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Type I NKT cells, also known as Invariant Natural Killer T (iNKT) cells, are a

subpopulation of unconventional, innate-like T (ILT) cells which can proficiently

influence downstream immune effector functions. Type I NKT cells express a

semi-invariant ab T cell receptor (TCR) that recognises lipid-based ligands

specifically presented by the non-classical cluster of differentiation (CD1)

protein d (CD1d) molecule. Due to their potent immunomodulatory functional

capacity, type I NKT cells are being increasingly considered in prophylactic and

therapeutic approaches towards various diseases, including as vaccine-

adjuvants. As viruses do not encode lipid synthesis, it is surprising that many

studies have shown that some viruses can directly impede type I NKT activation

through downregulating CD1d expression. Therefore, in order to harness type I

NKT cells for potential anti-viral therapeutic uses, it is critical that we fully

appreciate how the CD1d-iNKT cell axis interacts with viral immunity. In this

review, we examine clinical findings that underpin the importance of type I NKT

cell function in viral infections. This review also explores how certain viruses

employ immunoevasive mechanisms and directly encode functions to target

CD1d expression and type I NKT cell function. Overall, we suggest that the CD1d-

iNKT cell axis may hold greater gravity within viral infections than what was

previously appreciated.
KEYWORDS

type I NKT cell, viral infections, CD1d-iNKT cell axis, unconventional innate-like T cell,
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1 Introduction

The innate immune system mounts a rapid and widespread response to an array of

diverse pathogens or danger signals, but is not considered as efficient at forming a memory

response for subsequent pathogen exposure. In contrast, the adaptive immune system

recognises specific antigenic signatures, albeit with a slower response, but is pivotal for
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long-term pathogen control. Conventional T cells are mostly

thought of as part of the adaptive immune system and mount

highly specific, but slow responses. Natural killer T (NKT) cells are a

population of unconventional, innate-like T (ILT) cells that can

rapidly respond in an innate-like manner, but also in an adaptive-

like manner to further enact more antigen-specific responses. Thus,

NKT cells are thought to influence and bridge both arms of the

immune system.

Unlike conventional ab T cells that recognise peptide antigens

bound by major histocompatibility complex (MHC) molecules, the

NKT cell T cell receptor (TCR) exclusively recognises foreign and

self-lipid-based antigens presented by the non-classical cluster of

differentiation (CD1) protein d (CD1d) molecule. NKT cells are

composed of two subpopulations: type I NKT cells, also commonly

known as ‘invariant’ NKT (iNKT) cells, which are the best

characterised and predominantly explored for their immune-

therapeutic potential; and type II NKT cells, which remain less

studied and more poorly understood (1). The type I NKT TCR is a

semi-invariant ab TCR comprised of an invariant TCRa chain,

Va24Ja18, which predominantly pairs with Vb11 TCRs in humans

(2, 3). In mice, this TCR comprises of a Va14Ja18 chain which

typically pairs with Vb2, Vb7, or Vb8 chains (4–6). In addition to

murine models, swine have also been greatly valued as models for

type I NKT cell research as they share a similar type I NKT cell

frequency and tissue distribution to that found in humans (7). The

TCR of pig type I NKT cells is characterised by a wide range of Va,
Ja, Vb and Jb segments, with a large majority of these

corresponding to gene sequences recognised in humans (8).

All type I NKT cells share reactivity towards a common lipid

antigen termed a-galactosylceramide (a-GalCer), a well-

characterised agonist of type I NKT cell responses (9–11). This

has enabled the development of CD1d-loaded a-GalCer tetramers,

which have facilitated the specific identification of type I NKT cells

and type I NKT cell effector function (6, 12, 13). In contrast, type II

NKT cells do not express the semi-invariant type I NKT TCR a
chain and do not respond to a-GalCer. Instead, type II NKT cells

exhibit a greater TCR sequence diversity (14–16) and recognise

other lipids and small sulfa-drug-like molecules, such as benzofuran

sulfonates, bound by the CD1d molecule (16, 17). Due to a lack of

reagents available to universally identify them, much less is known

about type II NKT cell immune effector functions and their

therapeutic potential remains understudied (15).

Type I NKT cells can be activated upon TCR engagement with a

lipid-loaded CD1d molecule, or upon TCR-independent

stimulation in response to innate cytokines such as interleukin

(IL)-12 and IL-18 (18, 19). Upon activation, type I NKT cells are

able to rapidly secrete a plethora of potent cytokines such as

interferon (IFN)-g, tumour necrosis factor (TNF) and IL-4 (20–

24). Type I NKT cells can either directly target infected/cancer cells

through cytotoxic activity or indirectly control the effector functions

of other immune cells, including but not limited to helping B cells

form highly specific antibodies (25–29). Due to their capacity to

enhance downstream immune functions, type I NKT cells have

been increasingly implicated in a variety of viral infections, with

their anti-viral potential being a focal point of this review. Current

research also harnesses type I NKT cells in multiple clinical settings
Frontiers in Immunology 02
including anti-cancer treatments, vaccine adjuvants, and cell-based

therapies (30, 31).

