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Background: Although immunoglobulin (Ig) alleles play a pivotal role in the

antibody response to pathogens, research to understand their role in the

humoral immune response is still limited.

Methods: We retrieved the germline sequences for the IGHV from the IMGT

database to illustrate the amino acid polymorphism present within germline

sequences of IGHV genes. We aassembled the sequences of IgM and IgD

repertoire from 130 people to investigate the genetic variations in the

population. A dataset comprising 10,643 SARS-CoV-2 spike-specific

antibodies, obtained from COV-AbDab, was compiled to assess the impact of

SARS-CoV-2 infection on allelic gene utilization. Binding affinity and neutralizing

activity were determined using bio-layer interferometry and pseudovirus

neutralization assays. Primary docking was performed using ZDOCK (3.0.2) to

generate the initial conformation of the antigen-antibody complex, followed by

simulations of the complete conformations using Rosetta SnugDock software.

The original and simulated structural conformations were visualized and

presented using ChimeraX (v1.5).

Results:We present an allelic atlas of immunoglobulin heavy chain (IgH) variable

regions, illustrating the diversity of allelic variants across 33 IGHV family germline

sequences by sequencing the IgH repertoire of in the population. Our

comprehensive analysis of SARS-CoV-2 spike-specific antibodies revealed the

preferential use of specific Ig alleles among these antibodies. We observed an

association between Ig alleles and antibody binding epitopes. Different allelic

genotypes binding to the same RBD epitope on the spike show different

neutralizing potency and breadth. We found that antibodies carrying the

IGHV1-69*02 allele tended to bind to the RBD E2.2 epitope. The antibodies
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carrying G50 and L55 amino acid residues exhibit potential enhancements in

binding affinity and neutralizing potency to SARS-CoV-2 variants containing the

L452R mutation on RBD, whereas R50 and F55 amino acid residues tend to have

reduced binding affinity and neutralizing potency. IGHV2-5*02 antibodies using

the D56 allele bind to the RBD D2 epitope with greater binding and neutralizing

potency due to the interaction between D56 on HCDR2 and K444 on RBD of

most Omicron subvariants. In contrast, IGHV2-5*01 antibodies using the N56

allele show increased binding resistance to the K444T mutation on RBD.

Discussion: This study provides valuable insights into humoral immune

responses from the perspective of Ig alleles and population genetics. These

findings underscore the importance of Ig alleles in vaccine design and

therapeutic antibody development.
KEYWORDS

allele, affinity, antibody, epitopes, immunoglobulin heavy chain (Igh), neutralization,
receptor-binding domain (RBD), SARS-CoV-2
Introduction

Since 2019, SARS-CoV-2 has triggered a relentless global

pandemic, posing a severe threat to human health. As of

December 30, 2023, there have been more than seven billion

confirmed cases of severe coronavirus disease 2019 (COVID-19)

worldwide, with nearly seven million cumulative deaths (https://

covid19.who.int). Global vaccination campaigns have been carried

out to protect public health, aiming to induce adaptive immune

responses in individuals to defend against viral invasion. However,

not all vaccine recipients can generate a robust adaptive immune

response. Some individuals may not attain sufficient protection after

the first dose and need multiple doses to boost their humoral

immunity against the virus (1–3). With the continuous mutation

of SARS-CoV-2 and the emergence of new variants, varying degrees

of decline in humoral immune responses have been observed in

vaccinated individuals (4–7). This suggests that different people

have varying degrees of tolerance to mutated strains. Yet, the

mechanisms leading to this phenomenon remain unclear.

Humoral immunity, a vital component of the adaptive immune

response, relies on B lymphocytes producing specific antibodies to

protest pathogenic infections (6). The diversity of antibodies is

shaped through processes like V(D)J recombination, allelic

variations, and somatic hypermutation, allowing the body to

generate numerous unique antibodies that confer protection

through various molecular mechanisms (8–10). These unique

antibodies collectively form the antibody repertoire. Allelic

variations refer to genetic diversity in the open reading frame

encoding antibodies, particularly in the variable areas (9, 11).

Unlike more random events such as somatic hypermutation,

allelic variations consistently generate a diverse population of

antibodies. In humans, heavy chain genes on chromosome 14

consist of 129 variable genes (V), 27 diversity genes (D), and 9
02
joining genes (J). Notably, heavy chain allelic loci play a vital role,

constituting 62.5% (267/427) of antibody allelic loci and

underscoring their significance in forming antibodies (9).

However, there are limited studies on the influence of antibody

allelic genes and their roles in responding to infections. For

instance, it has been reported that in the influenza vaccinees, F55

of IGHV1-69 plays a crucial role in forming broad-spectrum

antibodies against H5N1 (12). Another study showed that F55 is

essential for the initial development of the IGHV1-69 antibodies

binding the influenza H1-HA stem region, playing a crucial role in

initiating the antibody affinity maturation process (13). During the

MERS-CoV outbreak, a MERS-CoV neutralizing antibody m336,

utilizing IGHV1-69*06, was identified. It was found that F55 in

HCDR2 and K74 in FR3 significantly impact the high affinity for the

spike (14). Since the outbreak of the SARS-CoV-2 pandemic, there

have been emerging reports on the functional analysis of allelic

variants. An earlier study showed that a class of RBD-specific

antibodies, represented by LY-CoV1404, utilizes the IGHV2-5*02

genotype containing D56. These antibodies have broad-spectrum

neutralizing activities against WT, Delta, and early Omicron

subvariant BA.2. In contrast, IGHV2-5*01, which contains N56 is

absent in IGHV2-5/IGLV2-14-encoded RBD monoclonal

antibodies (15). CAB-I47, an antibody utilizing the IGHV1-69*20

genotype, with R50 and F55 amino acid residues in the CDR2

region, can effectively neutralize WT strain. However, the use of

G50 and L55 amino acid residues completely abolishes both binding

and neutralizing activity (16). Another study showed that both F55

and L55 alleles encode broadly neutralizing antibodies (bnAbs)

against the same epitope in the human influenza virus. However,

while humanized transgenic mice carrying F55/F55 and F55/L55

genotypes could generate bnAbs, those carrying the L55/L55

genotype could not (17). A computational analysis using the

Structural Antibody Database (SAbDab; http://opig.stats.ox.ac.uk/
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webapps/sabdab) (18) suggested that polymorphisms in 73% of the

alleles may affect antibody binding activity (19). Despite these

reports on antibody genotypic variations, the lack of systematic

research on population genotypes has constrained our

understanding of humoral immunity.

