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Immunoregulatory protein B7-
H3 upregulated in bacterial and
viral infection and its diagnostic
potential in clinical settings
Abiye Tigabu*

Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
Bacterial and viral infections cause a huge burden to healthcare settings

worldwide, and mortality rates associated with infectious microorganisms have

remained high in recent decades. Despite tremendous efforts and resources

worldwide to explore diagnostic biomarkers, rapid and easily assayed indicators

for the diagnosis of bacterial and viral infections remain a challenge. B7 homolog

3 (B7-H3), a member of the B7 family of immunoregulatory proteins, is

overexpressed in patients with septicemia, meningitis, pneumonia, and

hepatitis. Therefore, B7-H3 could be used as a potential clinical indicator and

therapeutic target for bacterial and viral infections caused by H. pylori, S.

pneumoniae, M. pneumoniae, hepatitis B virus (HBV), viral hemorrhagic

septicemia virus (VHSV), respiratory syncytial virus (RSV), and human

immunodeficiency virus (HIV). Moreover, the interplay between infectious

microorganisms and B7-H3 and exploration of the functional roles of the B7-

H3 molecule could aid in the development of novel strategies for disease

diagnosis and immunotherapy.
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Introduction

Bacterial and viral infections are common in children and adults. Fever is a common

symptom of infectious diseases, suggesting systemic inflammation in response to bacterial

or viral infections. The non-specific nature of signs and symptoms in febrile patients makes

clinical differentiation of infections challenging, particularly in identifying severe diseases

such as septicemia, meningitis, and pneumonia. For optimal treatment, early diagnostic

biomarkers indicating bacterial or viral infections are required to reduce mortality from

serious infections. Despite the difficulty in distinguishing between infection, inflammation,

and autoimmunity, biomarkers in combination with the symptoms of the patient support

physicians in considering proper diagnosis and treatment (1, 2). Although white blood cell

counts (WBCs), C-reactive protein, and inflammatory cytokines are useful diagnostic

indicators of infections, more rapid and easily assayed indicators can advance diagnosis (3).

B7 homolog 3 (B7-H3, CD276) is a member of the B7 family of immunoregulatory

proteins, sharing 20–27% amino acid identity with other B7 family members (4, 5). It is a
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type I transmembrane protein that primarily functions as a negative

immunoregulatory protein (6). B7-H3 is a novel protein structurally

related to the B7 family of ligands, characterized by a single

extracellular IgV- and IgC-like domain in the transmembrane

region and a highly diverse cytoplasmic tail. The predominant

form of human B7-H3, 4IgB7-H3, contains tandemly duplicated

IgV-IgC domains due to exon duplication, which generates two

isoforms: 2IgB7-H3 and 4IgB7-H3. Additionally, serine- and

arginine-rich splicing factor 3 (SRSF3) plays a role in the splicing

of B7-H3 by binding directly to exons 4 and/or 6 (7–10).
B7-H3 expression and its impact on
tumor immune microenvironment

Several studies have shown that B7-H3 can be detected in immune

cells, such as activated macrophages, dendritic cells, monocytes,

myeloid-derived suppressor cells, activated T cells, and various types

of cells in non-lymphoid tissues, including tumor cells, epithelial cells,

fibroblast-like synoviocytes, osteoblasts, and human serum. B7-H3 is

overexpressed in tumor tissues and shows limited expression in normal

tissues (6, 11, 12). Confocal microscopy of fibroblast-like synoviocytes

and T-cell co-cultures showed B7-H3 localization at the T-cell–

fibroblast-like synoviocyte contact point (13). Most human

intratumoral neutrophils express high levels of B7-H3, and locally

enriched B7-H3+ neutrophils are positively correlated with increased

granulocyte-macrophage colony-stimulating factor levels (14).

B7-H3 is an immunoregulatory ligand that affects immune

responses through both immunological and non-immunological

pathways (15) and exerts either inhibitory or stimulatory effects on

immune cell activation (16). ActivatedCD4+ andCD8+T cells express a

putative receptor that recognizes B7-H3molecules (17). The expression

of B7-H3 favors an immunosuppressive microenvironment by

promoting IL-10 and TGF-b1 (18). The VC and VCVC forms of

human B7-H3 inhibit CD4+ T cell activation, proliferation, and

cytokine production (19), as well as attenuate NK cell-mediated killing

(20). B7-H3 expression inhibits the activation of CD4+ T cells, CD8+ T

cells, gdT cells, CAR-T cells, Vd2 T cells, Th17 cells, CD3+ T cells,

macrophages, neutrophils, and dendritic cells, as well as the secretion of

IFN-g, IL-2, and perforin/granzyme B (21–24).

