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Human genital dendritic cell
heterogeneity confers differential
rapid response to HIV-1 exposure
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Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit,
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Dendritic cells (DCs) play critical roles in HIV pathogenesis and require further

investigation in the female genital tract, a main portal of entry for HIV infection.

Here we characterized genital DC populations at the single cell level and how DC

subsets respond to HIV immediately following exposure. We found that the

genital CD11c+HLA-DR+ myeloid population contains three DC subsets (CD1c+

DC2s, CD14+ monocyte-derived DCs and CD14+CD1c+ DC3s) and two

monocyte/macrophage populations with distinct functional and phenotypic

properties during homeostasis. Following HIV exposure, the antiviral response

was dominated by DCs’ rapid secretory response, activation of non-classical

inflammatory pathways and host restriction factors. Further, we uncovered

subset-specific differences in anti-HIV responses. CD14+ DCs were the main

population activated by HIV and mediated the secretory antimicrobial response,

while CD1c+ DC2s activated inflammasome pathways and IFN responses.

Identification of subset-specific responses to HIV immediately after exposure

could aid targeted strategies to prevent HIV infection.
KEYWORDS

dendritic cell, HIV, female genital tract, single-cell RNA sequencing, mucosal immunity,
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1 Introduction

Human Immunodeficiency Virus (HIV) infection is an ongoing

epidemic affecting about 38 million people worldwide. Women

represent half of the people living with HIV, but in endemic regions

HIV prevalence in women is higher than in men (1, 2). The main

mechanism of HIV transmission is attributed to sexual intercourse

(3) therefore, understanding HIV pathogenesis at the primary

portal of entry, the female genital tract (FGT), remains a high

priority to develop effective prevention strategies.

HIV gains access to the FGT by crossing the mucosal epithelial

barrier during heterosexual transmission via seminal fluid,

microtears in epithelial barriers, or transepithelial migration (4,

5). Different immune populations within the FGT supply target cells

for HIV infection or act as protective innate effector cells that limit

HIV acquisition (6–10). Potent antiviral innate defense followed by

generation of protective local adaptive immune responses would be

necessary to prevent HIV infection through repeated exposures.

Dendritic cells (DCs) are critical in shaping mucosal immunity

against pathogens and maintaining tissue homeostasis (11). DCs

express pattern recognition receptors (PRRs) that enable pathogen

recognition and capture, specifically through C-type lectin receptors

(CLRs) (12–15). Following antigen processing, DCs have the unique

ability to prime naive T cell function, making DCs ideal targets for

vaccination and therapeutic strategies against cancers and

infections, including HIV (16). However, in HIV pathogenesis,

DCs are considered a double-edged sword due to their ability to

secrete anti-viral proteins and resist viral replication, but capture

and transfer active viral particles to target CD4+ T cells (15, 17–20).

Different models using in vitro monocyte-derived DCs, Langerhans

cells and bona fide DCs have demonstrated that HIV-transfer from

DCs to T cells can occur through infection-independent

mechanisms via CLRs in early phases, or in an infection-

dependent manner through HIV receptors and viral replication at

later time points (20–24).

We previously demonstrated rapid secretion of antimicrobial

peptides with anti-HIV activity by genital DCs upon HIV exposure,

and subset-specific uptake of viral-like HIV particles by CD14+

DCs preferentially (25). Other studies further demonstrated that

genital CD14+ DCs were capable of capturing and transferring HIV

to CD4+ T cells (15, 18, 20). However, the role that different DC

subsets may play in mucosal HIV acquisition remains unclear.

DCs and mononuclear phagocyte populations are highly

specialized depending on the tissue of residence (26). Specifically

in mucosal regions like the FGT, resident DCs display unique

subset-specific functions in balancing immune protection and

reproduction (27–31). Mucosal sites are populated with

conventional DCs (cDCs) derived from DC precursors that seed

the tissues (32). In addition, in-vivo recruitment and differentiation

of monocytes into DCs or macrophages is mediated by acute

inflammation in different disease models and at various mucosal

sites (33). Characterization and delineation of DC subsets is

classically dependent on surface protein expression patterns (34).

However, recent advances in single-cell RNA sequencing

(scRNAseq) have enabled better discrimination of human DC

populations, revealing novel subsets and the inherent
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heterogeneity of CD14+ mononuclear populations (35, 36). These

recent advances highlight the need to combine surface protein and

RNA expression to fully characterize DC subsets (37).

Recent studies have enhanced our understanding of the DC and

mononuclear phagocyte subsets that populate different human

female genital mucosal surfaces relevant for HIV acquisition (15,

20, 24, 25, 31, 38, 39). Multiple of these studies identified a variety of

CD14-expressing populations that remain poorly defined (40).

Understanding the heterogeneity of DC and mononuclear cell

populations in the FGT, along with their unique contribution to

HIV pathogenesis is key for targeted interventions (41).

Here we use a combination of cellular indexing of

transcriptomes and epitopes sequencing (CITE-seq) and spectral

flow cytometry to define DC and mononuclear cell subsets in the

FGT and determine their immediate responses to HIV exposure.

Identification of phenotypic and functional properties of FGT-

resident DCs and their role in HIV acquisition could inform

future therapeutic and vaccination strategies against HIV.
2 Methods

2.1 Tissue processing

Tissues obtained from hysterectomies were separated by

endometrium (EM), endocervix (END) and ectocervix (ECT) by

pathologists and transferred to the laboratory post-surgery. Tissues

were processed as described previously (10, 31, 42). Briefly, tissues

were minced into 1-2 mm fragments in Roswell Park Memorial

Institute (RPMI) medium (Gibco) containing enzymes from Tumor

Dissociation Kit, human (Miltenyi Biotec) and 0.01% DNAse

(Worthington Biochemical) and transfered into sterile

gentleMACS™ C Tubes (Miltenyi Biotec). Enzymatic digestion

was performed on genlteMACS™ Dissociator (Miltenyi Biotec)

using “37C_h_TDK_1” program. Digested tissue was filtered

through 100mm, 70mm and 30mm MACS™ SmartStrainers

(Miltenyi Biotec) to generate stromal single cells suspensions.
2.2 Flow cytometry

Mixed single-cell suspensions from tissues were washed in

Phosphate-Buffered Saline (PBS; Gibco). Subsequently, cells were

incubated in the dark at room temperature with LIVE/DEAD Blue

(ThermoFisher) dye for 10 minutes. Anti-CD16 (BD Biosciences)

was then added and incubated for 5 minutes, followed by anti-

CCR7 (BioLegend), anti-CXCR4 (BioLegend), anti-CCR5

(BioLegend) and anti-CX3CR1 (BioLegend) for another 5

minutes. Finally, cells were incubated with an antibody cocktail

containing remaining antibodies (Supplementary Table S2) at room

temperature for 15 minutes, washed with MACS buffer, fixed in 2%

paraformaldehyde (PFA;Thermo Fisher), and analyzed for surface

marker expression on Cytek Aurora (5 laser, 64 detector

configuration; Cytek Biosciences). Expression of surface markers

were quantified using OMIQ (Dotmatics).
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2.3 HIV-1 viral stock propagation

HIV-BaL (R5) isolates obtained from the AIDS Research and

Reference Reagent Program, Division of AIDS, NIAID, NIH (43)

were propagated through infection of peripheral blood

mononuclear cells (PBMCs) activated with phytohemagglutinin

(PHA) (2.5 mg/mL; Sigma, St. Louis, MO) and IL-2 (50 U/mL;