This study aimed to provide an overview of human antibody

heavy chain region allelic genes and to construct an allelic atlas of

IgH variable regions. We applied immunoglobulin heavy chain

repertoire sequencing to display the distribution of allelic variants in

the population. Using SARS-CoV-2 as a model, we performed

analysis on approximately 10,000 spike-specific antibodies in

public databases, attempting to summarize their allelic gene

usages and binding epitope preferences. Finally, we selected two

representative antibody classes, IGHV1-69 and IGHV2-5, and

delved into the impact of allelic genes on the binding and

neutralizing activities.
Materials and methods

Research cohort and bulk immunoglobulin
heavy chain gene sequencing

IgH sequencing technology is a high throughput method for

analyzing immunoglobulin heavy chain gene rearrangement and

diversity (20). IgH sequencing data from 130 people, consisting of

106 COVID-19 convalescents and 24 healthy individuals, were used

in this study, which has been described in previous reports (21–23).

All individuals are Asian. The median age of healthy individuals is

44.5 years (range 24-68), while the median age of COVID-19

convalescents is 57.1 years (range 25-87). In terms of gender

distribution, men comprise 41.7% (10/24) of the healthy

individuals and 39.6% (42/106) of the COVID-19 individuals.

Conversely, women account for 58.3% (14/24) of healthy

individuals, 60.4% (64/106) of COVID-19 convalescents. Peripheral

blood mononuclear cells (PBMCs) from blood samples were isolated

using Opti-Prep lymphocyte separation solution (Axis Shield Poc As,

Norway) and subsequent centrifugation (24). Then, total RNA from

the isolated cells was purified using TRIzol™ (ThermoFisher, USA)

(25). Next, iRepertoire employed the damPCR technology with

highly specific multiplex primers (iRepertoire, Inc., USA) to

amplify high-purity BCR and TCR sequences. Finally, the obtained

sequences were read using the Illumina HiSeq 2500 with a 2x250bp

sequencing mode (Novogene, China) (23).
Bioinformatics analysis

The raw data was initially subjected to filtering using

Trimmomatic (v0.39) to clean sequences with a quality score

under 20 (26). Subsequently, qualified paired-end sequencing

reads were subjected to Flash (v1.2.11) assembly and converted

into FASTA files (27). Finally, a reference index was constructed

using germline sequences from IMGT, and MiXCR (v4.0) was
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(28). The IgM and IgD repertoire data were used to identify allelic

genotypes in the population through MiXCR analysis, with all

reference sequences derived from IMGT reference sequences. The

observed non-allelic variant amino acids are referred to as somatic

hypermutation. And the criteria for “less prevalent” are as follows.

1. Functional antibody families with allelic sites in the sequencing

region. 2. At least 200 reads per 100k reads for the antibody family.

3. The antibody family can be detected in more than 50% of

individuals. The information on SARS-CoV-2 specific antibody

sequences was obtained from the Coronavirus Antibody Database

(https://opig.stats.ox.ac.uk/webapps/covabdab/) (29). NCBI

IgBLAST (v1.18.0) was used to search and annotate the alleles for

each antibody (30). The data on neutralizing antibodies against

COVID-19 were sourced from published articles (31, 32). We

utilized the epitope classification method from these articles and

annotated each antibody’s allelic information for further analysis.

The germline reference sequences are derived from IMGT/GENE-

DB (Version 3.1.39), using the amino acid sequences from V-

REGION with F+ORF+in-frame P including IMGT gaps, and

IMGT gaps were removed in subsequent alignment analyses. The

numbering used in our study is the IMGT unique numbering,

excluding any gaps. Due to the high mutation rate of the CDR3

region, our study focused on 3 framework regions (FR1, FR2, FR3)

and 2 complementarity determining regions (CDR1, CDR2).
Monoclonal antibody expression
and purification

Antibody heavy and light chain amino acid sequences were

obtained from the Coronavirus Antibody Database (29). To avoid

issues caused by unsuitable nucleotides, all sequences were

synthesized according to human codon usage. The IGHV1-69

heavy chains were reverted to their IGHV1-69*02 germline

sequences. The sequence of IGHV2-5 antibodies was not modified

due to the significant functional changes caused by the D56

alteration. The plasmids were then transformed into DH5a cells

(Escherichia coli) for large-scale amplification, and the plasmids

carrying the heavy and light chains were extracted using an

endotoxin-free plasmid extraction kit (Macherey-Nagel, Germany).

The heavy and light chain plasmids, wrapped in equal amounts with

PEI (Life-iLab Biotech), were transfected into Expi 293 cells (Thermo

Fisher). Subsequently, protein A resin was employed for purification,

resulting in high-concentration IgG1 antibodies against SARS-CoV-2

and their variants. All purified proteins were stored in PBS buffer

(BasalMedia) and preserved at -80°C.
BLI detection for neutralizing antibody
affinity and binding kinetics

The SARS-CoV-2 specific antibodies and the RBD protein were

prepared in advance and stored on ice. They were then diluted to 11
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mg/mL and 200 mM using PBS-TB buffer (PBS with 0.02% v/v

Tween-20 and 0.1% w/v BSA) separately. The AHC2 biosensor

(Sartorius) was initially pre-wetted with PBS-TB buffer for ten

minutes and loaded with antibodies until the signal response

reached approximately 1.5 nm. Subsequently, the antibodies were

exposed to various RBD solutions for 300 seconds to evaluate the

association kinetics. Finally, the biosensor was placed in a PBS-TB

buffer for 600 seconds to assess the dissociation kinetics. All

procedures were conducted at 25°C with an orbital shaking speed

of 1,000 rpm. Binding response less than 0.1 was considered as

non-binding.
Pseudovirus neutralization assay

The WT, BQ.1.1, and XBB pseudoviruses were primarily

constructed using lentivirus as the main backbone, each carrying

different subtypes of the SARS-CoV-2 spike protein and firefly

luciferase. After culturing in 293F cells (Thermo Fisher) for 3 days,

viral supernatants were obtained. The neutralizing antibodies were

serially diluted two-fold, starting from a 10 mg/mL concentration.

