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Hereditary angioedema plasma
proteomics following specific
plasma kallikrein inhibition
with lanadelumab
Dan Sexton1†, Anton Kichev2, Salomé Juethner3, Dave Yeung1,
Amanda MacDonald1, Ezequiel Anokian2 and Bin Li1*

1Takeda Development Center Americas, Inc., Cambridge, MA, United States, 2Clarivate PLC,
Barcelona, Spain, 3Takeda Pharmaceuticals USA Inc., Lexington, MA, United States
Introduction: Plasma proteomics analyses were performed to identify novel

disease state biomarkers of hereditary angioedema due to C1 inhibitor deficiency

(HAE-C1INH) and investigate the biological consequences of specific plasma

kallikrein inhibition with lanadelumab.

Methods: Affinity proteomic analyses were performed using plasma from healthy

controls (n=30) and patients with HAE-C1INH before (baseline, n=125) and after

6 months of treatment with lanadelumab (300 mg every 2 weeks, n=112) using

the SomaScan platform.

Results: Relative plasma levels for several proteins differed significantly between

controls and patients with HAE-C1INH, and betweenmatched baseline and post-

treatment samples from patients with HAE-C1INH. As expected, C1 inhibitor and

complement C4 were significantly lower (P<1.10e-39 false discovery rate [fdr],

P<6.6e-25 fdr, respectively) in HAE-C1INH baseline plasma versus controls.

Cleaved high-molecular-weight kininogen, a biomarker of excess kallikrein-

kinin system (KKS) activation, was higher in HAE-C1INH baseline plasma versus

controls (P<6.7e-6 fdr) and was reduced in HAE-C1INH plasma after

lanadelumab treatment. Of 1041 identified proteins that differed significantly

(P<0.05) from controls and HAE-C1INH baseline plasma, 120 proteins were no

longer different between controls and patients with HAE-C1INH after 6 months

of lanadelumab treatment. Canonical pathway and local network analyses of

HAE-C1INH plasma proteomics suggest dysregulation in KKS, coagulation, cell

adhesion, and connective tissue degradation that approach that of healthy

controls following treatment with lanadelumab.

Conclusion: Proteomic analyses of plasma from patients with HAE-C1INH

before and after treatment with lanadelumab compared with healthy controls

confirmed known HAE-C1INH biomarkers and identified additional potential

biomarkers of plasma kallikrein dysregulation for further investigation.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1471168/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1471168/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1471168/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1471168/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1471168&domain=pdf&date_stamp=2025-05-09
mailto:Bin.Li2@takeda.com
https://doi.org/10.3389/fimmu.2024.1471168
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1471168
https://www.frontiersin.org/journals/immunology


Sexton et al. 10.3389/fimmu.2024.1471168
Introduction

Hereditary angioedema due to C1INH deficiency (HAE-

C1INH) is an autosomal dominant genetic disease mediated by a

dysregulated plasma kallikrein-kinin system (KKS), which

generates excess bradykinin in the vascular compartment;

pathophysiology that causes episodic attacks of angioedema (1).

KKS activation occurs upon FXII activation to FXIIa, which

converts prekallikrein to active plasma kallikrein (PKa), that

activates additional FXII and cleaves high-molecular-weight

kininogen (HK) to generate cleaved HK (HKa) and bradykinin

(1, 2).

Despite the well described pathophysiological role of the KKS

and the multitude of approved treatments for HAE-C1INH, the

search for novel biomarkers (3) remains in order to elucidate

further biological consequences of excess KKS activation, develop

improved therapies, and reduce diagnosis time for patients, which

for many patients can take 4–9 years on average (4), if the identified

biomarkers can be developed as diagnostic assays.

Lanadelumab (Takhzyro, TAK-743, SHP643, DX-2930) is a

specific antibody inhibitor of PKa approved to prevent attacks in

patients with HAE (5). We performed plasma proteomics with

samples from HAE-C1INH patients before and after treatment with

lanadelumab to assess the impact of specific PKa inhibition on the

plasma proteome.
Methods

Plasma was collected from patients with HAE-C1INH enrolled

in the phase III HELP study for lanadelumab as well as from

patients who only enrolled into the open-label extension portion of

the HELP study (ClinicalTrials.gov ID: NCT02586805 and

NCT02741596, respectively). Plasma was collected from age- and

gender-matched healthy controls (n = 30) by BioIVT (Westbury,

NY). All participants provided written informed consent for blood

samples to be used for the investigation of exploratory biomarkers

of contact system activation. To minimize ex vivo activation of the

contact pathway system during blood collection, plasma was

collected from patients with HAE-C1INH and healthy controls by

means of a clean venipuncture with a butterfly needle/catheter kit

(BD Biosciences part number 367296, San Jose, CA, USA) and

removal of the tourniquet upon blood flow to decrease stasis. The

first tube of blood was discarded and blood was collected into

polypropylene evacuated tubes containing 3.2% sodium citrate (BD

Biosciences). Blood samples were centrifuged within 1 hour, and

plasma was aliquoted and stored at –80°C until processing.

