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Lung cancer is one of the most commonmalignant tumours worldwide and its high

mortality rate makes it a leading cause of cancer-related deaths. To address this

daunting challenge, we need a comprehensive understanding of the pathogenesis

and progression of lung cancer in order to adopt more effective therapeutic

strategies. In this regard, integrating multi-omics data of the lung provides a highly

promising avenue. Multi-omics approaches such as genomics, transcriptomics,

proteomics, and metabolomics have become key tools in the study of lung

cancer. The application of these methods not only helps to resolve the

immunotherapeutic mechanisms of lung cancer, but also provides a theoretical

basis for the development of personalised treatment plans. By integrating multi-

omics, we have gained amore comprehensive understanding of the process of lung

cancer development and progression, and discovered potential immunotherapy

targets. This review summarises the studies onmulti-omics and immunology in lung

cancer, and explores the application of these studies in early diagnosis, treatment

selection and prognostic assessment of lung cancer, with the aim of providing more

personalised and effective treatment options for lung cancer patients.
KEYWORDS

lung cancer, immunotherapy, precision medicine, multi-omics, individualised therapy,
immune checkpoints
1 Introduction

Lung cancer has been one of the most common malignant tumours globally over the

past decades. Despite the widespread use of conventional treatments such as surgery,

radiotherapy, chemotherapy and targeted drug therapy, the five-year survival rate for lung

cancer is usually less than 20% (1). Additionally, at all stages, less than 7% of patients
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survive more than ten years after diagnosis (2). In recent years, the

emergence of immunotherapy has marked a revolution in cancer

treatments, which not only has an acceptable safety profile, but also

produces durable therapeutic responses in a wide range of patient

populations (3). Nonetheless, lung cancer exhibits significant

histological heterogeneity, diverse genomic profiles, and

differential responses to therapy (4), and still poses significant

challenges for immunotherapy and prevention.

With the rapid development of multi-omics technology,

cover ing genomics , t ranscr iptomics , proteomics and

metabolomics, our understanding of lung cancer is deepening (5,

6). Multi-omics technology has constructed a progressive analysis

framework from the genetic basis to the effect of environmental

exposure (7), and has deeply analysed the pathogenesis,

pa thophys io log i ca l proces s and molecu la r bas i s o f

immunotherapy of lung cancer, which has provided a strong

support for the scientific formulation of precise treatment strategies.

The aim of this review is to explore recent advances in multi-

omics studies of lung cancer and their potential applications in early

diagnosis, treatment selection and prognostic assessment. By

integrating immunotherapy and multi-omics data in order to

better understand the complex molecular network of lung cancer,

it provides new ideas and methods for individualised treatment and

precision medicine of lung cancer.
2 Lung cancer immunotherapy
and genomics

Lung cancer, as a highly heterogeneous disease, has been

profoundly influenced by molecular biology in its pathogenesis

and therapeutic strategies. In non-small cell lung cancer (NSCLC)

and small cell lung cancer (SCLC), unique molecular features of

different histological subtypes have been revealed through the

identification of specific genetic variants and epigenetic

modifications, thus providing new directions for individualised

treatment of lung cancer.

In NSCLC, histological subtypes frequently dominated by lung

adenocarcinoma (LUAD) and squamous cell carcinoma are

common (8). The complexity of NSCLC is reflected in its variable

genetic variants. Common target gene driver mutations include

genes such as epidermal growth factor receptor (EGFR), KRAS,

MET, BRAF, ALK, ROS proto-oncogene 1 (ROS1) and RET (9)

(Figure 1A). Through combined whole exome sequencing (WES)

technology, it was found that common mutations in LUAD include

tumour suppressor genes TP53 (46%), STK11 (17%), KEAP1 (17%),

NF1 (11%), RB1 (4%) and CDKN2A (4%), as well as chromatin

modification genes SETD2 (9%), ARID1A (7%), SMARCA4 (6%)

and RNA splicing genes RBM10 (8%) and U2AF1 (3%) (10).

Mutations in the genes FGFR1, NRF2, AKT1 and DDR2 are

particularly prominent in lung squamous cell carcinoma (10).