The virus solution and antibody dilution were mixed in equal

volumes and incubated for 1 hour at 37°C. Cell plates, pre-coated

with poly-L-lysine (Sigma-Aldrich), received the addition of 2×104

293T cells (ATCC) to each well. Following this, the virus-antibody

mixture was introduced, and the plates were incubated at 37°C for

72h. After this period, the supernatant was transferred to a white

plate, and an equal volume of substrate solution was added. After

incubating in the dark for 2 minutes, we measured the fluorescence

response of the cell wells using a Biotek Cytation I

microplate reader.
Structure simulation and cartesian_ddG for
functional prediction of allelic genes

The original structures of antigens and antibodies can be

obtained from the Protein Data Bank (PDB, https://www.rcsb.org/)

(33). The structure of R1-32 (7YDI) and LY-CoV1404 (7MMO)

were acquired. Primary docking using ZDOCK (3.0.2) was

employed to generate the initial conformation of the antigen-

antibody complex (34), followed by simulations of the complete

conformations using Rosetta SnugDock software (https://

www.rosettacommons.org/) (35). Meanwhile, the cartesian_ddG

functionality of the Rosetta software was utilized to predict the

impact of single-point mutations on the energy of the complex

structure. DDG is defined as the difference in free energy changes

(DG) between two different states, commonly used to compare the

impact of mutations on molecular stability or interactions. Two

DDG values were predicted, and by calculating DDG_mut - DDG_wt,
the influence of single-point mutations on the stability of the

complex structure could be determined (36). The original and

simulated structural conformations were visualized and presented

using ChimeraX (v1.5) (37).
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Results

IgH sequencing reveals IgH allelic gene
polymorphism in the population

Despite the increasing number of reports highlighting the potential

impact of IgH allelic gene polymorphism on antibody function, a

comprehensive analysis of IgH alleles is still lacking. To gain a more

comprehensive understanding of the allelic genes of immunoglobulin

heavy chain variable regions (IGHV), we first retrieved the germline

sequences for the IGHV from the IMGT database (https://

www.imgt.org/). We selected 42 functional IGHV families from

111 IGHV families to establish an allelic atlas (48 pseudogene

families,16 lacking allele families and 5 unknown functional

families were excluded) (Figure 1A; Supplementary Figure S1A).

We identified 26 IGHV families with at least 5 distinct genotypes,

including IGHV1-69 (20 genotypes), IGHV2-70 (19 genotypes),

IGHV3-30 (20 genotypes), IGHV4-34 (13 genotypes), and IGHV4-

59 (13 genotypes) (Supplementary Figure S1B, Supplementary

Table S1). Subsequently, we detected a total of 238 allelic gene

loci within the IGHV region, with 62 loci located in the FR1 region,

36 loci in the FR2 region, 78 loci in the FR3 region, 29 loci in the

CDR1 region, and 33 loci in the CDR2 region (Supplementary

Figure S1C, Supplementary Table S1). Notably, among these

families were those exhibiting a high density of allele gene loci in

the CDR1 and CDR2 regions such as IGHV1-69 (3 loci), IGHV2-5

(3 loci), IGHV3-15 (4 loci), IGHV3-23 (4 loci), IGHV3-30 (3 loci),

IGHV4-34 (4 loci), and IGHV4-4 (4 loci) (Supplementary Figure

S1D). Amino acid diversity in the CDR1 and CDR2 regions is

related to binding affinity and neutralizing activity, as reported in

several previous studies (38–40). Therefore, the large number of

allelic loci within these regions suggests potential functional

diversity. Overall, this comprehensive allelic atlas provides insight

into the amino acid polymorphism present within the germline

sequences of IGHV genes and illustrates the genotypic diversity of

antibody response.

Although there have been some studies of immunoglobulin

heavy chain alleles, few reports have focused on allelic distribution

in populations. This distribution may be related to population

immunity. To investigate the genetic variation in the population,

we compiled the sequence data of the IgM and IgD repertoires of

130 individuals (21–23), including both healthy individuals (n=24)

and COVID-19 convalescents (n=106). By tracking the antibody

repertoire of six COVID-19 patients over the course of a year, we

found that the IgM and IgD antibody repertoires during the

infection period and one year later showed high similarity

(Supplementary Figures S4A, B). A Wilcoxon test comparing

allele usage in the IgM and IgD antibody repertoires during the

infection period and one year later yielded a P-value of 0.8787,

indicating that pathogenic infections have a limited impact on the

IgM and IgD repertoires in individuals. Therefore, we used MiXCR

and the IgM and IgD repertoire data to infer personal genotype by

performing germline genotyping on the IgM and IgD sequences

(28). After quality control processing of the sequencing data (19),

we obtained 140 million valid IgH sequences. Of these, 29 million
frontiersin.org
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sequences correspond to the IgM and IgD repertoires. Excluding

less prevalent IGHV families, we performed a statistical analysis of

population allelic genotypes for 33 IGHV families. Despite the high

diversity of allelic genotypes among different IGHV families
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(Supplementary Figure S1B), a few genotypes are prevalent in the

population, including IGHV1-69*01 (36.7%), IGHV1-69*02

(14.1%), IGHV1-69*04 (33. 9%), IGHV2-5*02 (81.4%), IGHV2-

70*01 (40.9%), IGHV2-70*11 (45.8%), IGHV3-30*04 (45.3%),
FIGURE 1

Investigation of allelic variants in the heavy chain variable region from 130 individuals. (A) Allelic variant maps of germline sequence in the IGHV. The
bubble chart depicts the amino acid usage and proportions at each allele locus within each antibody family. (B) Allelic variant maps of the IGHV from
130 individuals. The frequency of allelic usage at each allele locus with each antibody family is shown in the sequence (top). Non-allelic variant
amino acids are collectively categorized as “others” and represented in dark gray. The average frequency of allelic genotypes in the IGHV across 130
individuals (bottom). Allelic genotypes below 8% are uniformly categorized as “others” and indicated in dark gray.
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FIGURE 2