B7-H3 regulates the differentiation of tumor-associated

macrophages, promotes the polarization of type 2 macrophages,

and switches the M1 phenotype to the M2 phenotype (25). B7-H3

recruits macrophages into the tumor microenvironment (26) and

contributes to CCL2–CCR2–M2 macrophage axis-mediated

immunosuppression (27). Zhou et al. reported that the high

expression of B7-H3 in human prostate cancer tissues is negatively

correlated with CD8+ tumor-infiltrating lymphocytes (28). However,
Abbreviations: ADCs, Antibody-drug conjugates; B7-H3, B7 homolog 3; CAR-T

cells, Chimeric antigen receptor T cells; NK, Natural killer cell; LPS,

lipopolysaccharide; CSF, cerebrospinal fluid; MPP, M. pneumoniae pneumonia;

HBV, hepatitis B virus; AHB, acute hepatitis B; CHB, chronic hepatitis B; HCC,

hepatocellular carcinoma; TNM, tumor-node-metastasis; HBV-ACLF, HBV-

related acute and chronic liver failure; RSV, respiratory syncytial virus; VHSV,

viral hemorrhagic septicemia virus; HIV, human immunodeficiency virus.
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some studies have reported that human patients with high B7-H3

expression show increased numbers of immune cells, including CD8+

T cells, CD4+ T cells, natural killer cells, plasmacytoid dendritic cells,

and increased interferon-g production (4, 29, 30).

The role of B7-H3 in modulating
immune responses during
bacterial infections

Several studies have shown that microorganisms have a

profound impact on many aspects of cell function and are

involved in many diseases (31–33). An infection happens when

bacteria, viruses, or fungi invade the body, and damage the host.

While the immune system works to eliminate these invaders,

sometimes the pathogens overpower the body’s defenses, resulting

in illness (34). The gut microbiota plays a crucial role in modulating

the immune system. However, its dysbiosis induces chronic

inflammation. For example, E. coli and B. fragilis are known to

promote inflammation in the gut that leads to DNA damage and

tumor formation (35). In mouse model, a microbiota-dependent

pathway crosstalk between myeloid cells, T cells, and tumor cells

that inhibits CD8+ T cell-dependent anti-tumor immunity through

the co-inhibitory protein B7-H3 (34).

Bacterial sensing by myeloid cells promotes calcineurin- and

NFAT-dependent IL-6 release. This IL-6, in turn, promotes the

expression of co-inhibitory B7-H3 by tumors, which inhibits CD8+

T cell-dependent antitumor immunity, whereas B7-H3 blockade

elicits protective T cell responses (36). Helicobacter pylori infection

induces B7-H3 expression in human gastric epithelial cells through

the type 4 secretion system components, CagA, and cell wall

peptidoglycan fragments. These are recognized by the intracellular

pattern recognition receptor NOD1, which activates the MAPKs and

NF-kB pathways. DuringH. pylori infection, patients exhibit a mixed

Th1/Th2 response, with increased circulating Treg and Th17 cells.

Human biopsy samples from patients with gastritis and gastric

tumors show increased B7-H3 expression and Th2 responses in

H. pylori strains associated with gastritis (37).

B7-H3 functions as a costimulatorymolecule in innate immunity by

augmenting the release of proinflammatory cytokines from monocytes

andmacrophages stimulatedbybacterial cellwall products, contributing

to the development of sepsis. B7-H3 enhances human sepsis through

bacterial lipopolysaccharide (LPS)- and lipoprotein-induced NF-kB
activation and inflammatory responses. However, blocking B7-H3 in

vivo attenuated LPS-induced proinflammatory cytokine release and

reduced endotoxin shock-related lethality. Furthermore, human

patients diagnosed with sepsis exhibit significantly higher levels of

plasma soluble B7-H3 than healthy individuals. Stimulation of human

monocytes with LPS and inflammatory cytokines leads to substantial

release of soluble B7-H3 (38).