AIDS Research and Reference Reagent Program, Division of AIDS,

NIAID, NIH: Human rIL-2 from Dr. Maurice Gately, Hoffmann –

La Roche Inc) for 6-8 days. Stocks were harvested when p24

concentrations reached 100 ng/mL. Titration of viral stocks were

performed using PHA and IL-2 activated PBMCs (44).
2.4 Sample preparation for multi-omics
single-cell RNA sequencing

Mixed single-cell suspensions from hysterectomy samples

obtained from 4 healthy female donor, consisting of 4

endometrium (EM), 2 endocervix (END) and 4 ectocervix (n =10

tissues), were enriched for immune cells by magnetic bead removal of

CD3+ (CD3 MicroBeads, human; Miltenyi Biotec), CD19+ (CD19

MicroBeads, human; Miltenyi Biotec), CD235a+ (CD235a

(Glycophorin A) MicroBeads, human; Miltenyi Biotec) red blood

cells and fibroblasts (Anti-fibroblast MicroBeads, human; Miltenyi

Biotec). For homeostatic conditions, cells were washed thoroughly

with PBS containing 5%HS to remove any excess magnetic beads and

incubated with oligo-conjugated antibodies (AbSeq; Supplementary

Table S2) and barcoded sample tags (BD™ Hu Single Cell Sample

Multiplexing Kit; BD Biosciences), to differentiate between tissue

sites, for 20 minutes at room temperature in PBS containing 0.5%HS.

For HIV stimulation experiments, cells were incubated with HIV-BaL

(MOI = 0.5) in XVIVO-15 or media alone for 30 minutes. Cells were

washed thoroughly with PBS+0.5% HS to remove unbound virus and

subsequently incubated with oligo-conjugated antibodies and

barcoded sample tags as mentioned above. Cells were subsequently

washed twice in excess PBS+0.5% HS to remove unbound antibodies

and sample tags. Cells were counted and 10,000 cells from each tissue

were combined to obtain a total of 30,000 cells each for control and

HIV conditions. Cells were then subsequently loaded onto separate

BD Rhapsody™ Cartridge (BD Rhapsody™ Cartridge Kit; BD

Biosciences) followed by RNA capture on polyA tail capture beads

containing unique molecular identifiers (UMIs) (BD Rhapsody™

Enhanced Cartridge Reagent Kit V3; BD Biosciences) on BD

Rhapsody™ Express Single-Cell Analysis System (BD Biosciences)

followed by cDNA, whole-transcriptome amplification and single-cell

indexing libraries according to manufacturer’s protocol (Protocol-

Rhapsody WTA+AbSeq+ST; BD Biosciences).
2.5 Multi-omics RNA sequencing analysis

FASTQ files containing unaligned reads were generated on

NovaSeq6000 sequencing system (Illumina). Gene counts were

generated by aligning and annotating reads to the human genome

(GRCh38.p12 v29). To assess capture of HIV, reads from respective
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experiments were also aligned to the HIV genome FASTA file. Count

tables were subsequently uploaded to Partek Flow (Partek, an

Illumina company) for downstream quantification and visualization

of data. Cells with mitochondrial gene expression >25% number of

detected features per cell less than 200 or greater than 4300 were

excluded from analysis, according to recent studies published by us

(31) and others (45). RNA and protein data were split and

normalized respectively. To identify DCs, we first selected immune

cells expressing PTPRC genes, which encodes CD45 protein. Next, we

used protein information to exclude remaining T and B cells by

selecting CD3-CD19+ cells, followed by selection of CD11c+HLA-

DR-DP-DQ+ cells. Since genital NK cells and neutrophils can express

CD11c and HLA-DR (46, 47), we excluded neutrophil contamination

by selecting CD15- cells within this population, and NK cell

contamination by gating out cells expressing NCAM1 RNA

(Figure 1A). PCA was performed on normalized data followed by

UMAP for visualization. Additionally, we also performed weighted-

nearest neighbor analysis to integrate protein and RNA data.

Subsequently, we performed k-nearest neighbor analysis and

graph-based analysis to identify cell clusters and used “compute

biomarker” function in Partek Flow (Partek – an Illumina company)

to generate biomarkers associated with the clusters (Supplementary

Data Sheet S1). To identify differentially expressed genes (DEGs)

between DC subsets, we performed non-parametric ANOVA to

identify significantly upregulated and downregulated genes with

significance of p ≤ 0.05 and Log2(FoldChange) ± 1.2. GO

Biological processes (48, 49) and Reactome (50) were generated

using gene lists of upregulated and downregulated genes. To

identify unique expression of genes within each cluster, “compute

biomarker” function in Partek Flow Analysis. Curated gene lists were

used to assess expression of CD markers, cytokines, chemokines,

PRRs, antimicrobial proteins and gene lists associated with GO

processes for AUCell (51) (Supplementary Data Sheet S2) were

used from GSEA analysis available in Partek Flow (Partek – an

Illumina company).
2.6 CD14+ DC isolation and HIV stimulation

CD14+ DCs were isolated from mixed-cell suspensions using

magnetic bead separation (CD14 MicroBeads, human; BD

Biosciences) as per previous studies (25, 30, 31, 42). Isolated cells

were incubated at 37°C, 5% CO2 with HIV-1-BaL (R5) isolates (MOI

= 0.5) for 3 hours. Supernatants were collected and stored at -80C

until multiplex assay analysis to determine secreted protein levels.
2.7 Luminex assay

Supernatants from unstimulated controls and HIV exposed

CD14+ DCs were quantified using Millipore human cytokine

multiplex kits according to manufacturer’s instructions. Signal

was measured using Magpix software with five-parametric-curve

fitting for data analysis. Molecules measured included IL-1b, IFNg,
IL-5, IL-13, IL1Ra, GM-CSF, G-CSF, CCL11, CCL22, CXCL1,

CXCL10 and CX3CL1.
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2.8 Statistical analysis

To identify differentially expressed genes, significance threshold

was set as (p<0.05; -1.2 <FC>1.2) on non-parametric ANOVA.

Statistics for flow cytometry analysis were done using Friedman’s

multiple comparison, (p ≤ 0.05 *; p ≤ 0.01 **; p ≤ 0.001 ***; p ≤

0.0001 ****). Hierarchical clustering heatmaps were performed on

significant, differentially expressed genes, by generating pseudo-

bulk expression of groups (eg. HIV vs control; cluster 1, cluster 2,

cluster 3, cluster 4 comparison) and visualized using bubble plots,

with size of the bubble referring to percentage of cells expressing the

particular gene, shade and color referring to Z-score expression of

the gene. For Reactome and GO analysis, terms with FDR ≤ 0.05

were chosen as significant values and bubble plots were visualized

using GraphPad Prism.
2.9 Study subjects

Written informed consent was obtained before surgery from

HIV-negative women undergoing hysterectomies at Tufts Medical
Frontiers in Immunology 04
Center (Boston, MA, USA). Studies were approved by Tufts

University Institutional Review Board and the Committee for the

Protection of Human Subjects. Surgery was performed to treat

benign conditions including fibroids, prolapse, and menorraghia.