Specific antibodies utilize antibody allelic genotypes similar to those found in the population. (A) Doughnut chart displaying the antibody family
usage frequencies among 10643 spike-specific antibodies. The top six most frequently used families are color-coded. (B) The allele frequencies
correlation between SARS-CoV-2 specific antibodies and population. (C) Distribution of IGHV allelic usage in SARS-CoV-2 specific antibodies. The
frequency of amino acid usage at each allele locus within each antibody family is shown in the FR1 to FR3 regions of IGHV (top). The horizontal axis
corresponds to the antibody families. Non-allelic amino acids are grouped as “others” and represented in dark gray. The average frequency of allelic
genotypes in the IGHV, with genotypes below 8% grouped as “others” and shown in dark gray (bottom). (D) Comparison of allelic genotypes usage
frequencies between the population and specific antibodies. The frequency of allelic genotypes of more than 4% in groups is displayed.
Frontiers in Immunology frontiersin.org06

https://doi.org/10.3389/fimmu.2024.1471396
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Deng et al. 10.3389/fimmu.2024.1471396
IGHV3-30*18 (41.2%), IGHV3-53*01 (74.8%), IGHV4-34*01

(97.5%), IGHV4-59*01 (50.7%) and IGHV4-59*08 (27.4%)

(Figure 1B). The above observation showed that most individuals

have similar allelic genotypes.
Certain allelic genotypes predominate in
SARS-CoV-2 spike-specific antibodies

To investigate the impact of SARS-CoV-2 infection on allelic

gene usage in population-derived antibodies, we compiled a dataset

of 10,643 SARS-CoV-2 spike-specific antibodies obtained from

CoV-AbDab (29). We observed that IGHV3-30 antibodies
Frontiers in Immunology 07
(11.4%) were the most abundant, along with five other antibody

families: IGHV1-69 (10.3%), IGHV3-53 (5.0%), IGHV3-23 (4.6%),

IGHV1-46 (4.4%) and IGHV3-9 (4.2%), in agreement with our

previous findings (35). Together, these families accounted for 39.6%

of the total number of antibodies, while the remaining 45 IGHV

families accounted for 60.1% (Figure 2A). We categorized these

antibodies according to their allelic V genotype using the germline

sequences provided by IMGT (28, 36). There is a strong correlation

between the use of allelic genotypes found in the population and

those present in spike-specific antibodies (Figure 2B). Furthermore,

we presented the top 25 IGHV families in spike-specific antibodies

and compared their allelic gene usage between individuals and

specific antibodies pairwise. In general, alleles commonly observed
FIGURE 3

Preference of binding epitopes exhibited by different allelic variants of SARS-CoV-2 neutralizing antibodies. (A) The heatmap illustrates the
association between allelic variants of neutralizing antibodies and binding epitopes. The number of antibodies corresponding to each allelic
genotypes are labeled on the right. Allelic clusters with a high percentage are labeled in red font on the right side of the heatmap. (B) Sankey
diagram demonstrates the enrichment of specific allelic clusters at distinct binding epitopes. Each line represents an antibody, and the color of the
line indicates the binding epitope on the RBD. (C) Comparison of neutralization differences among different antibody clusters. Wilcoxon test was
employed for comparisons. (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
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in the population are also prevalent in SARS-CoV-2 spike-specific

antibodies (Figures 1B, 2C). However, the usage of several allelic

genotypes is enriched in spike-specific antibodies. For example,

IGHV1-2*02 is 21.1% more common in these antibodies than in the

general population (71.0% vs. 49.9%). IGHV1-58*01 is 41.9% more

frequent (90.4% vs. 48.5%), and IGHV4-4*02 is 28.6% more

frequent (65.3% vs. 36.7%) (Figure 2D). These results suggest that

certain allelic genotypes may enhance the affinity of antibodies to

the SARS-CoV-2 spike protein.
SARS-CoV-2 neutralizing antibodies with
different allelic genes exhibit epitope-
binding preferences

We selected antibodies with neutralization data available from

the CoV-AbDab database to assess the association between allelic

genotypes and neutralizing epitopes (A-F3) on the RBD (31, 32).

Based on these data, we combined the allelic genotypes with the

binding epitopes, attempting to define different antibody clusters

using the allelic genotype/epitope combinations. To simplify the

nomenclatures, we abbreviate antibody clusters such as IGHV1-

69*02 that bind to the E2.2 epitope as IGHV1-69*02 (E2.2 epitope),

IGHV2-5*02 that bind to the D2 epitope as IGHV2-5*02(D2

epitope) and so on. To refine our analysis and avoid potential

biases from small sample sizes, we filtered out the dataset with

fewer than four antibodies per allelic genotype/epitope cluster. As a

result, we identified 56 antibody clusters in 32 antibody families. We

then identified the most prevalent antibody cluster within each

antibody family and marked the corresponding 28 allelic genotypes

(Figure 3A). 14 antibody families were selected for subsequent

analysis based on the number of allelic sites and total antibody

counts (Figure 3B). This analysis demonstrated that specific allelic

genotypes within each family favor binding to distinct epitopes. In

addition, a comparative evaluation of big antibody clusters with other

antibodies from the same families revealed significant variances in

neutralizing activity against the D614G strain among 14 antibody

families, including IGHV1-2*02 (C epitope), IGHV1-69*02 (E2.2

epitope), IGHV1-69*20 (C epitope), IGHV2-5*02 (D2 epitope),

IGHV3-53*01 (A epitope), IGHV5-51*01 (E3 epitope) (Figure 3C).