For SCLC, deep sequencing of key oncogenes by advanced

integrated mutational profiling (MSK-IMPACT) technology (11)

revealed inactivating mutations or deletion of tumour suppressor

genes such as TP53, RB1, KMT2D, PTEN, NOTCH1, CREBBP,
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FAT1, NF1 and APC, and inactivating mutations in PIK3A, EGFR

and KRAS activating mutations in oncogenes (12). Unlike NSCLC,

SCLC is often accompanied by the expression of MYC oncogenes,

which contribute to rapid cell proliferation and lead to DNA

replication stress (13). In addition, epigenetic modifications play a

key role in lung carcinogenesis, and heritable chromatin

modifications such as DNA methylation, histone modifications,

and non-coding RNA regulation regulate gene expression without

altering the DNA sequence (9, 10, 14–16) (Figure 1A). Epigenetic

mutations and disruptions are strongly associated with multiple

tumour types, providing new ideas for targeted lung cancer therapy

based on molecular subtype differences.

Genomics plays an important role in the classification,

treatment and prognostic assessment of lung cancer.

Traditionally, lung cancer classification was based on histological

patterns, whereas advances in genomics have allowed lung cancer to

be characterised also by tumour biomarkers and genetic alterations.

For example, Stephen J Murphy et al. defined a common origin or

lineage of lung cancer by analysing genomic rearrangements and

somatic DNA linkages, and used these specific DNA linkages as

precise tumour markers to differentiate between primary and

metastatic lung cancer (17).

Genome sequencing technology has revealed key genetic

variants in lung cancer, facilitating the development of

personalised treatment strategies. The study noted that in non-

small cell lung cancer (NSCLC), aberrant activation of the PI3K-

AKT-mTOR pathway is closely associated with resistance to EGFR

tyrosine kinase inhibitors (EGFR-TKIs), and that its activation is

mainly caused by PIK3CA, AKT1 mutations and PTEN deletion.

This discovery led to the development of drugs targeting mTOR

(e.g., everolimus and temsirolimus) and EGFR-TKIs targeting

EGFR and ALK (e.g., ositinib, gefitinib, ceritinib, and loratinib),

which have demonstrated clinical efficacy in the treatment of lung

cancer (18) (Table 1).

Immune checkpoint inhibitors (ICIs) have become key agents

in tumour immunotherapy, especially in the treatment of lung

cancer. However, their potential to cause immune-related adverse

effects makes the search for biomarkers that predict response to ICI

therapy crucial (9). Investigators assessed early predictors of anti-

PD-L1 therapy by analysing circulating tumour DNA (ctDNA), and

their study showed that a reduction in the frequency of the variant

allele was associated with tumour shrinkage after 6 weeks of

treatment, providing a valuable non-invasive method for

predicting the effectiveness of treatment (44).
3 Lung cancer immunotherapy
and transcriptomics

In the field of tumour immunotherapy, targeting the tumour

microenvironment (TME) for precision medicine is one of the latest

research directions. In this process, immune cells play a key role

(45). Immune cell interactions are regulated by transcription factors

and further contribute to the immune response. Wu et al. identified

interactions between cancer cells and endothelial cells, fibroblasts,
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and macrophages by single-cell RNA sequencing analysis of NSCLC

patient samples, revealing multiple signalling pathways (e.g., EGFR,

NOTCH, WNT, and PDGF, etc.) that are associated with

carcinogenesis (Figure 1B). These findings shed more light on the

molecular interactions and immunoregulatory mechanisms of

NSCLC and provide a new perspective on the treatment of lung

cancer (46).

In TME, individual cells are precisely regulated by transcription

factors. Through the regulation of transcription factors, the killing of

cells can be modulated. ONECUT2 and ETV4 were found to be likely

potential regulators of CD8 T cell depletion in the blood of NSCLC

patients, whereas the transcription factors BACH1 and RUNX3 were

up-regulated in CD8 T cytotoxic subpopulations. Thus, regulation of

these transcription factors may drive cytotoxic immune responses in

NSCLC (47). Immune cell macrophages (TAM) in TME are among

the most common immunosuppressive cells. Increased TAM in TME
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has been associated with immunotherapy resistance by

transcriptomic analysis, and its expression is regulated by genes

such as CD27, ITGAM and CCL5 (48). Recent studies have shown

that TAM interacts with carnitine palmitoyltransferase 1A (CPT1A),

increasing resistance to iron death and inactivation of CD8 T cells in

lung cancer. Therefore, the use of CPT1 inhibitors enhances the

killing of tumour cells by chemotherapy or immunotherapy

(49) (Figure 1B).