Trained pathologists selected tissue samples from endometrium

(EM), endocervix (END), and ectocervix (ECX), free of pathological

lesions and distant from the sites of pathology. Women were HIV−

and HPV− but no additional information regarding other genital

infections was available.
3 Results

3.1 Identification of phenotypically and
transcriptionally unique DC subsets in the
genital tract

Prior studies have identified different genital DC and

mononuclear phagocyte populations within the anogenital

mucosa (14, 15, 20, 24, 25, 31, 39, 42, 52). However,

transcriptional, phenotypical, and functional characterization of
FIGURE 1

Identification of phenotypically and transcriptionally unique DC subsets in the genital tract. (A) Representative gating strategy to identify FGT resident
CD11c+HLA-DR+ cells using a combination of surface protein expression (AbSeq) and RNA expression in CITEseq dataset. Y-axis and x-axis indicate
normalized AbSeq expression levels. (B) Representative UMAP visualization of FGT resident CD11c+HLA-DR+ cells through unbiased clustering,
depicting expression of discriminating RNA expression (left column) and surface protein expression (right column) in distinct subsets, Cluster 1 (blue),
Cluster 2 (red), Cluster 3 (teal) and Cluster 4 (green). (C) Scatter plot comparing surface antibody expression between different FGT CD11c+HLA-DR+

subsets. (D) AUCell analysis of top 50 genes in DC3 cluster described by AC Villani et. al.
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the heterogenous CD14-expressing populations in the genital tract

remains poorly defined.

To address these gaps, we optimized a protocol to define DC

subsets in the FGT phenotypically and transcriptionally at the

single-cell level. We generated single cell suspensions from

human hysterectomy samples and enriched the target immune

cells as detailed in methods. We labeled the enriched cells with

oligo-conjugated antibodies targeted towards surface proteins

(Supplementary Table S1), lysed the cells to release RNA, and

sequenced the RNA to simultaneously determine the whole

transcriptome profile and surface protein expression at the single-

cell level. To identify the genital resident DCs, we took advantage of

CITE-seq’s combined surface protein information and gene

expression and developed a gating strategy to select the

CD11c+HLA-DR+ population (Figure 1A), which contains DCs.

This approach eliminates the need for lengthy fluorescence

activated cell-sorting (FACS) prior to sequencing, thereby limiting

processing steps that can alter primary tissue resident immune

cells (53).

Unbiased clustering analysis discriminated four distinct clusters

of CD11c+HLA-DR+ cells within the genital mucosa (Figure 1B).

We determined the top RNA and surface protein (Abseq)

expression unique to each cluster by using “compute biomarkers”

function (Figure 1B). Cluster 1 was characterized by RNA

expression of VCAN, S100A8, S100A9 and surface protein

expression of CD14, CD11b and CD64 (Figure 1C), confirming

the presence of a CD14+ monocyte-derived DC population in the

genital mucosa as previously described by us and others (20, 25, 30,

31, 52, 54). Cluster 2 was characterized by surface protein

expression of CD1c, the DC maturation marker CD83, and the

pro-survival and tissue homing marker CXCR4 (55, 56), suggesting

enrichment of cDC2s in this cluster (Figure 1C). Clusters 3 and 4

displayed phenotypes similar to monocyte populations. Cluster 3

expressed elevated CD16 and CD127, whereas cluster 4 displayed

elevated expression of CD64, HLA-DR and low levels of CLEC12A

protein expression (Figure 1C). Additionally, cluster 3 expressed

RNA transcripts such as FCGR3A, SMIM25 and SPN (Figure 1B),

consistent with non-classical monocyte (NCM) signature

expression (57). Cluster 4 expressed elevated levels of

complement encoding RNA transcripts C1QC and C1QB,

consistent with inflammatory monocytes/macrophages (infMons)

(58). These two clusters indicated the presence of two distinct

monocyte populations within CD11c+HLA-DR+ cells.

Recent studies identified a novel DC population in peripheral

blood named DC3 that co-expresses CD14 and CD1c and displays

and intermediate phenotype and function between monocytes and

classical myeloid DCs (cDC2s) (36, 59). Interestingly, we and others

have previously described the presence of CD14+CD1c+ cells in the

FGT (20, 25, 52). To determine whether the DC3 population was

present in the FGT, we analyzed our CITE-seq data using AUCell

(51) with the top 50 genes described by Villani et al. in their

peripheral blood DC3 cluster (Supplementary Data Sheet S2) (35).

We observed an enrichment of the DC3 signature in cluster 1

(Figure 1D), indicating the presence of DC3s within the CD14+

DC cluster.
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Overall, our multi-omics data indicates the presence of four

distinct CD11c+HLA-DR+ populations in the FGT, consisting of

two DC and two monocyte populations, with unique transcriptional

and phenotypic signatures. Furthermore, we observed the presence

of novel DC3 gene signature in the CD14+ DC cluster, suggesting

inherent heterogeneity of CD14+ DCs within the FGT.
3.2 Functional specialization of genital DCs
under homeostatic conditions

Next, we investigated whether our phenotypical clustering was

associated with distinct subset-specific functions for each subset

under homeostatic conditions.

To determine if the distinct populations would be differently

posed to detect and interact with invading pathogens, including HIV,

we compared expression levels of PRRs (Supplementary Data Sheet

S2) including toll-like receptors (TLRs), C-type lectin receptors

(CLRs) and NOD-like receptors (NLRs). Using a list of known

PRRs (Supplementary Table S2) we compared expression levels

between subsets through hierarchical clustering (Figure 2A). We

observed no TLR9 expression across all subsets, ruling out the

possibility of plasmacytoid DC contribution to the gene signature

of each subset. Compared to the other clusters, Cluster 1 (CD14+

DCs) showed relatively higher expression of TLRs and CLRs

associated with detecting and binding to HIV, including CLEC4A,

CLEC4E and TLR4 (60–62). Additionally, in Clusters 1 and 3, we

observed shared expression of CLEC12A, which has been linked to

improved antigen delivery and cross presentation by DCs (63), and

CLEC7A, previously described in CD14+ DCs from blood and lungs

(64). Additionally, Clusters 1, 3 and 4 also shared expression of TLR2,

which binds HIV (65). Cluster 2 (cDC2s) had no unique gene

expression pattern. The highest expression in Cluster 2 was

observed for the CLRs CLEC10A and CLEC1A, involved in antigen

internalization and presentation (66, 67). When compared to the

other clusters, Cluster 3 (NCM) displayed high preferential

expression of IFIH1 (encoding MDA5), DDX58 (encoding RIGI)

which mediate detection of cytosolic viral RNA (68, 69), and TLR8,

which recognizes endolysosomal ssRNA (70). Cluster 4 (infMons)

expressed MRC1 (encoding mannose receptor (MR)) and CD209,

consistent with a monocyte/macrophage phenotype (71, 72). Cluster

4 also expressed high levels of CLEC5A which forms heterodimers

with CD209 and MR upon antigen exposure to enhance viral

internalization (73). Further, compared to the other clusters,

Cluster 4 had preferential expression of TLR1 and TLR6, known to

dimerize with TLR2 for detection of bacterial lipopeptides; TLR7 and

TRL3 which recognize ssRNA and dsRNA, respectively (74, 75).

Finally, a small percentage of cells in Cluster 4 preferentially

expressed AIM2, involved in recognition of cytosolic dsDNA (76).

Altogether, our analysis reveals subset specific differences in genital

DC recognition of different moieties of pathogens, Cluster 1 being

enriched with PRRs associated with membrane HIV recognition and

binding, Cluster 2 expressed PRRs for antigen uptake, Cluster 3 and

Cluster 4 were enriched for PRRs that detects cytosolic and

endolysosomal ssRNA, dsRNA and dsDNA.
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Using the same analytical approach, we next focused on

cytokine and chemokine expression under homeostatic

conditions, to understand functional differences in innate

secretory functions involved in maintenance of mucosal barrier

integrity, immune cell recruitment and anti-microbial protection.