Plasma proteomic analyses were performed using a multiplex

approach that compares relative levels of >7000 proteins

(SomaScan, Somalogic, Denver, CO, USA) (6) on the following 3

groups: 1) healthy control plasma (n = 30); 2) HAE-C1INH plasma

before lanadelumab treatment (baseline, n = 125); and 3) HAE-

C1INH plasma after 26 weeks of lanadelumab treatment (300 mg

Q2W, after treatment, n = 114). Of the 114 HAE-C1INH patients

for which baseline plasma was available, matched post-treatment

samples were available for 112 patients.
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Results

We compared plasma proteomics of HAE-C1INH plasma at

baseline (i.e., before treatment with lanadelumab) to that of healthy

control plasma in a volcano plot of P-value versus fold change

(Figure 1). Out of the proteins detected, 1041 proteins were

statistically different between HAE-C1INH and healthy controls

(Supplementary Table 1).

Of the 1041 proteins, C4 and C1INH were lower in HAE-

C1INH baseline plasma than healthy control plasma (Figure 2),

which was expected since low levels of both proteins are used in the

diagnosis of HAE-C1INH (7). HAE-C1INH may be associated with

C1INH plasma levels that are <50% of a healthy control standard at

1 U/mL (~0.24 g/L) and C4 plasma concentrations below that of

healthy controls (8, 9).

We also compared plasma proteomics between healthy

controls, baseline HAE-C1INH, and HAE-C1INH after 26 weeks

of lanadelumab treatment. Out of the 1041 proteins that were

different between healthy controls and HAE-C1INH baseline, 120

proteins were observed to be no longer different from healthy

controls after HAE-C1INH patients were treated with

lanadelumab for 26 weeks. The list of the 120 proteins is

provided in Supplementary Table 1 and includes HKa, thrombin,

tissue kallikrein 14, interleukin-21, a-2-macroglobulin (A2M), and

apolipoprotein B (Supplementary Figure 1).

The first one of these 120 potential biomarkers to highlight is

HKa, a protein previously shown to be elevated in plasma of

patients with HAE-C1INH and a pharmacodynamic biomarker of
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FIGURE 1

Volcano plot comparison of protein levels from SomaScan analyses
in plasma from patients with HAE-C1INH that was collected at
baseline to levels present in plasma from age- and gender-matched
healthy controls. The x-axis is the fold change (log2FC) in signal for
each protein in HAE-C1INH plasma as compared to healthy control
plasma. The y-axis is the calculated P-value (Log10) for the
difference in signal for each protein between HAE-C1INH patients
and healthy controls plasma. HAE-C1INH, hereditary angioedema
due to C1 inhibitor deficiency.
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lanadelumab bioactivity (10–12). Figure 3 shows the HKa signal

measured using SOMAmer sequence 19631-13, which shows that

HKa levels were elevated in HAE-C1INH baseline plasma, but were

no longer different from healthy control plasma levels after HAE-

C1INH patients received lanadelumab for 26 weeks. HKa levels

measured using sequence 19631-13 positively correlated to the

%HKa measured by Western blot analyses performed during the

clinical study with lanadelumab (13). The SomaScan panel contains

3 other SOMAmers against kininogen (15343-337, 7784-1, and

4918-21). The profile for 15343-337 appeared similar to 19631-13,

whereas the profile of 7784-1 suggests preferential binding to intact
Frontiers in Immunology 03
HK, and the profile of 4918-21 suggests that it may bind both HK

and HKa (Supplementary Figures 2, 3). Furthermore, the observed

reduction in HKa signal using SOMAmers 19631-13 and 15343-337

in paired HAE-C1INH patient samples collected at baseline and

after 26 weeks of lanadelumab treatment is consistent with the

pharmacodynamic activity previously reported for this PKa

inhibitor (Supplementary Figure 4) (14).