Although viruses do not typically encode lipid antigens

themselves, they are able to modulate the self-lipids expressed

from host cells, which can be differentially recognised by certain

NKT cell subsets and can affect the cytokine environment upon

infection, thus influencing NKT cell responses (type I and type II)

(32–34). In agreement, lipodomics studies have shown that viral

infections trigger endoplasmic reticulum (ER) stress (35) which can

in turn lead to the accumulation of certain CD1d-bound self-lipids

(36) that are recognised by the type I NKT TCR (37). This suggests a

role for type I NKT cells in viral surveillance through sensing

cellular stress (35, 36). Thus, it could be possible that viruses may

indirectly modulate CD1d antigen expression of these lipids and

inhibit type I NKT cell function to circumvent their anti-viral

capacity (38, 39). Considering the profound importance that type

I NKT cells may play in viral infections, it is imperative to study the

mechanisms through which viruses can either elicit or avoid

immune responses through type I NKT cell interaction.
2 Type I NKT cells in viral infections

2.1 Deficiencies in CD1d molecule
expression and Type I NKT cells predispose
individuals to exacerbated viral infections

Severe viral infections are more commonly experienced in

individuals with weakened and compromised immune capacities

(40). Exacerbated symptoms following viral infection have been

particularly observed in individuals with decreased CD1d molecule

expression or type I NKT cell deficiencies (41–44), underscoring the

importance of the CD1d-iNKT cell axis in controlling

viral infections.

Varicella zoster virus (VZV) is a highly common alphaherpesvirus

with an approximate 90% worldwide seroprevalence (45). In

individuals who are latently infected with VZV, periods of

diminished VZV-specific immunity results in VZV reactivation

(46). VZV reactivation commonly manifests as a painful, unilateral

rash (known as herpes zoster/shingles), which typically only occurs

once or twice in an immunocompetent individuals’ lifetime (47).

Interestingly, individuals who have experienced multiple VZV

reactivations exhibited a stark decrease in peripheral type I NKT cell

numbers, with residual type I NKT cells skewed to an inhibitory

phenotype by higher expression of the inhibitory receptor CD158a

(43). IL-2 enhances the functional activity of NK cells and

subsequently upregulates CD158a in an attempt to then regulate

any cytotoxic repercussions of this activation (48). Interestingly, IL-

2 has been readily detectable in varicella patients (49). Thus, the

increased inhibitory profile of residual type I NKT cells in zoster

patients may be IL-2-dependent and a possible consequence of

repeated activation/stimulation. Aimed to increase VZV-specific

immunity, primary varicella vaccines, such as Varivax, and booster

doses are generally well-tolerated prophylaxis methods (50–52). It is

mainly immunodeficient individuals that experience symptoms which

are adverse and potentially life-threatening post-vaccination (53, 54).
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Following vaccination with an attenuated Oka-strain varicella vaccine,

two children experienced severe respiratory distress and painful

papulovesicular rashes (41, 42). Upon lymphocyte analysis, it was

revealed that both patients exhibited a genetic deficiency and

dysfunction of type I NKT cell populations, with one patient also

deficient in CD1d expression. These clinical findings are consistent

with the proposal that the CD1d-iNKT cell axis commands a critical

role in VZV resolution.

Mutations in the SH2D1A gene causes defective functioning of

the signalling lymphocyte activation molecules (SLAM) -Associated

Protein (SAP). SAP is necessary for T and NK cell function and has

further been implicated in type I NKT cell development and

function (55). Patients with X-linked lymphoproliferative (XLP) 1

disease who have a mutated SH2D1A gene, exhibited a stark

absence of type I NKT cells, with no apparent paucity of other

lymphocyte populations (55). A child with XLP1 had presented

with Epstein-Barr virus (EBV) infection, which then rapidly

developed into EBV encephalitis (44). This clinical finding

suggests a correlation between the absence and dysfunction of

type I NKT cells, and an exacerbated EBV infection.

Recent data has shown that NKT cells also hold great

significance in viral control in the context of human

transplantation, and thus transplantation success (56). Allografts

with a higher abundance of type I NKT cells resulted in a decreased

human cytomegalovirus (HCMV) reactivation rate post-allogeneic

hematopoietic cell transplantation (HCT), with the association to

CD1d expression in these allografts still unknown (56).

Accordingly, the secretion of IFN-g, perforin, and granzyme B

from activated iNKT cells had lead to liver damage (57), but had

also facilitated cytotoxic T cell activation and thus hepatitis B virus

(HBV) inhibition (58). On the other hand, a rat model of hepatitis C

virus (HCV) -related virus infection showed that type I NKT cells,

which are biased to type 2 immunity, can limit liver injury while

preventing infection (59). The role of type I NKT cells in HCV-

related virus infection is further explored in Section 2.2 Type I NKT

cell activation and function in viral infection. A murine study using

NKT knockout mice showed that NKT cell populations and more

specifically their IFN-g production, are necessary for long-term

cardiac allograft acceptance (60). In mice who were previously

deficient in NKT cells, the adoptive transfer of NKT cells post-

transplantation had ameliorated allograft rejection and prolonged

cardiac allograft survival (60). Therefore, understanding what

factors drive and control the different type I NKT cell subsets

could inform how to safely mitigate viral infection severity in a

transplant setting, and promote transplantation success.