Antibodies from IGHV1-69, using diverse allelic genotypes at specific

epitopes, exhibited marked differences in neutralizing activity against

D614G pseudoviruses. This observation suggests that different allelic

genotypes contribute significantly to functionality at distinct

epitopes, even within the same family. Previous research focused

on the HCDR3 region’s primary role in determining antibody

binding epitopes, with contributions from other regions of both

the light and heavy chains (41–43). Our analysis revealed that

different IgH allelic genotypes that exhibit epitope-binding

preferences can also significantly contribute to different

neutralizing potency and breadth. We subsequently carried out
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antibodies against SARS-CoV-2.
IGHV1-69*02 (E2.2 epitope) antibodies
tend to have broad-spectrum neutralizing
activities, while IGHV1-69*20 (C epitope)
antibodies tend to have greater
neutralizing potency

The IGHV1-69 antibody family is characterized by multiple

allelic gene sites within the VH gene (Figure 4A) and plays a crucial

role in immune defense against SARS-CoV-2. We evaluated the

neutralization potency of IGHV1-69*02 (E2.2 epitope) and other

IGHV1-69 neutralizing antibodies against six Omicron variants

(BA.1, BA.2, BA.2.75, BA.5, BQ.1.1 and XBB). According to the

standards defined in the relevant literature, an IC50 value higher

than 10 µg/mL is considered to have no neutralization (44).

IGHV1-69*02 (E2.2 epitope) antibodies demonstrated broad-

spectrum neutralizing activities across multiple variants, except

BQ.1.1 (Figure 4B). Our findings revealed that approximately 60%

of E2.2 epitope-binding antibodies utilize the basic amino acids,

including the allelic variant R50 (45.90%) and the mutant K50

(13.11%), while 23.77% utilize the amino acid G50. The remaining

17.22% are composed of 9 different amino acids due to somatic

hypermutation. Approximately 74.59% of E2.2 epitope-binding

antibodies utilize the amino acid L55, while 9.84% utilize F55.

The remaining 15.57% comprise 6 different amino acids owing to

somatic hypermutation (Figure 4C).

To further analyze the IGHV1-69*02 (E2.2 epitope) antibodies, we

employed R1-32, an IGHV1-69*10 (E2.2 epitope) antibody we

identified in our lab. We have resolved the structural biology of the

interaction between antibodies and RBD using cryo-EM as a model

(40). R1-32 utilizes G50 and L55 in the IGHV region, as well as IGLV1-

40, and shares a similar HCDR3 region, which is 17 amino acids long

and contains the ‘GYSGYG’ or ‘GYSGSG’ motif. These characteristics

are common amongmost IGHV1-69*02 (E2.2 epitope) antibodies. R1-

32 is escaped by L452R mutation on RBD. Based on the

established structure, we conducted simulations to evaluate the

influence of the R50 and F55 on antigen-antibody interactions for

both the wild-type L452 RBD and the R452 RBD (Supplementary

Figure S2A). The results of the energy calculations indicated that R50

enhanced binding, whereas F55 weakened the interaction. The

functional analysis was conducted using five R1-32-like antibodies,

including R1-32, and one non-R1-32-like antibody, BD56-1834

(Supplementary Figure S2B). To circumvent the potential influence

of somatic hypermutations (41, 42), all heavy chains were reverted to

their IGHV1-69*02 germline sequences. The impact of these single-

point mutations on antibody binding affinity was assessed through

biolayer interferometry (BLI) experiments. In the case of the non-

L452R RBD, both G50 and R50 demonstrated comparable binding

affinities. However, when the binding of G50 and R50 to the L452R
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FIGURE 4

Analysis and Functional Validation of IGHV1-69 SARS-CoV-2 Neutralizing Antibodies (A) Amino acid map summarizes the positions of IGHV1-69
alleles. (B) Comparison of neutralizing activity between IGHV1-69*02(E2.2 epitope) and other IGHV1-69 nAbs against six SARS-CoV-2 variants.
(C) Amino acid usage distribution maps for IGHV1-69(E2.2 epitope) nAbs. The doughnut charts display the frequency of amino acids at positions
50 and 55. The logo plot illustrates the amino acid usage in IGHV1-69(E2.2 epitope) antibodies. (D) Binding affinity comparison of six IGHV1-69/E2.2
antibodies to RBD from three SARS-CoV-2 strains. GL denotes antibodies with variable regions restored to germline sequences. (E) Comparison
of binding affinity and neutralization fold change between two allelic variants against three mutant strains. The fold change of G50 and L55 is
calculated as the ratio of R50 to G50, and the ratio of F55 to L55, respectively. (F) Comparison of neutralization among IGHV1-69*20(C epitope),
IGHV1-69*02(E2.2 epitope), and other IGHV1-69 neutralizing antibodies against six SARS-CoV-2 variants. The Wilcoxon test was performed in
(B) and (F) (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
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RBD of BQ.1.1 was tested, it was observed that G50 demonstrated

greater binding resilience to L452R escape than R50 (Figure 4D). To

understand the functional differences of the 55th position alleles, we

changed these antibodies from L55 to F55 for comparison. The mean

kon value of L55 antibodies is (3.75 ± 0.82) ×105 M−1 s−1, while that of

F55 antibodies is (3.50 ± 0.67) ×105 M−1 s−1, demonstrating similar

binding activities to the WT RBD. However, L55 antibodies showed a

markedly slower dissociation rate (mean koff = (1.64 ± 0.50) ×10-3 s−1)

than F55 antibodies (mean koff = (9.02 ± 3.80) ×10-3 s−1), significantly

enhancing their binding affinity (Figure 4E). The difference in

dissociation rates directly affected the affinity of L55(mean KD =

7.72 ± 4.52 nM) and F55(meanKD = 40.83 ± 25.62 nM) forWTRBD.

Similar phenomena were also observed with the BQ.1.1 RBD and

XBB RBD (Supplementary Table S2).