Circulating B7-H3 levels in cerebrospinal fluid (CSF) and

plasma were higher in children with bacterial meningitis than in

the control group. Additionally, circulating TNF-a levels in CSF

and plasma were higher in the bacterial meningitis group than in

the control group. On admission, circulating B7-H3 levels in the

plasma and CSF of patients with bacterial meningitis were positively
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correlated with TNF-a, IFN-g, and white blood cell counts, making

them useful markers for distinguishing bacterial from aseptic

meningitis and for evaluating the intensity of the infectious

inflammatory process in the central nervous system (39).

The costimulatory protein B7-H3 contributes to the

development and progression of pneumococcal meningitis by

augmenting the innate immunity-associated inflammatory

response in a TLR2-dependent manner. B7-H3 enhances the

formation of the MyD88-IRAK immunocomplex in the brains of

S. pneumoniae-infected mice and significantly augments S.

pneumoniae-induced activation of TLR2 downstream of the NF-

kB p65 and MAPK p38 pathways. This exacerbates mouse brain

damage by intensifying inflammatory responses (40, 41).

B7-H3 plays a role in S. pneumoniae infection-induced

pneumococcal meningitis by amplifying the inflammatory

response, worsening blood-brain barrier disruption, and

aggravating the clinical disease status via a TLR2-dependent

mechanism. B7-H3 augments proinflammatory cytokine and

chemokine production, upregulates NF-kB, TLR2, p65, and

MAPK p38 phosphorylation, and enhances the nuclear

transactivation of NF-kB p65 at the TNF-a and IL-6 promoters

in S. pneumoniae-stimulated microglial cells of the mice (42).

Soluble B7-H3 levels were significantly higher in human

patients with M. pneumoniae pneumonia (MPP) compared to

control subjects. Furthermore, soluble B7-H3 plays an important

role in MPP by increasing TNF-a concentrations and neutrophil

activation (43). Elevated levels of soluble B7-H3 were found in both

mild and severe MPP in pediatric patients compared with control

patients. Moreover, significantly higher levels of soluble B7-H3 were

detected in patients with severe MPP compared with those with

mild MPP. The receiver operating characteristic (ROC) curve

showed that soluble B7-H3 had a severity prediction capacity for

mild and severe MPP and was positively associated with IFN-g and
GM-CSF in patients with severe MPP. Additionally, elevated levels

of soluble B7-H3 were found in acute-phase MPP patients

compared with control subjects, while significantly lower levels of

plasma soluble B7-H3 were observed in recovery-phase MPP

patients compared with acute-phase patients (44).
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Children with MPP and pleural effusion had higher levels of

soluble B7-H3 and IL-36 than control subjects. The concentration

of soluble B7-H3 in bronchoalveolar lavage fluid was strongly

associated with IL-36 levels, the duration of fever, and length of

hospital stay (45). Additionally, children with MPP had higher

levels of soluble B7-H3 and IL-17 than controls, especially during

the acute stage of MPP. Children with MPP and pleural effusion had

higher levels of soluble B7-H3 than those without pleural effusion,

and these levels were positively correlated with the number of fever

days (46). During H. pylori, S. pneumoniae, and M. pneumoniae

infections, elevated B7-H3 levels were detected in human biopsy,

CSF, and serum samples. The interplay between bacteria and B7-H3

expression in different disorders has been documented in several

studies (36–41, 43, 44) and the results are presented in Table 1.
B7-H3 as a modulator of immune
responses in viral infections

Costimulatory molecules are important regulators of the immune

response and participate in the regulation of liver pathology during

hepatitis B virus (HBV) infection. The costimulatory protein B7-H3 is

upregulated after HBV infection and contributes to the progression

andpoorprognosis ofHBV infectionby triggering inhibitory signals in

effector T cells. The membrane and soluble forms of B7-H3 are

expressed on Treg cells and monocytes and are positively correlated

with the frequency of Treg cells in patients with acute hepatitis B

(AHB), chronic hepatitis B (CHB), and hepatocellular carcinoma

(HCC) associated with HBV infection. Soluble B7-H3 levels are

higher in the late tumor-node-metastasis (TNM) stages of HCC.

Moreover, B7-H3 expression positively correlates with aspartate

aminotransferase and alanine aminotransferase levels in chronic

HBV infection. Immunohistochemistry tests show that higher

membrane B7-H3 expression is associated with larger tumor size,

later TNM stages, and worse prognosis in HBV-HCC (47).

