cell therapies (123). The IFN secretion mediated by the cGAS

STING pathway may also affect the prognosis of patients

undergoing CAR-T treatment. The intrinsic sensitivity of IFN-g
to the pro-apoptotic effects of tumors is an important determinant

of the anti-tumor activity of CD4+ CAR-T cells (124). IFN-g has

been demonstrated to overcome the effects of PD-L1/PD-1

inhibition on CAR-T cell therapy by upregulating ICAM-1 in

tumor cells (125). oHSV1-infected glioblastomas release IFN-g to

enhance CD70-specific CAR-T therapy (126). However, CAR-T

cells produce IFN-g through the cGAS-STING pathway. IFN-g
produced by CAR-T cells enhances endogenous T and NK cell

activity and is required to maintain CAR-T cytotoxicity, promote

host IL-12 production, and support the host CAR-T immune

response (127). CD163+ M2 macrophages are involved in

generating an immunosuppressive microenvironment that can

express PD-L1 molecules to inhibit CAR-T therapy gains,

whereas PD-L1 blockade combined with CAR-T cells can lead to

the loss of CD163+ M2 macrophages via IFN-g signaling, improving

the anti-tumor activity of CAR-T cells (128).
5.3 The cGAS-STING pathway and
monoclonal antibody immunotherapy

Monoclonal antibody immunotherapy recognizes and destroys

cancer cells by activating the patient’s immune system, thus

enabling it to recognize and destroy cancer cells (129). Immune

cells cannot properly receive signals to kill tumor cells because they

can evade the immune system through multiple pathways.

Monoclonal antibody immunotherapy promotes proper

recognition and killing of tumor cells by immune cells using

synthetic targeted monoclonal antibodies (130). Monoclonal

antibody immunotherapy is becoming increasingly mature, and

several monoclonal antibodies have been marketed and used

clinically (130).

Agonists of the cGAS-STING pathway can act synergistically

with monoclonal antibodies to enhance their efficacy. In head and

neck tumors, STING activation enhances cetuximab-mediated NK

cell activation and DC maturation, facilitating tumor-killing (131).
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The anti-tumor activity of monoclonal antibodies may also be

linked to the cGAS-STING pathway. When osimertinib (EGFR

target mutant inhibitor) was combined with an anti-HER3

monoclonal antibody to treat lung cancer, it promoted IRE1a-
dependent upregulation of HER3 and activated cGAS in cancer cells

to produce cGAMP, which was later transferred to macrophages

and activated the cGAS-STING pathway in macrophages, thereby

promoting macrophage Fc receptor-dependent tumor elimination

(132). Another study exhibited that STING effectively reversed the

inhibitory effect of lymphoma on macrophage FcgR expression,

thereby enhancing the killing effect of CD20 monoclonal antibody

on lymphoma (133). When cetuximab (an EGFR target inhibitor)

was combined with avelumab (a PD-L1 target inhibitor) to treat

NSCLC, the anti-cancer mechanism of these two antibodies

partially depended on the activation of the ADCC and cGAS-

STING pathways driven by NK cells (134).

Although monoclonal antibodies have good immunotherapeutic

prospects, drug resistance still exists, and resistance to monoclonal

antibodies may be associated with the cGAS-STING pathway.

Trastuzumab is a key drug for treating HER2+ breast cancer (BC)

(135). The IFI16-dependent STING signaling pathway is an

important determinant of trastuzumab resistance in HER2+ BC.

IFI16 is downregulated in HER2+ BC cells via synergistic histone

modification by EZH2 and histone deacetylase, inducing STING/

CXCL10/11 immune signaling defects associated with HER2

monotherapy and HER2 treatment resistance (136, 137).
6 Conclusion and future perspectives

Based on these conclusions, activating the cGAS-STING

pathway is bidirectional in tumor promotion and inhibition. Its

biological function may depend on the following aspects: STING-

responsive target cells, immune microenvironment in which the

tumor cells reside, intensity and duration of STING stimulation,

tumor stage, and individual physical factors (16). These factors play

critical and independent roles in the efficacy of the cGAS-STING

pathway. The cGAS-STING is present in immune and tumor cells.

Different cell types exhibit different biological activities. In tumor

cells, STING regulates the expression of inhibitory immune

molecules, including PD-L1, CCR2, IDO, and others, and evades

T-cell killing, which is conducive to tumor immune escape. The

simultaneous application of inhibitors of suppressor immune

molecules can ameliorate the negative effects of STING agonists.

Therefore, DC can promote tumor cell killing by activating the

cGAS-STING pathway to secrete IFN-I. The immune

microenvironment in which tumor cells live remains complex

and uncharacterized. We summarized two different immune

outcomes of cGAS-STING pathway activation in M2

macrophages, MDSC, and Tregs. This suggests that when using

cGAS-STING pathway agonists to treat cancer, attention should be

paid to the immunosuppressive microenvironment in which tumor

cells live and to test for changes in immune function before and

after using agonists. This may also explain the poor therapeutic

efficacy of STING agonists. The duration of the STING action is also

important. It is currently believed that acute and moderate STING
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stimulation facilitates tumor suppression, and prolonged or high-

intensity STING stimulation causes immunosuppression and poor

outcomes (138). For instance, chronic exposure to 7,12-

dimethylbenz (a) anthracene promotes tumor cell growth in a

STING dose-dependent manner (139). Besides, the tumor stage

influences the efficacy of STING agonists. Activating the cGAS-

STING pathway may be an effective therapeutic strategy for early

and chromosomally stable tumors. However, if the tumor has

already begun using STING to drive malignant progression, over-

activation of STINGmay inadvertently worsen clinical outcomes. In

advanced or metastatic tumors, STING-mediated immune function

may allow aggressive tumor cells to survive (8).

Based on these factors, it is important to personalize STING-

targeted therapies for different types of patients. When using

STING agonists in a clinical setting, physicians must selectively

activate STING signaling by carefully selecting patients and

comprehensively assessing their physiology, clarifying their tumor

stage, determining their CIN status, and evaluating their therapeutic

window to determine which patients will benefit from drug

treatment. In the use of STING agonists, constant attention

should be paid to the immunotoxic effects of drug therapy, such

as infectious complications of certain microorganisms,

autoimmune diseases and hypersensitivity reactions. STING

agonists with low immunosuppression, low immunostimulation,

low likelihood of inducing hypersensitivity reactions and

autoimmune diseases are what we would like to see (140).

Attention should also be paid to the immunosuppressive

microenvironment where tumor cells reside, although this is

currently difficult to determine. Radiotherapy, targeted therapy,

and immunotherapy in combination with STING agonists to treat

tumors may, to some extent, circumvent the negative effects of

STING activation, offering a broad research perspective. Based on

the concept that different doses and durations of action of STING

agonists may lead to different outcomes, it is recommended that

treatment regimens be designed around acute and moderate-

intensity STING agonists; however, this must be proven in

further clinical trials. We aimed to identify STING activators with

a low toxicity profile, high specificity, few side effects, low resistance,

and long duration of action in the market and the clinic. Future

STING agonists are expected to induce anti-tumor immunity in a

more targeted manner, inhibit tumor cell growth and immune
Frontiers in Immunology 10
escape, modify the tumor microenvironment, reduce tumor

microenvironmental immunosuppression as far as possible, and

avoid the malignant biological behavior induced by STING

activation. We aimed to alleviate pain in tumor patients and

achieve greater benefits in treating tumor patients using STING

agonists combined with radiotherapy, chemotherapy,

immunotherapy, and other therapies.
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