We next investigated whether additional potential biomarkers

from the 120 proteins discovered previously would show

measurable protein differences with commercially available ELISA

kits. To test this, additional plasma samples (from different HAE-
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FIGURE 2

C1INH (A) and complement 4 (C4) (B) plasma levels were both decreased in HAE-C1INH samples collected at baseline as compared to healthy
control plasma. HAE-C1INH, hereditary angioedema due to C1 inhibitor deficiency.
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FIGURE 3

HKa relative levels measured using SOMAmer 19631-13 increased in plasma from HAE-C1INH patients prior to receiving lanadelumab (baseline),
relative to healthy controls (Control) and HKa decreased following lanadelumab treatment (A). Correlation between HKa levels as measured using
SOMAmer 19631-13 and Western blot analyses of HK (B). SOMAmer 19631-13 was reported by the manufacturer to be raised against kininostatin
(domain 5 of HK) with binding observed to HKa (although with~10-folder weaker affinity than for kininostatin) and no binding observed with intact
HK or intact LK. HAE-C1INH, hereditary angioedema due to C1 inhibitor deficiency; HK, high-molecular-weight kininogen; HKa, cleaved HK; LK, low-
molecular-weight kininogen.
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C1INH patients from the same clinical study with lanadelumab and

different healthy controls) were analyzed using commercially

available ELISA kits (RayBiotech, Peachtree Corners, GA) for

interleukin-21, A2M, and apolipoprotein B. We observed no

differences between healthy controls and HAE-C1INH plasma for

these 3 proteins (data not shown). Differences between results

obtained using affinity proteomic methods, including SomaScan,

and immunoassays have been previously reported and potentially

attributed to differences in the epitopes or protein complexes

targeted between the different assays (15). Furthermore, targeted

immunoassays often disagree with each other, so disagreement with

a proteomic platform does not definitively imply which result is

superior. Consequently, the lack of concordance between methods

does not demonstrate that the results from the affinity proteomic

analyses are necessarily incorrect and require further validation

(e.g., using assays based on the specific SOMAmers used for

each protein).

We next performed pathway enrichment analysis on these 120

altered proteins using Metacore (Clarivate). As shown in Table 1,

the KKS is the most significant enriched pathway, which is

consistent with the fact that this is a study on patients with HAE-

C1INH and the effects of their treatment. Other enriched pathways

include blood coagulation, cell adhesion, and connective tissue

degradation. These 120 proteins were then analyzed using a

known knowledge network approach called Causal-ASsociational

NETwork (CASNET), which refers to consistently active

subnetworks of known protein-protein interactions (16). Finding

active subnetworks in diseases can be a way of generating biological

insights, including novel feedback loops, using data with

differentially expressed genes or in our case different protein

expression levels from proteomic analyses (Supplementary

Figure 5). Proteins identified by CASnet analyses out of the list of

120 proteins include proteases (thrombin, tissue kallikreins,

cathepsin K, plasminogen) protease inhibitors (inter-alpha trypsin

inhibitor heavy chain 4, A2M), apolipoproteins, and complement

system proteins (Supplementary Table 2, Supplementary Figure 5).
Discussion

Biomarker discovery in HAE-C1INH remains an active area of

research that can provide novel insights into pathophysiology and

may identify novel biomarkers to potentially improve diagnosis (3,
Frontiers in Immunology 04
17–20). We used an affinity proteomic platform capable of

measuring relative amounts of more than 7000 different human

proteins to compare the plasma proteome of patients with HAE-

C1INH to that of healthy controls. In addition, we investigated the

effect of PKa inhibition using a highly specific antibody inhibitor

(lanadelumab) on the plasma proteome of patients with

HAE-C1INH.

SomaScan proteomics includes the known diagnostic

biomarkers of HAE-C1INH, C1INH and C4, both of which were

lower than healthy controls as expected. In addition, SomaScan

proteomics measures HKa, a previously identified disease state and

pharmacodynamic biomarker of KKS activation (10–12). C1INH,

C4, and HKa levels in HAE-C1INH plasma measured using

SomaScan proteomics indicate that this technology could be

considered for investigations of HAE-C1INH plasma biomarkers

and possibly as a pharmacodynamic assay for the investigation of

novel therapies targeting the KKS.

By comparing the HAE-C1INH plasma proteome before and

after 26 weeks of treatment with lanadelumab to that of healthy

controls, we were able to investigate the effect of specific PKa

inhibition on the 1041 proteins with levels that differed between

HAE-C1INH plasma baseline and healthy controls. These 1041

proteins are listed in the Supplementary Table 1 and may find use in

further studies into the biological consequences of excess KKS

activation in HAE-C1INH and other diseases potentially

mediated by the KKS, including comorbidities associated with

HAE-C1INH (21–23). From this analysis, we identified 120 out of

the 1041 proteins that were no longer different from that of healthy

controls after 26 weeks of lanadelumab treatment.