Luan et al. found that abundant plasma-soluble B7-H3

positively correlated with liver fibrosis in children with chronic

HBV infection (46). Soluble B7-H3 originates from the hepatocyte
TABLE 1 The interplay between bacteria and B7-H3 expression in different disorders, 2024.

Disorders Specimens Methods Causative
agent

Interaction of bacteria and B7-H3 expression

Gastritis Gastric biopsies Culture,
flow cytometry,
PCR

H. pylori H. pylori uses a type 4 secretion system and cytokines produced by Th17 and Treg cells to
upregulate B7-H3 expression via the p38 MAPK pathway and then inhibit T cell
response (37).

Colorectal
cancer

Colon tissue Western blot, 16S
rRNA sequencing

Gut microbiota Gut microbiota promotes calcineurin and NFAT-dependent IL-6 release, and NFAT-
dependent IL-6 promotes expression of B7-H3 by tumors and it inhibits CD8+ T cell-
dependent anti-tumor immunity (36).

Sepsis Blood/plasma Culture, ELISA Bacterial LPS
and lipoprotein

B7-H3 functions as a costimulatory of innate immunity by augmenting proinflammatory
cytokine release from bacterial product stimulated monocytes/macrophages (38).

Meningitis Brain tissue,
plasma, CSF

Culture,
PCR, ELISA

S. pneumoniae S. pneumoniae induces phosphorylation of NF-kB p65, MAPK p38, and ERK1/2 pathways,
TNF-a, and substantially augments B7-H3 expression (39–41).

Pneumonia NPA, Plasma Culture,
PCR, ELISA

M. pneumoniae B7-H3 increases immunopathogenesis of M. pneumoniae pneumonia by increasing TNF-a,
IFN-g, GM-CSF concentration, and activation of neutrophils (43, 44).
PCR, Polymerase chain reaction; ELISA, Enzyme-linked immunosorbent assay; LPS, Lipopolysaccharides; CSF, Cerebrospinal fluid; NPA, Nasopharyngeal aspirate.
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membrane and promotes hepatic inflammation and hepatitis

progression. A functional study showed that immobilized B7-H3

fusion protein inhibits TCR-induced proliferation and IFN-g
secretion by T cells (48). Immunohistochemical analysis detected

B7-H3 in all HBV-related acute and chronic liver failure (HBV-

ACLF) human biopsy samples. B7-H3 is found on cell membranes

and in the cytoplasm of HBV-ACLF samples, and its expression is

predominantly observed in infiltrating inflammatory cells and

damaged bile ducts (49). B7-H3 was co-expressed with the herpes

virus entry mediator in human liver tissues, and with B and T

lymphocyte attenuators and the herpes virus entry mediator (50).

Human respiratory tract epithelial cells express a wide range of

B7 molecules, and B7-H3 is strongly expressed in unstimulated

tracheal, bronchial, and alveolar epithelial cells. Respiratory

syncytial virus (RSV) infection of tracheal, bronchial, and alveolar

epithelial cells upregulates B7-H3 expression. The high expression

of B7-H3 following RSV infection is regulated by IFN-g and IL-4,

which may be involved in decreasing T cell antiviral immune

responses to RSV and RSV-associated wheezing. On RSV-infected

alveolar epithelial cells, IFN-g treatment decreases B7-H3, while IL-

4 treatment increases B7-H3 expression (51).

Evidence shows that B7-H3 mRNA is broadly expressed in both

lymphoid and non-lymphoid organs. Viral hemorrhagic septicemia

virus (VHSV) induces the transcription of B7-H3 in the fish liver

during the early hours, and it is expressed later in the fish head,

kidney, spleen, intestine, and gill tissues. Flow cytometric analysis of

leukocytes revealed that 85.1% of granulocytes and 3.1% of

lymphocytes expressed B7-H3 molecules on their cell surfaces.

The co-inhibitory molecule B7-H3 participates in regulating cell-

mediated immune responses during VHSV infection (7).