We identified the top 5 cytokine and chemokine gene signatures

unique to each cluster (Figure 2B; Supplementary Data Sheet S2).

Cluster 1 (CD14+ DCs) was characterized by CCL20, CXCL8 and

CXCL2 expression, genes involved in antimicrobial activity (77),

chemotaxis for Th17 cells, neutrophils, monocytes and DCs (78–

81). Expression of IL1B and its inhibitory receptor IL1RN were also
Frontiers in Immunology 06
elevated in Cluster 1, suggesting production of IL1b but prevention

of autocrine/paracrine actions of IL1b on CD14+ DCs. Cluster 2

(containing cDC2s), specialized in expression of genes involved in T

cell chemotaxis: IL33, an alarmin that controls tissue homeostasis

and type 2 immunity (82); CCL17, a chemoattractant for helper T

cells expressing CCR4 (such as Th2 and regulatory T cells) (83)

(84); CXCL12, a CXCR4-ligand; CX3CL1 (fractalkine) which play

critical roles in menstruation (85); and IL7, suggesting an important

role for cDC2s in control of genital T cell populations and favoring

Th2 and T regulatory profiles. Cluster 3 (NCMs) expressed high

levels of IL16, a cytokine that exclusively binds and signals through
FIGURE 2

Functional specialization of genital DCs under homeostatic conditions. (A) Hierarchical clustering heatmap comparing gene expression of significant
pattern recognition receptors (PRRs) between FGT resident CD11c+HLA-DR+ subsets. (B) Hierarchical clustering heatmap comparing gene
expression of top 5 interleukin and chemokines in each cluster, where size of the circle indicates percentage of cells expressing associated gene > 0
(C) AUCell comparison of key gene ontology (GO) terms associated with dendritic cell function between DC subsets.
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CD4 (86); and CXCL16, important for control of MAIT cells and

NK cells and expressed by non-classical monocytes in blood (87–

89). In addition, a smaller percentage of cells in cluster 3 expressed

CCR3 ligands CCL24, CCL26 and CCL13, with antimicrobial

properties and potent chemoattractants for eosinophils and

basophils (90) (91). Cluster 4 (infMons) was characterized by

expression of CCR5 ligands CCL3, CCL4, CCL5 and CXCR4

ligands CXCL12 and CCL4L2, suggesting a potential role in

mediating anti-HIV activity. Cluster 4 also expressed high levels

of IL18, a proinflammatory cytokine described in tissue-resident

macrophages that induces IFN-g production by T cells in an

inflammatory environment, or Th2 differentiation in the absence

of inflammatory cytokines (92, 93).

To further understand functional contributions to mucosal

homeostasis and defense, we performed AUCell analysis (51) of

genes associated with immune protection (Figure 2C;

Supplementary Data Sheet S2). Cluster 1, containing CD14+ DCs,

was enriched for genes associated with inflammatory and defense

response, suggesting enhanced potential to mediate innate immune

protection. Furthermore, enrichment of genes associated with

positive regulation of myeloid leukocyte migration within this

cluster suggests the presence of a migratory DC population.

Cluster 2 (cDC2s) and Cluster 4 (infMon) were enriched for

genes related to activation of the complement classical pathway,

correlating with increased expression of complement associated

genes. Lastly, no differences were observed for enrichment of

antigen processing and presentation or positive regulation of T

cell proliferation genes in genital CD11c+HLA-DR+ subsets under

homeostatic conditions.

Overall, our data demonstrates distinct functional specialization

of genital CD11c+HLA-DR+ subsets under homeostatic conditions.
3.3 CD14+ DCs represent a heterogenous,
activated population within the
genital mucosa

Data in this study highlights the inherent heterogeneity of DC

subsets within the mucosa, with unique transcriptional and phenotypic

properties under homeostatic conditions. To validate our CITE-seq

findings in a larger number of patients and further delineate genital DC

populations, we developed a multi-parameter spectral flow cytometry

panel (Supplementary Table S2). We gated on CD11c+HLA-DR+ cells

(Figure 3A) and identified four different populations based on CD1c

and CD14 surface expression (Figure 3B), main discriminatory

markers identified in our CITEseq data (Figure 1C). As seen in

Figure 3C, CD14highCD1c- cells (CD14+ DCs) were the most

abundant subset (53%), followed by CD14lowCD1c- (29.1%),

CD14+CD1c+ DCs (DC3s) (7.44%) and CD14-CD1c+ (cDC2s) cells

(6.5%). To determine if CD11c+HLA-DR+ subset distribution varies

throughout the genital tract, we compared the abundance of each

subset in the endometrium (EM), endocervix (END), and ectocervix

(ECX) (Figure 3D). We observed an increased abundance of CD14+

cells in the ECX compared to the EM, whereas the opposite was true for

the CD14lowCD1c- subset, with no significant changes observed in

CD1c+ and CD14+CD1c+ cells.
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In our CITE-seq data set we identified two distinct CD14-CD1c-

populations with differential expression of CD16 and CLEC12A

(Figure 1C). Therefore, we further characterized the CD14-CD1c-

population to determine if this group was composed of two different

cell subsets. Consistent with our CITE-seq findings, the CD14lowCD1c-

population contained two different subsets: CD14-CD16+ and CD14-

CD16- (Figure 3E). Furthermore, these two populations could be

distinguished by CLEC12A expression (Figure 3E, histogram),

suggesting CD14-CD16+CLEC12A+ cells are similar to NCMs, whereas

lack of CLEC12A expression in CD14-CD16- cells corresponds to the

inflammatory/activated monocyte population (infMon).

Next, we analyzed expression of surface markers associated with

DC activation status and function (Figure 3F). First, we assessed

maturation status by gating on HLA-DRhigh cells consistent with

our previous publication (25). We observed that a large proportion

of CD14+CD1c+ and CD1c+ cells were HLA-DRhigh, significantly

higher than other CD11c+HLA-DR+ subsets. Compared to the

other subsets, CD14+CD1c+ and CD14+ cells showed higher

expression of CD11b and CD64, associated with cell adhesion

and antigen uptake. CD14+CD1c+ cells expressed the highest

levels of CD54, a molecule involved in enhanced immune synapse

formation between DCs and T cells (94). CD14-CD16+ cells

displayed the highest levels of CLEC12A (a myeloid inhibitory

receptor), and along with CD14+CD1c+ cells, showed high

expression of CX3CR1, the receptor for CX3CL1 (fractalkine).

Previous studies from our group and others have shown that

CD14-expressing FGT DCs preferentially capture HIV viral-like

particles (15, 18, 20, 25), indicating subset-specific interactions with

HIV. Based on this, we evaluated expression of receptors and

coreceptors for HIV in the different subsets (Figure 3G). We

observed that all three DC subsets expressed significantly higher

levels of CD4 and CXCR4 compared to CD14-CD16- monocytes.

Importantly, CD14+CD1c+ DCs expressed the highest levels of

CCR5, which is crucial for HIV acquisition in the mucosa (95).

In addition to the classical co-receptors, CD49d (a4b7 integrin)

expression was significantly higher in CD14+CD1c+ DCs and

CD14-CD16+ monocytes compared to other subsets. CD49d acts

as a tissue homing marker and non-classical HIV co-receptor

important for mucosal infection (96).