A2M, one of these 120 proteins, is a broad-spectrum covalent

protein inhibitor of proteases, including PKa, which has multiple

functions, including binding and regulating pro-inflammatory

cytokines and hormones (24). A2M has been investigated as a

biomarker for a number of different diseases, including diabetes

mellitus (25, 26). We observed that A2M was elevated in HAE-

C1INH plasma relative to that of healthy controls and returned to

approximate healthy control levels after 26 weeks of treatment with

lanadelumab (Supplementary Figure 1). Further studies could

elucidate whether the SOMAmer against A2M also binds the

A2M-PKa covalent complex, which has been shown to be elevated

during an attack in plasma from patients with HAE-C1INH (27).

Complement protein C3 is another one of 120 altered proteins

that has been implicated in the pathophysiology of many diseases
TABLE 1 Pathway analysis using the 120 proteins.

Metabase process network pathway13 r R n N Z-score P-value q-value

Kallikrein-kinin system 13 68 187 7113 8.538585 0 3e-06

Blood coagulation 5 68 93 7113 4.409437 0.00186 0.138223

Cell adhesion: Amyloid proteins 7 68 197 7113 3.799111 0.00260 0.138223

Cell adhesion: Platelet-endothelium-leukocyte interactions 6 68 174 7113 3.420398 0.00613 0.243986

Proteolysis: Connective tissue degradation 4 68 118 7113 2.73963 0.02597 0.707345
fr
Where r: intersection of proteomic experiment with ontology term in Metabase; R: size of user’s experiment; n: size of map/process; N: size of “background list” - total number of network objects
in ontology; Z-score: enrichment Z-score (the more Z-score, the more significant enrichment); P-value: enrichment P-value from hypergeometric test; q-value: false-discovery rate–adjusted
P-value from hypergeometric test.
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including diabetic macular edema (28). C3 is a central protein

component of the complement system (29). The observation here of

increased C3 cleavage fragments (C3b, C3a, and C3d) in baseline

HAE-C1INH plasma as compared with that of healthy controls,

followed by a reduction upon lanadelumab treatment is consistent

with previous reports of C3 activation by PKa (Supplementary

Figure 6) (30).

Apolipoprotein B, a protein involved in cholesterol deposition

in the arterial wall and a marker of cardiovascular risk (31), was

among the 120 altered proteins that were elevated in HAE-C1INH

baseline plasma and reduced after 26 weeks of treatment with

lanadelumab to levels comparable with that of healthy controls. It

was previously reported that apolipoprotein B is cleaved by PKa

(32). Consequently, it could be useful in future studies to determine

whether the SOMAmer against apolipoprotein B exhibits

differential binding to intact protein compared with the PKa-

cleaved protein. Further investigation into a role for PKa in

cholesterol metabolism is supported by the recent observation

that prekallikrein binds the low-density lipoprotein receptor and

could be a therapeutic target to decrease cholesterol (33).

Another protein among the 120 altered proteins worthy of

further investigation is interleukin-21, which is a pleiotropic

cytokine involved in T helper 17 cell expansion that was

previously identified as being elevated in patients with HAE (34).

Inflammation and elevated cytokine levels have been suggested as

potentially contributing to attack onset triggers (35).

The pathways identified from comparing pre-dose HAE-

C1INH plasma proteomics to that of healthy controls are

supported by previous observations. For example, biomarkers of

blood coagulation and fibrinolysis have previously been shown to be

associated with HAE-C1INH, especially upon attack onset (36).

Even though patients with HAE-C1INH may not have an increased

risk of thrombosis (37), recent preclinical and clinical studies

indicate that high plasma levels of C1 INH reduce the risk of

venous thromboembolism (38). Pathway analyses using this

proteomic data also identified differences in cell adhesion

pathways based on plasma proteomics in HAE-C1INH that

appeared to approach levels in healthy controls after treatment

with lanadelumab. Elevated levels of adhesion proteins such as VE-

cadherin have also been previously shown in plasma from HAE-

C1INH patients (39, 40).

In summary, we used plasma proteomic analyses to identify

potential HAE disease state biomarkers for further examination

with additional patient samples and orthogonal methods for

confirmation. Combining proteomic analyses with matched

samples from patients before and after treatment with a highly

specific antibody therapeutic can help identify active subnetworks

in the disease that are mediated by the target.
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