Individuals with human immunodeficiency virus (HIV) infection

have a higher incidence of various malignancies, and HIV-mediated

immune dysfunction may lead to chronic immune activation,

decreased tumor surveillance, and subsequently increased cancer

risk. HIV-infected patients with lung cancer had significantly higher

B7-H3 tumor expression levels than HIV-uninfected controls. B7-H3

expression was 92% in lung cancer samples from HIV-infected cases,

compared to 69% in samples from HIV-uninfected cases (52). These

studies suggest that B7-H3 may play a role in viral pathogenesis and

could offer a promising approach for the diagnosis and treatment of

viral infections. Previously, the interaction between different virus and

B7-H3 protein has been reported in different diseases (7, 47–49, 51,

52) (Table 2).
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Emerging receptors for B7-H3:
current candidates and future
research directions

The putative receptors for B7-H3 remain under investigation,

but several candidates have emerged. The T-cell immunoreceptor

with Ig and ITIM domains (TIGIT) has been suggested as an

inhibitory receptor that could interact with B7-H3, contributing

to immune evasion in tumors (53). The herpesvirus entry mediator

(HVEM), another B7 family member, has also been proposed as a

potential receptor, potentially influencing T-cell activation (54).

Ongoing research is exploring whether B7-H3 might interact with

other immune checkpoint receptors, such as PD-1 or CTLA-4 (55).

Overall, while several receptor candidates exist, further research is

needed to fully elucidate B7-H3’s potential receptors and their

broader implications in immune modulation.
B7-H3 versus traditional markers: a
new frontier in early disease diagnosis
and treatment

B7-H3 has shown greater specificity to some bacterial and viral

infections, particularly in patients with septicemia, meningitis,

pneumonia, and hepatitis, thereby reducing the risk of false positives

and negatives. Studies indicate that B7-H3 is significantly

overexpressed in H. pylori, S. pneumoniae, M. pneumoniae, HBV,

VHSV, RSV, and HIV compared to traditional markers, making it

more reliable for early detection and disease progression monitoring

(56). Unlike some traditional markers, B7-H3 also holds promise as a

therapeutic target, opening possibilities for combined diagnostic and

therapeutic strategies (57). However, many traditional markers, such

as WBCs, C-reactive protein, and cytokines, have lower sensitivity in

the early stages of disease,whichmaydelay diagnosis and intervention.

Moreover, traditional markers may not provide the same level of

specificity in distinguishing between closely related conditions, leading

to potential diagnostic ambiguities. While the implementation of B7-

H3 in clinical settings is still being refined, early studies suggest that its

integration into diagnostic workflows would not significantly increase

complexity or cost, particularly with the development of standardized

assays. B7-H3’s dual potential as both a diagnostic marker and a
TABLE 2 The interaction between virus and B7-H3 protein in different diseases.

Disorders Specimens Methods Etiology Interaction b/n virus and B7-H3 expression

Hemorrhagic
septicemia

Different
tissues

Flowcytometry, PCR VHSV VHSV stimulates the transcription of B7-H3 (7).

Hepatitis Biopsies,
Plasma

IF, ELISA, IHC,
Western blot

HBV Co-expressed with HVEM and promote liver fibrosis, and pathogenesis by inhibiting
T-cell responses (47–49).

Respiratory
infections

Epithelial cells Flow cytometry RSV RSV infection increases B7-H3 expression and decreases T immune responses to RSV
via IFN-g and IL-4 (51).

Lung cancer Lung tissue IHC HIV HIV-mediated immune dysfunction increases B7-H3 expression and cancer risk (52).
HBV, Hepatitis B virus; HBV-ACLF-HBV, related acute-on-chronic liver failure; VHSV, Viral hemorrhagic septicemia virus; IF, Immunofluorescence; HIV, Human immunodeficiency virus;
IHC, Immunohistochemistry; RSV, Respiratory syncytial virus; HVEM, Herpes virus entry mediator.
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therapeutic target offers a long-term advantage (55), potentially

streamlining patient care through personalized medicine approaches.
B7-H3’s role in differentiating diseases
with overlapping symptoms

Febrile diseases often share common symptoms such as fever,

fatigue, and malaise, which complicates early differentiation between

infectious, autoimmune, or malignant conditions. B7-H3’s expression

pattern offers a significant advantage in distinguishing between these

conditions in the early stages, where other traditional markers may lack

specificity. For example, B7-H3’s elevated expression in bacteria, and

virus-infected patients allows for earlier detection when other markers

remain inconclusive due to overlapping clinical presentations. We also

highlight that B7-H3 can improve diagnostic accuracy during the initial

symptomatic phase, facilitating prompt and targeted treatment (58,

59). This ability to provide early and reliable differentiation underlines

B7-H3’s strength as a promising superior diagnostic tool.
Challenges and limitations of B7-H3
as a clinical diagnostic biomarker

B7-H3 has several limitations as a clinical diagnostic assay. Its

broad expression across various diseases, including cancer,

autoimmune disorders, and infections, reduces its specificity, making

it difficult to determine if upregulation is caused by a particular

pathology or a general immune response (60). Additionally, B7-H3

expression can vary significantly across different cancers and even

within cancer subtypes, complicating its use as a reliable marker (61).