In the field of lung cancer treatment, transcriptomics is often

combined with other histological approaches to extend its

application. By combining transcriptomics and metabolomics, the

researchers analysed the effects of AZD-6482 (a PI3Kb-targeted
inhibitor) on 28 metabolite-related genes in LUAD. They found

that the expression of three genes, LDHA, PPAT, and SMS, was

increased in untreated LUAD samples; whereas after treatment with

AZD-6482, the expression of these genes was significantly
FIGURE 1

Lung cancer multidimensional histologic analysis map. (A) Exploratory mapping of changes in metabolomic profiles in lung cancer pathogenesis.
(B) Immune cell profiles revealed by transcriptomics in the tumour microenvironment. (C) Critical mapping of proteomic changes during lung cancer
progression. (D) Resolution of metabolic profiles in lung cancer.
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decreased, suggesting that the inhibitor may improve the prognosis

of LUAD patients (50). By joining forces with proteomics, Qing

et al. used Cancer Cell Line Encyclopaedia (CCLE) RNA sequencing

and proteomics profiles in human NSCLC cell lines to identify

genes that are pan-sensitive and pan-resistant to drugs used in the

treatment of NSCLC with systemic or targeted therapies (51).
4 Lung cancer immunotherapy
and proteomics

With the rapid development of mass spectrometry (MS)

technology, large-scale protein analysis has become a hotspot in

scientific research, in which proteomics has achieved remarkable

results in the study of protein phosphorylation, interaction,

structure and function (52–55). In particular, proteomics has

shown great potential for the discovery of new therapies and
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biomarkers. These biomarkers come from a wide range of

sources, including body fluids and specific samples from lung

cancer studies, such as breath condensate (56–59).

In the study of lung cancer proteomics, proteins in receptor

tyrosine kinases such as EGFR and ALK and their downstream

signalling pathways play a key role in the pathological process of

lung cancer (60–62). EGFR, as a member of the ErbB family,

promotes malignant cell survival, proliferation, etc. through a

series of biochemical processes, making EGFR and its

downstream signalling pathway an important target for lung

cancer therapy.

In addition, the discovery of immune checkpoints (ICP) has led

to a major breakthrough in the field of immunotherapy (63). In

normal physiology, ICP maintains immune system homeostasis,

but tumour cells evade immune attack by expressing ICP proteins

(3). Among them, the interaction of programmed death receptor 1

(PD-1) with programmed cell death ligand-1 (PD-L1), cytotoxic T-

lymphocyte-associated protein-4 (CTLA-4) and CD80/86 is the

main mechanism of tumour cell escape (Figure 1C). Significant

progress has been made in the development of targeted therapeutic

agents for lung cancer against these immune checkpoint proteins

(64). By blocking the function of these proteins, the immune system

in the patient’s body is activated to recognize and attack tumour

cells more effectively, bringing new therapeutic hope to lung cancer

patients. Over the past decade, tyrosine kinase inhibitors (TKIs)

have made significant advances in the treatment of cancer,

especially NSCLC.EGFR-TKI, as a potent agent for the treatment

of over-activation of EGFR signalling, has been developed for

multiple generations with remarkable efficacy (54, 65).

In the development of the field of immunotherapy, it is

particularly important to achieve selective destruction of tumours

by activating the immune response of T cells (64, 65). PD-1/PD-L1

inhibitors in combination with chemotherapy have become the

standard of care in advanced NSCLC (62, 66). In clinical study

finds,PD-1 antibodies such as Nivolumab and Pembrolizumab

demonstrate durable efficacy in a variety of cancers (67, 68)

(Figure 1C). In addition, anti-CTLA-4 antibodies such as

Lpilimumab and Tremelimumab play an important role

in immunotherapy.

Immunotherapy has great potential in the field of cancer

treatment, including checkpoint inhibitors, monoclonal

antibodies, and over-the-counter cell transplantation (69).

Scholars such as Wang and Chiu emphasized that the

combination of multiple therapies is the key to enhancing the

effectiveness of cancer treatment and is expected to significantly

improve patient survival rates (70, 71).
5 Lung cancer immunotherapy
and metabolomics

Metabolomics delves into metabolite changes in organisms,

providing new insights into the pathology and drug mechanisms

of lung cancer. By analysing lung cancer samples and identifying

metabolic markers closely related to lung cancer, it brings new
TABLE 1 Targeted therapeutics drugs and targets in a
genomic perspective.

Modifiable targets Therapeutic drug Reference

EGFR

Osimertinib (19)

Gefitinib (20)

Dacomitinib (21)

Erlotinib (22)

Afatinib (23)

Amivantamab (24)

ALK

Crizotinib (25)

Ceritinib (26)

Alectinib (27)

Brigatinib (28)

Lorlatinib (29)

RET

Cabozantinib (30)

Selpercatinib (31)

Pralsetinib (32)

ROS1

Crizotinib (33)

Entrectinib (34)

Lorlatinib (35)

MET Glesatinib (36)

BRAF V600E

Dabrafenib (37)

Trametinib (38)

Vemurafenib (39)

KRAS
Adagrasib (40)

Sotorasib (AMG 510) (41)

VEGFR
Bevacizumab (42)

Ramucirumab (43)
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perspectives for early diagnosis, treatment planning and prognosis

assessment (72–74).