Altogether, our flow cytometry data demonstrates the presence of

phenotypically distinct genital DC populations and further supports the

presence of CD14+ DCs and DC3s within the CD14+ population.We

demonstrate that genital DC3s expressed levels of activation markers

similar to conventional cDC2s (CD1c+ DCs) and share expression of

classical monocyte-derived DC markers with CD14+ DCs. Additionally,

we demonstrate elevated expression of HIV coreceptors in DC3s

compared to other DC populations, suggesting predisposed differential

response to HIV within the genital mucosa.
3.4 Genital DCs undergo rapid
transcriptional changes in response to
HIV stimulation

Earlier studies investigated the role of DCs in HIV pathogenesis

using monocyte-derived DCs over a time course from 6-48 hours to
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FIGURE 3

CD14 DCs represent a heterogenous, activated population within the genital mucosa. (A) Representative flow cytometry gating strategy to identify
FGT resident CD11c+HLA-DR+ cells. (B) Representative plot of HLA-DR+CD11c+ subsets based on CD14 and CD1c expression; CD14+CD1c- (I,
orange), CD14-CD1c+ (II, red), CD14+CD1c+ (III, green) and CD14-CD1c- (IV, pink). (C) Comparison of CD11c+HLA-DR+ subset frequencies in the
FGT. (D) Comparison of CD11c+HLA-DR+ subset distribution across different anatomical regions of the FGT, endometrium (EM), endocervix (END)
and ectocervix (ECX). (E) Representative gating to differentiate CD14-CD1c- cells based on CD16 expression (left); Histogram comparing CLEC12A
expression between CD14-CD16+ and CD14-CD16- cells (right). (F) Comparison of surface protein expression between different CD11c+HLA-DR+

cells; HLA-DRhigh (top left), CD64 (top middle), CD11b (top right), CD54 (bottom left), CLEC12A (bottom middle) and CX3CR1 (bottom left). (G)
Comparison of HIV tropic surface proteins between different CD11c+HLA-DR+ cells; CD4 (top left), CXCR4 (top right), CCR5 (bottom right) and
CD49d (bottom right). Statistics – Friedman’s multiple comparison, (p ≤ 0.05 *; p ≤ 0.01 **; p ≤ 0.001 ***; p ≤ 0.0001 ****).
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assess their responses to HIV during viral uptake and infection (22).

However, most studies evaluating the role of genital DCs in HIV

pathogenesis have investigated events that occur 12 hours or more

after viral exposure, focusing on DC susceptibility to HIV infection

and trans-infection to CD4+ T cells (38) (15, 18, 20). We have

previously shown that genital DCs release chemokines and

antimicrobials in a rapid manner, within 3 hours after HIV

stimulation (25), indicating a role for DCs in triggering the initial

mucosal innate response against the virus. However, the overall

antiviral response induced by HIV immediately following challenge

of genital DCs, prior to viral replication, integration, or productive

infection, remains uncharacterized.

To address this gap, we adapted our CITEseq approach to

identify early transcriptional responses of genital DCs to HIV.

Single cell suspensions generated from human hysterectomy

samples were incubated with HIV at an MOI of 0.5 in vitro for

30 minutes, prior to proceeding with the CITE-seq protocol

described in detail in methods, to determine whole transcriptome

profile and surface protein expression simultaneously at the single-

cell level (Figure 4A). The time of 30 minutes was chosen to identify

pathways involved in viral recognition and immune response

independent of viral replication, integration and productive

infection. We used the surface protein expression information to

select CD11c+HLA-DR+ cells as done in Figure 1A, which contains

the DC and monocytic populations, and performed differential gene

expression analysis between HIV and unstimulated control

conditions to define transcriptional changes induced by viral

exposure. This analysis identified a significant transcriptional shift

induced by HIV within 30 minutes, with 333 genes differentially

upregulated and 4148 genes downregulated in response to HIV

(Figure 4B; (Supplementary Data Sheet S1).

To define this HIV response, we first focused on genes

associated with DC-mediated immune protection, inflammation,

and antiviral response within the top 50 differentially expressed

genes based on fold change and p-value (Figure 4B; Supplementary

Data Sheet S1).

Within the upregulated genes, we detected increased expression

of the interferon-stimulated genes (ISGs) IRF1 and IFITM2,

indicating initiation of innate immune activation and anti-viral

response. We also observed a strong upregulation of genes

associated with interleukin and chemokine signaling pathways

(IL1B, CXCL8, CXCL10, CISH, SOCS3), indicating rapid

induction of innate secreted responses. Consistent with increased

secretory response, we observed upregulation of serglycin gene

expression (SRGN) in response to HIV, involved in storage and

secretion of innate molecules in intracellular vesicles in blood

monocytes and other cell types (97). Additionally, we detected

upregulation of ACOD1, a gene involved in antimicrobial and

antiviral responses of innate cells, and a negative regulator of

TLR-mediated inflammatory responses (98).

We detected downregulation of genes associated with pro-viral

replication of HIV such as GRIP1, EIF4A2, SRRM2, XRN1, and

MALAT1 (99–102), suggesting suppression of host mechanisms to

prevent HIV replication in genital DCs.

To uncover markers that enable the identification of phenotypic

changes induced by HIV in genital DCs, we evaluated differences in
Frontiers in Immunology 09
expression of genes associated with surface protein expression (CD

marker list, Supplementary Data Sheet S2), focusing on molecules

associated with DC function such as activation, migration, and T

cell co-stimulation (Figure 4C). We observed that the majority of

genes related to CD markers were downregulated, but detected

strong upregulation of three genes: CD69, which mediates tissue

retention; CD99, involved in diapedesis of monocytes and dendritic

cells into inflamed tissue (103); and ANPEP (encoding CD13),

which mediates DC cross-presentation in human DC populations

(104). Analysis of the downregulated genes revealed suppression of

markers associated with classical DC activation and T cell co-

stimulatory ligands (CD83, CD86, CD58) and molecules

important for migration of DCs (PECAM1, CD37) (105, 106),

indicating potential suppression of T cell interaction molecules

and retention of genital DCs within the mucosa at early timepoints.

We also observed decreased expression of disintegrin and

metalloproteinase family of genes (ADAM10, ADAM17) which

mediate shedding of TNF-a (107), suggesting suppression of

classical pro-inflammatory responses. Additionally, relative to the

control, the HIV-stimulated DCs had decreased expression of

CLEC12A , and genes encoding the inhibitory leukocyte

immunoglobulin-like receptor subfamily B (LILRB1, LILRB2,

LILRB3), suggesting a non-classical mechanism of DC

activation (108).

Next, we performed Gene Ontology (GO) analysis of genes

upregulated and downregulated by HIV stimulation (FDR ≤ 0.05)

(Figure 4D; Supplementary Data Sheet S1). Analysis of the

upregulated genes revealed an enrichment of terms associated

with cytokine mediated signaling pathways, innate sensing, and

metabolic processes (Figure 4D; Supplementary Data Sheet S1).

Downregulated genes (Figure 4D) were associated to terms related

to antigen presentation, T cell responses, regulation of classical

inflammatory cytokines, type I IFN responses, and canonical

proinflammatory pathways, but also suppression of viral cycle

and viral replication. These GO terms suggest suppression of

classical inflammation but activation of innate host antiviral

responses within 30 minutes of exposure to HIV.