To investigate the role of allelic variants in neutralizing potency,

we measured the half-maximal inhibitory concentration (IC50)

against SARS-CoV-2 pseudoviruses. G50 variants exhibited

comparable neutralizing activities to R50 against non-L452R

strains, except for BD56-597. G50 variants demonstrated

potential tolerance to the BQ.1.1 subvariant, which contains the

L452R mutation (Figure 4E; Supplementary Figure S2C). Although

the IGHV1-69 antibodies and their allelic variants showed

significant differences in affinity, this didn’t fully translate to

differences in neutralizing activity (Supplementary Figures S2E,

F). Previous reports have suggested that a class of CAB-I47-like

antibodies, using IGHV1-69*20 allelic genotypes, showed high

affinity and neutralization activity against the SARS-CoV-2 WT

strain (16). However, these antibodies, which also bound to the C

epitope, were escaped by the Beta variants. We observed that

IGHV1-69*20 (C epitope) antibodies exhibited enhanced

neutralizing activities against the D614G variants but were more

susceptible to escape by Omicron variants (Figure 4F). Notably,

neutralizing antibodies binding to the C epitope predominantly

employed allelic variants R50 and F55 rather than G50 and L55

(Supplementary Figure S2D). Consistent with our observation,

CAB-I47-like antibodies belong to the IGHV1-69*20 (C epitope)

clusters. These antibodies utilize R50 and F55, which exhibit

enhanced binding affinity and neutralization. When different

allelic variants, G50 or L55, were used, these antibodies exhibited

a significantly reduced binding affinity and neutralization potency

(16). Overall, antibodies binding the same epitope can exhibit

varying binding affinity and neutralization potency against SARS-

CoV-2 due to variations in their allelic genotypes.
IGHV2-5*02 (D2 epitope) antibodies mostly
exhibit broad-spectrum
neutralizing activities

The IGHV2-5 antibodies have attracted attention for their

prevalent occurrence in the antibody repertoire of SARS-CoV-2

vaccinees and their broad-spectrum neutralization (45–47).

Analysis of the IGHV2-5 gene germline sequences from IMGT
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identified 8 allelic variant sites (Figure 5A). Unlike IGHV1-69, the

allelic genotypes of IGHV2-5 in 130 individuals are predominantly

concentrated in *01 and *02 (16.3% and 81.4%, respectively) in our

study (Figure 1B), corresponding to the N/D difference at position

56 of CDR2. This data, derived from the IgM and IgD repertoires, is

similar to that from an antibody repertoire analysis of 13

individuals, where the frequency of IGHV2-5*02 and IGHV2-

5*01 accounted for 64% and 33% among all IGHV2-5 antibodies,

respectively (15). In line with population allelic frequency data,

analysis of IGHV2-5 spike-specific antibodies revealed a

predominance of allelic genotypes IGHV2-5*02 (80.6%)

(Figure 2C). We classified IGHV2-5 neutralizing antibodies

against RBD based on allelic genotypes and epitopes. IGHV2-

5*02 (D2 epitope) antibodies exhibit broad-spectrum neutralizing

activities against D614G, BA.1, BA.2, BA.2.75, and BA.5 variants,

until evasion by BQ.1.1 and XBB (Figure 5B). Interestingly, the

amino acid residue at position 56 in IGHV2-5 antibodies varies

according to the binding epitope. 88.9% of IGHV2-5 (D2 epitope)

neutralizing antibodies utilize D56, with 3.7% utilizing N56

(Figure 5C). 78.46% of IGHV2-5 (non-D2 epitope) antibodies

utilize N56, while 15.38% utilize D56 (Figure 5D), suggesting

both D56 and N56 residues might contribute to neutralization

positively. To investigate the functional aspects of IGHV2-5*02 (D2

epitope) antibody genotypes, we used LY-CoV1404 as a base and

employed structural simulation to predict the functional roles of the

genotypes. The simulation revealed that D56 could form hydrogen

bonds and salt bridges with K444 onWT RBD protein, contributing

to the formation of a stabilized structure, which was in line with

previous reports (48). In contrast, N56 was unable to bind with

K444. Upon introducing a K444T single-point mutation on the WT

RBD, D56 failed to form a salt bridge with T444, resulting in a

weakened force in the CDR2 region (Supplementary Figure S3A),

consistent with previous reports (48, 49).

To clarify the relationship between alleles and epitopes, we

selected five IGHV2-5*02 (D2 epitope) antibodies, LYCoV-1404,

BD56-1290, BD57-028, XGv-265, BD56-595, and two non-D2

epitope antibodies, BD56-103 (IGHV2-5*01/F1 epitope) and

BD55-6297 (IGHV2-5*01/F3 epitope) from the neutralizing

antibodies database, for further analysis. These five antibodies

predominantly shared IGHJ4 and are paired with IGLV2-14, with

HCDR3 regions typically consisting of 11 amino acids

(Supplementary Figure S3B).

IGHV2-5*02 (D2 epitope) neutralizing antibodies possessing the

D56 allele exhibited high affinity for the WT RBD. In contrast, the

N56 allele showed almost no binding to the WT-RBD, as

demonstrated by BLI analysis (Figure 5E). Interestingly, IGHV2-

5*02 (D2 epitope) antibodies, like BD57-028 and BD56-595, with the

N56 allelic variant, showed a 57-fold increase in binding affinities to

BQ.1.1-RBD carrying K444T mutation compared to those with the

D56 variant (Figure 5F; Supplementary Table S3). In contrast, for

IGHV2-5*01 (F1 epitope) and IGHV2-5*01 (F3 epitope) antibodies,

there was no significant difference in the impact of D56 and N56 on

binding affinity (Figure 5E). We analyzed the neutralizing activities of
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FIGURE 5

Analysis and Functional Validation of IGHV2-5 Neutralizing Antibodies (A) Amino acid profile of IGHV2-5 antibody allelic variant sites. (B) Comparison
of neutralization by IGHV2-5*02(D2 epitope) and other IGHV2-5 neutralizing antibodies against different SARS-CoV-2 variants. Wilcoxon test was
performed (****p<0.0001). (C), (D) Amino acid usage distribution of IGHV2-5*02(D2 epitope) and other IGHV2-5 antibodies. The logo plots show
the amino acid usage in different IGHV2-5 antibody clusters. (E) Affinity comparison of five IGHV2-5*02(D2 epitope) antibodies and two non-D2
antibodies (F1/F3 epitope) and their allelic variants on 56th position with three different SARS-CoV-2 RBDs. (F) Comparison of binding affinity and
neutralization fold change between D56 and N56 against three mutant strains. The fold change of D56 is calculated as the ratio of N56 to D56.
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IGHV2-5 antibodies against the pseudoviruses WT, BQ.1.1, and

XBB1.5 (Supplementary Figure S3C). D56 significantly enhanced

the neutralizing activity of IGHV2-5*02(D2 epitope) antibodies

against the WT pseudovirus compared to N56 (Figure 5F), which

aligned with the BLI results (Supplementary Figure S3D).