In the oncogenic transformation of lung cancer cells, there are

significant metabolic changes that are particularly dependent on

energy sources such as ATP. Among these, the Warburg effect is

particularly pronounced in lung cancer cells, where their metabolic

needs are met by increased glucose uptake and support nucleotide

and amino acid biosynthesis (75). SCLC is significantly dependent

on exogenous arginine, which is associated with the deficiency or

low expression of arginine succinyl synthase 1 (ASS1) (76, 77). The

study found that up to 45% of SCLC samples and 50% of cell lines

exhibited ASS1-negativity, highlighting the importance of arginine

biosynthesis downregulation in the progression of lung

carcinogenesis (78, 79).

The interaction between signalling and metabolism is critical in

lung cancer research. mTOR kinases in the PI3K/Akt/mTOR

pathway form the mTORC1 and mTORC2 complex, which

influences protein, nucleotide, and lipid metabolism (80)

(Figure 1D). MYC gene changes affect bioenergetic processes (81).

Changes in metabolic state can also inversely regulate signalling

pathway activity, e.g., mTORC1 activity is reduced during energy

shortage (82).

Developing more effective lung cancer treatment regimens by

modulating metabolic pathways or monitoring the disease using

metabolic markers. In particular, lung cancer immunotherapy is

closely linked to metabolomics, an important cornerstone of lung

cancer treatment (83). The markers provided bymetabolomics support

personalized strategies for immunotherapy and improve treatment

efficiency. In addition, the study by Ma et al. revealed the relationship

between the regulation of amino acid metabolism, hypoxia-inducible

factor-1 (HIF-1) and PI3K-Akt pathways and ositinib resistance,

providing new perspectives for understanding the mechanism of

drug resistance (84). These studies emphasize the critical role of

metabolomics in monitoring marker changes after treatment (85).

For SCLC, polyethylene glycolated arginine deiminase (ADI-

PEG20) and human recombinant polyethylene glycolated arginase

(e.g., rhArgPEG, BCT-100, etc.) have been regarded as potential

therapeutic targets due to arginine nutritional deficiency. And the

combination of arginine with PD-1/PD-L1 inhibitors has also

demonstrated efficacy in the clinic (76).

The combination of immunotherapy and metabolomics in lung

cancer provides patients with more effective and personalized

treatment options that are expected to improve their quality of life.
6 Discussion

In recent years, immunotherapies, particularly targeted

therapies, have transformed the management and prognosis of

lung cancer by providing personalized treatment options for lung

cancer patients (86). And the integration of multi-omics data offers

the unique advantage of aiming for a comprehensive assessment of

each patient through extracted features, which promises a more

complete picture of this complex immune ecosystem.

However, although ICI has been widely used in the treatment of

lung cancer, there is still a lack of adequate understanding of
Frontiers in Immunology 05
prognostic biomarkers. We still need to increase research efforts

on prognostic biomarkers for lung cancer at the multi-omics level

such as proteomics and genomics. For example, genetic mutations

in EGFR and KRAS have a key role in individualized therapy, but

their specific impact and mechanisms in prognostic assessment

need to be further explored (87, 88). In addition, proteomic markers

such as CEA and CYFRA 21-1 show potential in disease

surveillance, and their correlation with disease progression could

provide additional information for disease management (89, 90).

Immune tolerance and therapeutic resistance are also current

challenges in the combination of immunology and proteomics for

the treatment of lung cancer. In particular, the EGFR T790M

mutation leads to resistance to early drug (91–93). Specifically,

although the third-generation EGFR-TKI ositinib has successfully

treated patients with T790Mmutations, new resistance mechanisms

such as the EGFR T790M/C797S mutation are still emerging.

Currently, there are investigators evaluating fourth-generation

EGFR-TKIs clinically for new resistance issues (94, 95).

By integrating these multi-omics data, we can develop a more

comprehensive understanding of the biological complexity of lung

cancer, leading to the development of more effective therapeutic

strategies and improved patient survival (96). Therefore, future

research should focus on how to use these biomarkers to optimize

treatment pathways, improve the accuracy of prognostic prediction,

and ultimately achieve true precision medicine.
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