Based on these GO terms, we further explored the secretory

response to HIV and compared expression of genes encoding

cytokines, chemokines and antimicrobials between control and

HIV conditions (Figure 4E). In response to HIV we detected

upregulation of an innate secretory response, including pro-

inflammatory genes IL1B and CXCL10, CXCL8 and CCL2,

chemoattractant for neutrophils, DCs and monocytes; and CCL8,

a CCR5 ligand with antiviral activity, (109). Compared to the

control group, we observed decreased expression of genes

encoding inflammatory cytokines IL6 and IL18, which act as Th1

polarizing cytokines; IL16, a CD4+ cell specific chemoattractant;

CCL28, a CCR10+ T cell chemoattractant; and CCL21, which

mediates homing to lymphoid tissues, suggesting potential

inhibition of CCR7+ DC migration towards lymph nodes.

Comparison of antimicrobial peptide gene expression ( (110);

Supplementary Data Sheet S2) revealed increased expression of

RNASE1 and S100A12 in the HIV group compared to control

(Figure 4E). Interestingly, we observed suppression of SAA1

(encoding serum amyloid A), which contributes to induction of
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pathogenic Th17 cells (111), known to be preferential targets for

HIV infection (6, 112, 113). Additionally, we observed suppression

of ADM (encoding the anti-bacterial peptide adrenomedullin),

which also acts as suppressor of inflammatory cytokines (114).

Taken together, our data indicates that mononuclear phagocytic

populations respond to HIV in a rapid manner within 30 minutes of

exposure, with upregulation of endogenous host restriction factors,

activation of non-classical inflammatory responses, and increased

gene expression of cytokines, chemokines and antimicrobials,

suggesting initiation of a localized antiviral response.
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3.5 CD14+ DCs largely mediate the rapid
innate secretory signature observed in
genital DC response to HIV while cDC2s
mediate antiviral inflammatory responses

Transcriptional changes in genital mononuclear phagocytic

populations exposed to HIV indicates rapid activation of

endogenous host restriction factors and localized non-classical

inflammatory response, but also an overall suppression of gene

transcription. Since our results identified distinct DC subsets with
FIGURE 4

Genital DCs undergo rapid transcriptional changes in response to HIV stimulation. (A) Graphical depiction of CITEseq protocol to identify
transcriptional changes induced by HIV in FGT resident CD11c+HLA-DR+ cells. Mixed single-cell suspensions from hysterectomy samples were
incubated with HIV at MOI of 0.5 for 30 minutes at 37°C (B) Volcano plot of significantly upregulated (n=333) and downregulated genes (n=4148) by
HIV in CD11c+HLA-DR+ cells. (C) Hierarchical clustering heatmap comparing gene expression of CD markers between control and HIV exposed
cells. (D) Bubble-plot visualization of significant GO terms enriched in genes upregulated (UR genes; red) and downregulated (DR genes; blue) in
response to HIV by CD11c+HLA-DR+ cells. (E) Hierarchical clustering heatmap comparing genes expression of secreted factors such as interleukins,
chemokines and antimicrobial proteins between control and HIV exposed CD11c+HLA-DR+ cells. Statistics – Volcano plot, non-parametric ANOVA
(p ≤ 0.05; -1.2 <FC>1.2); GO terms significance of FDR ≤ 0.05.
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differential homeostatic activation and functions, we next

determined how each of these subsets contributes to the overall

response after HIV challenge. To define cell clusters and determine

their responses following HIV exposure, we used the CITEseq

libraries generated from single-cell suspensions stimulated with

HIV for 30 minutes shown in Figure 4. We performed PCA,

followed by unbiased clustering and visualization using UMAP.

This analysis revealed four clusters (Figure 5A): CD14 DCs, cDC2s,

infMons and NCMs, consistent with our findings under

homeostatic conditions (Figure 1B). Overlay of unstimulated and

HIV exposed cells, revealed contribution from control and HIV

stimulation conditions to each cluster, except for the NCM cluster,

where we found a very limited number of cells from the HIV

stimulated condition, and were therefore unable to analyze NCM

response to HIV (Figure 5B).

First, we utilized the overall transcriptional signature detected

after HIV exposure shown in Figure 4B to perform AUCell analysis

and determine whether this signature was enriched in specific

genital DC subsets (Figure 5C). Interestingly, the overall HIV

response signature (including upregulated and downregulated

genes) was preferentially enriched in cDC2s and infMons.

However, we observed enrichment of HIV upregulated genes in

CD14 DCs, whereas HIV downregulated genes were enriched in

cDC2s and infMons, suggesting that HIV challenge preferentially

suppresses transcriptional changes in cDC2s and infMons

compared to CD14 DCs. Furthermore, we detected an

enrichment of cytokine, chemokine and antimicrobial peptide

signatures within the CD14+ DC population, but no differences in

enrichment of antiviral ISGs (Figure 5C), suggesting that CD14+

DCs largely mediate innate secretory response to HIV at

early stages.

We next analyzed differential gene expression within each

subset to identify transcriptional changes induced by HIV

exposure (Figure 5D; Supplementary Data Sheet S1). All three

subsets shared upregulation of AF033819.3 (the viral transcript

from viral input), SOCS3, and CXCL10 (Figure 5D). CD14 DCs

and cDC2s shared expression of anti-viral genes IRF1, IFITM2 and

ACOD1 and the cytokine signaling genes CISH, IL1A and IL1B.

CD14 DCs and infMons shared expression of zinc finger proteins

and non-protein coding genes, except for CSF3 (encoding the

granulocyte colony stimulating factor (G-CSF)) (Supplementary

Data Sheet S1). cDC2s and infMons both upregulated CXCL8

expression upon HIV stimulation.

Next, we analyzed genes uniquely upregulated by each subset

in response to HIV. We observed that CD14 DCs upregulated

TIFA and FOSL1 , genes associated with init iation of

inflammation; EMP1, previously described in type I interferon

stimulated DCs (115); and CDKN1A, a gene involved in p53

transcription previously shown to be protective at early stages of

HIV infection (116). cDC2s uniquely upregulated ISGs IFIT2 and

IFIT3, both possessing antiviral functions, CCL3, CCL4 and

CCL4L2 , encoding chemokines capable of binding HIV

receptors (133, 134) and NLRP3, encoding inflammasome

protein and indicating rapid induction of inflammation.

infMons upregulated RNASE1 (encoding RNA degrading
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secreted protein) (117), and LIFR, which encodes CD118

described to function as an alternative receptor for HIV (118).

Downregulated genes were more abundant, and we focused our

analysis on genes associated with DC function and HIV

pathogenesis (Figure 5D; Supplementary Data Sheet S1). All 3

subsets shared lowered expression of genes associated with HIV

transcription such as GRIP1 and SRRM2, which promote HIV

replication, and interestingly SAMHD1, which plays a role in

preventing replication of HIV. Additionally, all three subsets

showed decreased expression of inflammation associated genes

JUN, CSF3R and IL6R. CD14 DCs and infMons shared

downregulation of HSPA1L (encoding a heat shock protein) and

genes associated with adaptive immunity such as CD36, ITGAL,

LILRA1 and SIRPB1. CD14 and cDC2s shared suppression of HIV-

replication promoting gene XRN1, and interferon signaling

associated genes TRIM2, TRIM4, CIITA and MX1. infMons and

cDC2s shared downregulated expression of genes associated with

unfolded protein response, such as EDEM1, HYOU1, KLHDC3 and

KAT2A (119). CD14 DCs uniquely downregulated inhibitory genes

CLEC12A, LILRB1, and classical DC activation marker CD83,

suggesting non-canonical activation of this subset. We also

observed downregulation of HIV binding and nuclear localization

protein encoding gene DDX21 (120), suggesting inhibition of

nuclear import. cDC2s downregulated genes associated with

promoting HIV replication such as EIF4A1, EIF4A2 (HIV

translation initiation) (121) and RNA polymerase II encoding

genes POLR2F, POLR2G (122). We also observed downregulation

of the TNFa degrading gene ADAM17 and A2M encoding alpha2-

macroglobulin, that binds to inflammatory interleukins with high

affinity, suggesting inhibition of HIV replication and promoting

inflammatory environment. infMons downregulated expression of

NOD2, CD80, and IFNAR indicating decreased cell activation.