Interestingly, the allelic variant D56 of the IGHV2-5*01 (F1

epitope) antibody BD56-103 exhibited greater tolerance to

mutation escape. In contrast, the N56 allele of the IGHV2-5*01(F3

epitope) antibody BD55-6297 significantly improved the antibody’s

neutralizing activity against all three SARS-CoV-2 strains

(Supplementary Figures S3C, E). These results suggest that the

functionality of IgH allelic genes is closely associated with the

antibody-binding epitopes. In other words, antibodies with the

same allelic gene can exhibit distinct functions across different

epitopes. Furthermore, antibodies with specific allelic genotypes

and binding epitopes can show resilience to SARS-CoV-2

mutation escape.
Discussion

With the recent global outbreak of the COVID-19 pandemic

and the application of high-throughput sequencing technologies, it

has become possible to study the immune mechanism from a

molecular biology perspective (50, 51). There is a growing interest

in the foundational research of population immunology. Ig alleles

play a crucial role in shaping the humoral immune response,

particularly in the context of antibody diversity and specificity.

The ability of the human immune system to recognize and

neutralize a wide array of pathogens is significantly influenced by

the polymorphisms in Ig genes. Furthermore, Ig alleles can

influence susceptibility to various diseases. For example, one

study showed that the R110 allelic variant of IGLV3-32*01 is

often associated with poor prognosis in chronic lymphocytic

leukemia (CLL) (52). Despite this, there has been a lack of

comprehensive research focusing on how specific Ig alleles affect

the function and efficacy of antibodies, especially in response to

emerging pathogens such as SARS-CoV-2. This study provided an

allelic atlas of IgH variable regions, demonstrating their genetic

diversity and functional relevance in the context of SARS-CoV-2

infection. Our analysis identified and characterized the diversity of

allelic variants across 33 antibody family germline sequences

through IgH repertoire sequencing of 130 individuals,

encompassing both SARS-CoV-2 infected people and healthy

donors. The comprehensive analysis of approximately 10,000

SARS-CoV-2 specific antibodies revealed that certain IgH alleles

are preferentially utilized in the humoral immune response against

SARS-CoV-2. These findings highlighted that genetic diversity

within the population can influence the distribution and

prevalence of specific immunoglobulin alleles. One study showed

that the frequency of IGHV2-5*01 (N56) antibodies is 33% among

all IGHV2-5 antibodies in the antibody repertoire of 13 healthy
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volunteers. But no IGHV2-5*01 was used among RBD-specific

antibodies encoded by IGHV2-5/IGLV2-14 (15). Although it is

unclear whether this process arises from selection or mutations

from N to D in the alleles, it provides strong evidence that favorable

residues can be enriched under certain circumstance. However, we

did not observe a significant enrichment of G50 or R50 among

IGHV1-69 antibodies in our longitudinal analysis of COVID-19

convalescents, which may be related to the functional diversity of

the IGHV1-69 alleles. The diversity of alleles can affect the

population’s binding resilience to SARS-CoV-2 variants. Insights

gained from this research can inform public health strategies and

personalized medicine approaches, ensuring that interventions are

equitable and effective across diverse genetic backgrounds.

Our study also revealed epitope preference in the usage of alleles

in the heavy chain of RBD-binding antibodies, meaning that certain

alleles are more likely to recognize and bind to specific epitopes of

SARS-CoV-2. This finding implies that allele preference may play

an important role in antiviral immune responses, contributing to

our understanding of the functional properties of antibodies and

immune response mechanisms. Previous studies showed that CAB-

I47 possessed strong neutralizing activity against WT strain owing

to the use of R50 and F55 residues, while the use of G50 and L55

residues could completely abolish both binding and neutralizing

activity (16). According to our findings, CAB-I47 belongs to

IGHV1-69*20 (C epitope). All IGHV1-69*20 (C epitope)

antibodies had significantly enhanced binding and neutralizing

activity compared to antibodies from other clusters. Our study

found no significant difference in the functionality of R50 and G50

residues in IGHV1-69*02 (E2.2 epitope) antibodies when

interacting with the SARS-CoV-2 spike carrying the L452.

However, the potential repulsion between R50 and the L452R

mutation reduced the binding affinity of R50 for the RBD,

making G50 more tolerant to the SARS-CoV-2 carrying spike

with the L452R mutation. On the other hand, F55 and L55

exhibit similar binding kinetics to the RBD of SARS-CoV-2

different mutant strains. However, the faster dissociation rate of

F55 suggests potential steric hindrance effects. These effects may

occur in the hydrophobic environment of the interaction between

the IGHV1-69*02 (E2.2 epitope) antibody F55 and spike with L452,

suggesting L55 might be a more favorable choice. Recent studies

have also shown that within a series of IGHV1-69 antibodies against

H1N1, F55 plays a key role in binding the influenza HA stem.