Its overlap with other immune checkpoint molecules, such as PD-L1

and B7-H4 (62), further challenges the ability to distinguish its specific

role. Moreover, the lack of standardized clinical assays and established

cut-off values forB7-H3detection limits itswidespread clinicaluse.B7-

H3 is also dynamically regulated by immune signals, which can lead to

fluctuating expression levels during disease progression, increasing the
Frontiers in Immunology 05
risk of inconsistent diagnostic results. Furthermore, its dual role in

both immune activation and suppression complicates interpretation,

as itmay signal different biological processes dependingon the context.

Finally, while B7-H3 shows promise as a therapeutic target, its

predictive value for treatment response remains unclear, limiting its

use in guiding therapy decisions. Therefore, B7-H3 would likely need

tobe combinedwith other biomarkers to improve diagnostic accuracy.
Current ongoing clinical trials
targeting B7-H3 and their mechanisms

Although B7-H3 has not been extensively studied in bacterial and

viral infections, its role in immune suppression may hold potential

relevance for future infection-related research. By inhibiting immune

checkpoints like B7-H3, it might be possible to enhance the body’s

ability tofight not only tumors but also infections.However, at present,

there arenoongoing trials directly targetingB7-H3forbacterial orviral

infections. Currently, clinical trials targeting B7-H3 primarily focus on

cancer rather than on bacterial or viral infections (63). Several

antibody-drug conjugates (ADCs) and chimeric antigen receptor

(CAR)-T cell trials exploring therapies targeting B7-H3 for different

cancer types are listed in Table 3.
Conclusion and future perspectives

Taken together, published evidence suggests that B7-H3 might

contribute to the progression of bacterial and viral infections by

triggering inhibitory signals in effector T cells and is associated with

poor prognosis during these infections. Many patients with

suspected febrile disease are present with similar or overlapping

clinical symptoms, which makes early diagnosis difficult. A novel

biomarker for infection in febrile patients is needed to help

physicians make the correct diagnosis and initiate appropriate

treatment to improve patient outcomes. Herein, we review the

discovery of novel protein biomarkers to improve current
TABLE 3 Ongoing clinical trials targeting B7-H3 in cancer therapy.

Trial Name/ID Therapy
type

Cancer types Phase Mechanism Company Status

Vobramitamab
Duocarmazine
(MGC018)

ADC Prostate cancer, lung
cancer, breast cancer

II Targets B7-H3-expressing tumors to deliver
cytotoxic agents directly to cancer cells

MacroGenics Ongoing

Enoblituzumab
(MGA271)

Monoclonal
antibody

Head and neck
cancer, melanoma

II Enhances immune response by blocking B7-H3,
promoting T-cell-mediated tumor destruction

MacroGenics Ongoing

HS-20093 ADC Various solid tumors I/II Targets B7-H3 to deliver a cytotoxic payload directly
to tumor cells

HanchorBio,
Hillhouse Capital

Ongoing

B7-H3 CAR T-
cell Therapy

CAR-T cells Solid tumors,
neuroblastoma

I Genetically engineered T-cells to target B7-H3
on tumors

Various
(U.S. & China)

Ongoing

Ifinatamab Deruxtecan
(m276-SL-PBD)

ADC Small cell lung
cancer (SCLC)

II Targets B7-H3, inducing cytotoxicity in cancer cells Daiichi Sankyo Active

DS-7300 ADC Advanced solid tumors I Binds to B7-H3 on cancer cells and delivers
cytotoxic agents to kill them

Daiichi Sankyo Recruiting
fro
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diagnostics and accelerate early and personalized treatment

decisions. Therefore, B7-H3 could be utilized as a potential

diagnostic marker in addition to white blood cell counts, C-

reactive protein, and inflammatory cytokines, and as a potential

therapeutic target against bacterial and viral infections. In-depth

studies should be conducted to explore the role of B7-H3 in

these infections.
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