We performed pathway analysis using Reactome to gain

information about biological interactions (50) (Figure 5E;

Supplementary Data Sheet S1). Analysis of upregulated genes

revealed shared involvement of CD14 DCs and cDC2s in

cytokine signaling pathways (IL-10, IL-4/IL-13 pathways). cDC2s

uniquely upregulated Type I IFN and IFN-g signaling, while CD14
DCs uniquely upregulated transcriptional activation of p21, a

known restriction factor against HIV infection in monocyte-

derived DCs (123). Analysis of downregulated genes revealed

shared signatures between CD14+ DCs and infMons for heat

shock response, and a unique signature for infMons related to

downregulation of viral replication.

Finally, to validate our findings of a secreted response at the

protein level, we purified genital CD14 DCs by magnetic bead

selection and incubated them with HIV as described in methods.

Supernatants harvested 3 hours post stimulation from unstimulated

and HIV exposed cells were assayed to quantify secreted proteins

(Figure 5F). In response to HIV, we detected increased secretion of

cytokines and chemokines (IFN-g, IL-5, IL-13, IL1Ra, GM-CSF,

CXCL1, CXCL10 and CCL22). These results confirm rapid innate

secretory response in response to HIV.

Overall, we demonstrate subset-specific responses to HIV, with

a preferential suppression of genes in cDC2s and infMons
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FIGURE 5

CD14+ DCs largely mediate rapid protective host response observed in genital DC response to HIV. (A) Representative UMAP visualization of
CD11c+HLA-DR+ clusters and (B) overlay of control and HIV exposed cells (MOI=0.5 for 30 min). (C) AUCell comparing enrichment in CD11c+HLA-
DR+ subsets in HIV exposed samples of overall upregulated (UR) and downregulated (DR) HIV signatures (top row) and key gene ontology (GO)
terms associated with dendritic cell function (bottom row). (D) Venn-diagram representation comparing expression of shared and unique genes
significantly upregulated (top) and downregulated (bottom) between CD11c+HLA-DR+ subsets in response to HIV stimulation. (p-value ≤ 0.05; -1.2
<FC>1.2) (E) Bubble-plot representation of biological pathways significantly Reactome significantly enriched in upregulated (UR; red) and
downregulated (DR; blue) genes in response to HIV stimulation between different CD11c+HLA-DR+ subsets. (FDR ≤ 0.05; black dots indicate non-
significant (n.s.) FDR values) (F) Comparison of secreted protein levels in supernatants of media (control; blue) and HIV exposed (HIV; red; MOI 0.5
for 3h), FGT resident CD14+ cells. Significance – Paired non-parametric Wilcoxon-test (p ≤ 0.05 *; p ≤ 0.01 **).
Frontiers in Immunology frontiersin.org12

https://doi.org/10.3389/fimmu.2024.1472656
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Parthasarathy et al. 10.3389/fimmu.2024.1472656
compared to CD14 DCs, with CD14+ DCs largely mediating the

secretory innate response after HIV stimulation.
4 Discussion

In this study we evaluated dendritic cell heterogeneity in the

human female genital mucosa and how DC subsets respond to HIV

immediately after exposure. We found that the CD11c+HLA-DR+

myeloid population in the genital mucosa includes three DC subsets

and two monocyte/macrophage populations with distinct

functional and phenotypic properties under homeostatic

conditions. However, following HIV exposure, the antiviral

response is dominated by DCs’ rapid secretory response,

activation of non-classical inflammatory pathways and host

restriction factors. Further, we report subset specific differences in

genital DC response to HIV, where CD14+ DCs are the major subset

activated by HIV and responsible for the secretory antimicrobial

response, while cDC2s activate inflammasome pathways and

antiviral IFN responses. Recognizing that DCs play a crucial role

in responding to invading pathogens and recruiting adaptive

immunity, identifying DC subsets with anti-HIV properties could

aid targeted HIV prevention and vaccination strategies.

We and others have reported the presence of different DC

subsets in the genital mucosa (15, 17, 20, 25, 30, 31, 38), however in-

depth characterization of these subsets, specifically the CD14-

expressing DC compartment, throughout the female genital tract

according to recent advances in the field remains lacking (37).

Mucosal DC characterization in humans is technically challenging

due to their rare nature and the difficulty in isolating specific subsets

for functional characterization. To overcome these barriers, we

utilized multi-omics approaches to characterize protein surface

expression and transcriptome profile of DCs at the single-cell

level in mixed cell suspensions from human hysterectomies. Our

analysis revealed that the CD11c+HLA-DR+ population is highly

heterogeneous, including multiple DCs and monocyte/macrophage

subsets. Within the DCs populations, we identified CD14+ DCs,

CD1c+ cDC2s and CD14+CD1c+ DC3s, with CD14+ DCs

representing the dominant population, consistent with prior

reports using flow cytometry (25). Importantly, we identified two

monocyte/macrophage subsets within CD11c+HLA-DR+ cells,

indicating that CD11c and HLA-DR expression are not sufficient

to define DCs in the genital tract.

Under homeostatic conditions the different myeloid

populations displayed differential expression of PRRs,

chemokines/cytokines and antimicrobials, indicating subset-

dependent roles in tissue homeostasis and differential

predisposition to sense and respond to pathogens, including HIV.

Specifically, PRRs previously associated with HIV membrane

binding and detection (such as CLEC4A, CLEC4E, TLR2 and

TLR4) were preferentially expressed by CD14+ DCs, suggesting

that CD14+ DCs may play a principal role in early detection of HIV

upon exposure within the genital tract. Although prior studies using

in vitro generated monocyte-derived DCs demonstrated that DCIR

(encoded by CLEC4A) was responsible for viral capture and

transinfection to CD4+ T cells (60, 61), future functional studies
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are needed to test whether DCIR is involved in HIV capture by

genital CD14+ DCs. Interestingly, our data indicates a lack of gene

expression by CD14+ DCs of other classical HIV-binding lectins

(CD207, CD209 and MRC1) which were uniquely expressed in the

infMons subset that shares characteristics of macrophages. Further

research is needed to define the mechanisms responsible for viral

capture by genital DCs. Cytoplasmic and endosomal sensors for

viral RNA (TLR7/8, DDX58, IFIH1) were enriched in the monocyte/

macrophage subsets, possible indicating delayed responses or roles

in later HIV detection following viral replication. Cytokine/

chemokine expression patterns further pointed for CD14+ DCs to

play a role in antibacterial defense and inflammatory responses,

while cDC2s were involved in maintenance of tissue homeostasis,

regulation of inflammation, and promotion of a Th2/T regulatory

environment. Overall, this suggests that the CD14+ DC population

is pre-armed to generate rapid innate responses against incoming

pathogens. Interestingly, between the subsets, no differences were

observed in antigen processing and presentation, and T cell

proliferation pathways, indicating that these populations share

their antigen presenting cell properties under homeostatic

conditions, consistent with our prior observations (30, 31).