However, L55 binds and neutralizes a broader range of influenza

HAs and is more suited for further affinity maturation (53), aligning

closely with our findings. Interestingly, a number of IGHV1-69*02

(E2.2 epitope) neutralizing antibodies using R50 and F55 were

identified, rather than IGHV1-69*10 (E2.2 epitope) or IGHV1-

69*16 (E2.2 epitope) using G50 and L55. We speculate that this

could be due to two factors. First, the IGHV1-69*02 allelic genotype

is more common in the population. Second, the neutralizing

antibodies in the database are predominantly from vaccine

recipients or convalescents exposed to non-L452R mutant strains.
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The IGHJ and IGLJ differ among selected IGHV1-69 and

IGHV2-5 antibodies. However, our structural analysis showed

that J genes did not interact with the spike protein, so we did not

consider these differences in our study. Through structural

simulations and single amino acid site energy calculations, A33T

had less than 0.6 kcal/mol in bothWT-RBD and L452R-RBD (0.585

and 0.254, respectively). We believe that A33 and T33 have a similar

impact on antibodies. We also found that I57 (mean KD= 0.72±0.23

nM) and T57 (mean KD= 0.98±0.28 nM) have similar functions in

antibodies against WT RBD based on BLI experiments. Therefore,

our selected antibodies include IGHV1-69*02, IGHV1-69*08 and

IGHV1-69*10 antibodies. BD56-1834, which is not an R1-32 like

antibody, has similar function to R1-32 like antibodies. We

speculate that this is mainly related to the binding epitope. The

differences among the selected antibodies may be attributed to

variations in the heavy chain CDR3 region and the light chain.

Previous studies defined the IGHV2-5*02 (D2 epitope)

antibody, represented by LY-CoV1404, along with its D56 allelic

variant. This antibody exerts strong forces through hydrogen bonds

and salt bridges with K444 on spike RBD (48). However, with the

emergence of the K444T mutation (49), the BQ.1.1 variant, as a

representative, made IGHV2-5*01 (D2 epitope) with N56 a more

favorable selection. Upon leaving the RBD D2 epitope, the roles of

allelic genotypes IGHV2-5*01 and IGHV2-5*02 might change, with

N56 (IGHV2-5*01) enhancing antibody neutralization against the

WT, BQ.1.1, and XBB1.5 mutant strains more than D56

(IGHV2-5*02).

There are several limitations in this study. Firstly, the sample

size of the cohort, consisting of 130 individuals, is relatively small

and may not adequately represent a broader population. The spike-

specific antibodies were sourced from public databases and

screened from diverse populations worldwide. Therefore, the

comparison between the population and spike-specific antibodies

might lead to results that are not sufficiently rigorous. To address

these issues, large-scale whole-genome sequencing and BCR

repertoire sequencing of COVID-19 patients or convalescents are

needed for future studies. Secondly, the spike-specific antibody

sequences are derived from amino acid sequences only. Therefore,

all sequence alignments are based on differences in amino acid

sequences without considering factors such as somatic

hypermutation, and thus may not accurately reflect the actual

nucleic acid genotypes. IGHV allele annotations are based on the

IMGT germline reference, which has limited genomic information

and does not fully capture the genetic diversity of various

populations (54). With advancements in sequencing technology

and analytical tools, a large number of novel alleles are waiting to be

discovered (55). Finally, this study attempted to elucidate the

specific mechanisms of allelic variants through structural

simulation, which may introduce some degree of uncertainty.

In summary, this study provides an allelic atlas of IgH variable

regions and demonstrates the critical role of immunoglobulin alleles

in shaping the humoral immune response to SARS-CoV-2. Our

study demonstrated that the allelic genotypes and binding epitopes

of antibodies can influence the function of antibodies, suggesting

that the vaccine design could be tailored based on specific antigenic
Frontiers in Immunology 13
epitopes and the allelic genotypes of individuals. Such a strategy

may improve the production of high-affinity and broad-spectrum

antibodies, and therefore enhance vaccine efficacy.
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SUPPLEMENTARY FIGURE 1

Summary of IGHV germline sequence (A)Distribution of 111 IGHV families. (B)
Comparison of the number of allelic genotypes across 42 antibody families.

(C) Comparison of allelic site counts(aa) in each IGHV region. (D) The number
of allelic gene loci in CDR1 and CDR2 regions of 26 antibody families.

SUPPLEMENTARY FIGURE 2

Sequence Information on IGHV1-69 Neutralizing Antibodies (A) Structural
simulations contrasting the interactions of R1-32, R1-32-G50R, R1-32-L55F

with WT RBD and L452R-RBD. Energy calculations are employed to predict
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the impact of different allelic variants. (B) Sequence information of IGHV1-69
monoclonal antibodies binding the E2.2 epitope. (C) The neutralization

against WT, BQ.1.1, and XBB1.5 SARS-CoV-2 strains by IGHV1-69

monoclonal antibodies and their variants. (D) Amino acid usage distribution
for IGHV1-69*20/C and remaining antibodies. (E) Correlation between

binding affinity and neutralization of six IGHV1-69(E2.2 epitope)
monoclonal antibodies. Dotted lines represent the detection limit. Best-fit

lines were determined through simple linear regression analysis. Two-tailed
Pearson correlation was employed to calculate the R and P values.

SUPPLEMENTARY FIGURE 3

Sequence Information of IGHV2-5 Neutralizing Antibodies (A) Structural

comparison of the interaction between LY-CoV1404 and LY-CoV1404-
D56N with WT RBD and K444T-RBD, respectively. Energy calculations are

employed to predict the impact of different allelic variants. (B) Sequence
information of five IGHV2-5*02(D2 epitope) and two non-D2 epitope

monoclonal antibodies. (C) Neutralization against WT, BQ.1.1, and XBB1.5

SARS-CoV-2 strains by IGHV2-5 antibodies and their allelic variants. The red
line represents D56 variants, while the blue line represents N56 variants. (D)
Correlation between binding affinity and neutralization of seven IGHV2-5
monoclonal antibodies. Dotted lines represent the detection limit. Best-fit

lines were determined through simple linear regression analysis. Two-tailed
Pearson correlation was employed to calculate the R and P values.

SUPPLEMENTARY FIGURE 4

Comparison of IgM and IgD repertoires during infection and one year post-

infection (A) Genotype frequency distribution of IgM and IgD repertoires in
COVID-19 infected individuals. (B) Genotype frequency distribution of IgM

and IgD repertoires in COVID-19 convalescents. Allelic genotypes with
frequencies below 8% were categorized as “others”. Wilcoxon test was

employed for comparisons.
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