Our validation of this myeloid subset classification using flow

cytometry further allowed phenotypical comparisons between the

CD14+ DC, CD14+CD1c+ DCs and CD1c+ cDC2 populations and

the establishment of markers to discriminate the activated

monocyte/macrophage populations (CD16, CLEC12A).

Consistent with studies evaluating blood cells (35, 36, 59), we

found that the CD14+CD1c+ subset displayed an intermediate

phenotype between the monocyte-derived CD14+ DCs and the

classical myeloid DCs (CD1c+ cDC2s), with high expression of

HLA-DR but also monocyte origin-associated markers (CD64,

CD11b, CX3CR1). This suggests that CD14+CD1c+ DCs in the

genital mucosa are a homolog of DC3s described in peripheral

blood and tumors (35, 36, 59), but in the genital tract they are

present under steady-state conditions. In addition, the DC3 subset

showed increased expression of classical and non-classical HIV

coreceptors (CCR5, CD49d, CX3CR1) relevant for mucosal HIV

pathogenesis (95, 96, 124), suggesting enhanced ability for viral

uptake by CD14+CD1c+ DC population as described previously by

us and others (20, 25). These phenotypic differences in expression of

activation, origin, antigen uptake and HIV tropic markers highlight

the importance of understanding genital DC subsets to develop

targeted strategies.

A novel aspect of our study is the identification of early

transcriptional signatures in genital DCs immediately following

HIV exposure. While DC infection and trans-infection to T cells

have been evaluated previously by others in blood (125, 126) and

mucosal tissues (15, 18, 20), the early antiviral responses induced

immediately following mucosal HIV exposure remained

uncharacterized. In this study, we uncovered that, at early time

points, before viral replication takes place, HIV exposure induces a

rapid secretory response at the transcriptional and protein levels,

activation of host restriction factors (IRF1, IFITM2, ACOD1),

upregulation of genes involved tissue retention (CD69), and

suppression of genes involved in T cell activation (CD83, CD86,

CD58). Taken together, our data suggests that shortly after
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exposure, DCs remain in the mucosa and play a role in initiating

local innate antiviral protection. However, several inflammatory

markers were also upregulated and therefore the consequences for

tissue protection and potential attraction and activation of HIV

target cells remains to be determined.

Another novel contribution of our study is the discrimination of

responses following HIV stimulation in different subsets of genital

DCs. We found that all subsets shared activation of genes related to

secretion of cytokines and chemokines, although CD14+ DCs and

cDC2s were the predominant subsets involved in this response.

Here, we observed shared upregulation of genes associated with

inflammation and antiviral properties (IRF1, IFITM2, ACOD1,

CISH, IL1A, IL1B) between cDC2s and CD14+ DCs upon

exposure to HIV. These findings are consistent with earlier

studies using monocyte-derived DCs and macrophages which

demonstrated the upregulation of IRF1 transcripts and protein, in

addition to other ISGs (22, 127). In addition, we uncovered unique

pathways elicited by HIV stimulation in each subset. CD14+ DCs

were the main players in overall antimicrobial defense, responses to

TLR activation and initiation of inflammation (TIFA, FOSL1,

EMP1), while cDC2s displayed a more specific antiviral response

with activation of type I interferon (IFIT2, IFIT3, IRF1) and

inflammasome (NLRP3) pathways. Importantly, both subsets

activated mechanisms to prevent HIV replication. CD14+ DCs

induced transcriptional activation of p21, a host restriction factor

in monocyte-derived DCs (123), while cDC2s downregulated genes

necessary for HIV transcription (EIF4A1, EIF4A2, POLR2F,

POLR2G). In contrast to the DC subsets, infMons were not

involved in initial antiviral protection, but downregulated

pathways related to viral cycle, suggesting inhibition of HIV

replication. However, future time-course studies are needed to

better understand the kinetics and mechanisms by which HIV

modifies DC function in a subset-specific manner to promote

infection, trans-infection and HIV dissemination. Additionally,

our study only used HIV-BaL, a laboratory adapted strain, but

our findings were not confirmed with HIV transmitted/founder

(TF) strains. Although prior studies with DCs and macrophages

found no differences between HIV-BaL and TF strains (20, 24, 128),

future studies are needed to define DC subset-specific responses to

TF strains immediately following exposure to HIV.

Finally, we validated the transcriptional signatures by

characterizing the anti-HIV secretory response at the protein level

in supernatants from CD14 DCs purified from the genital tract.

Despite our observation of upregulation of IL1B at the

transcriptional levels, we did not detect IL1-b production in our

cultures. However, we detected production of IFN-g, GM-CSF and

chemokines with inflammatory and antiviral properties (CXCL10,

CCL22). These results complement our prior identification of early

secretion of CCR5-ligands and antimicrobial proteins by CD14+

DCs in response to HIV (25). Production of GM-CSF, IFN-g, and
CXCL10 has been shown to be induced by TLR stimulation in DCs

(129, 130), suggesting that TLR signaling in CD14+ DCs may be

responsible for induction of cytokine and chemokine secretion.
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Interestingly, while IFNg and CXCL10 are involved in mediating

Th1 and CD8+ T cell adaptive immunity (131, 132), we also

detected production of the Th2 cytokines IL5 and IL13, involved

in allergic inflammation and activation of Th2 CD4+ T cells (135).

While we have previously described that under homeostatic

conditions CD14+ DCs induce proliferation of CD8+ T cells with

tissue-resident memory phenotype (30), and proliferation of CD4+

T cells and double negative (DN) T cells (31), future studies are

needed to determine how these cytokine profiles modify tissue

environment, susceptibility to HIV infection, and modify T cell

induction profile.

Our study has several limitations mainly due to the rare nature

of mucosal DCs and the technical difficulties in isolating human DC

subsets. First, due to the very low frequency of cDC2s within the

genital mucosa, we were unable to isolate cDC2s from mixed cell

suspensions to determine their secretory response to HIV at the

protein level. Similarly, lack of distinct surface markers and low cell

numbers in the genital tract prevented isolating DC3s

(CD14+CD1c+) and resulted in clustering and isolation of this

subset together with the CD14+ DCs. Therefore, quantifying

cDC2 and DC3s individual response to HIV at the protein level

will require innovative strategies. Furthermore, our analysis of

subset-specific responses was unable to evaluate non-classical

monocytes due to low numbers of cells in the HIV stimulated

condition, and therefore the contribution of this subset to HIV

pathogenesis remains to be elucidated. Despite these limitations,

our study provides valuable novel information using an

experimental model to evaluate initial mucosal responses to HIV

exposure that allows the study of DC subsets without lengthy

processing time that could potentially modify primary DCs.

Overall, we demonstrate that the female genital mucosa is

populated with different subsets of DCs that specialize under

homeostatic conditions and that, immediately following HIV

exposure, initiate a local secretory antiviral response and

activate host mechanisms to prevent HIV replication in a

subset-specific manner. Our findings contribute to the field of

mucosal HIV acquisition and provide a map to identify

therapeutic targets that trigger local protective innate immune

responses against HIV without inducing detr imental

tissue inflammation.
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