The importance of CD1d expression and type I NKT cell

activity within viral infections has also been supported by studies

using murine models. In murine CMV (MCMV) infected mice

which were either CD1d or Ja18 deficient, there was a significant

suppression of myeloid progenitor cell numbers and proliferative

ability (61). Remarkably, the adoptive transfer of type I NKT cells to

Ja18 deficient mice, which were then intraperitoneally infected with

MCMV, had rescued their myelosuppression profile and improved

myeloid progenitor cell cycling status (61). This study suggests that

the absence of CD1d molecule expression and type I NKT cell
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induced suppression.

Type I NKT cells have also demonstrated involvement in herpes

simplex virus (HSV) type-1 (HSV-1) infection of mice. Following

cutaneous inoculation of HSV-1, CD1d knockout mice exhibited an

accelerated development of HSV-1 zosteriform skin lesions and a

delayed clearance of virus when compared to wild-type mice (62).

Ja281 knockout mice, lacking the type I NKT Va14-Ja281 TCR,

also revealed considerably higher viral loads with a diminished

capacity to clear virus (62). However, a subsequent study revealed

that the Ja281 knockout mice express lower TCR diversity, which

can impact the viral-specific T cell repertoire and potentially other

unconventional T cells too, such as Mucosal-Associated Invariant T

(MAIT) cells (63). Nonetheless, in an alternate murine study, CD1d

knockout mice infected with ocular HSV-1 infections displayed

exacerbated eye inflammation with a delayed disease clearance (64).

As the absence of CD1d molecule expression impedes type I NKT

cell development in the thymus of mice (65) and pigs (66), these

studies collectively suggest that a lack of CD1d molecule and NKT

cell functionality enhances severe viral dissemination. The range of

NKT cell functional responses against HSV infection is further

explored later in this review.

Overall, many clinical findings and murine studies have

established that a deficiency in CD1d molecule expression and

type I NKT cell frequencies can leave hosts vulnerable to severe viral

dissemination and reactivation. It is thus evident that the CD1d-

iNKT cell axis instructs a profound immune response which may be

necessary in defending the host from an aggravated viral infection.
2.2 Type I NKT cell activation and function
in viral infections

The aforementioned studies suggest the involvement and

importance of type I NKT cells in anti-viral immune responses.

Conversely, multiple studies also report that viral infections

modulate the activation and function of type I NKT cells.

2.2.1 Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)

SARS-CoV-2 is the virus responsible for COVID-19. A marked

depletion of type I NKT cells was observed in the peripheral blood

samples of SARS-CoV-2 infected patients, a finding which was

found to be independent of CD1d downregulation during infection.

This depletion of type I NKT cells was likely a result of SARS-CoV-2

spike protein binding to the type I NKT cell TCR, and causing

cellular activation, exhaustion, and apoptosis since existing type I

NKT cells expressed higher levels of the exhaustive marker Tim-3

(67). Further studies between convalescent and uninfected patient

cohorts revealed that SARS-CoV-2 infected individuals specifically

showed a striking reduction in type I NKT cell frequency (68).

There was no reduction in conventional T cell frequencies which

suggests that type I NKT cells may be more vulnerable to depletion

in SARS-CoV-2 infection. In mouse models, the SARS-CoV-2

envelope (E) protein was also found to suppress activation and
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effector function of type I NKT cells (39). However, when mice were

treated with a-GalCer prior to SARS-CoV-2 intranasal infection,

they exhibited a decreased viral titre and improved survival rates.

Thus, although SARS-CoV-2 can substantially impede type I NKT

cell functionality, these findings propose that activated type I NKT

cells hold an immunoprotective role against SARS-CoV-2.

Interestingly, type I NKT cells expressed a greater activation

profile in severe COVID-19 patients (69). A higher CD69

expression level was positively correlated with plasma levels of IL-

18, which has been established as a potent activator of type I NKT

cells (69, 70). Albeit type I NKT cells from SARS-CoV-2-infected

patients did produce less IFN-g than those from healthy control

donors, suggesting that despite a persistent activation profile, type I

NKT cells expressed a mitigated functional profile. The substantial

activation of type I NKT cells throughout SARS-CoV-2 disease

progression is likely to be cytokine-dependent, as well as correlated

to spike protein binding, and suggests an intricate balance between

activation and functional loss of type I NKT cells in SARS-CoV-

2 infection.

2.2.2 Herpes Simplex Virus type -1 (HSV-1)
Epidermal keratinocytes express substantial levels of CD1d and

are a primary site of infection by the herpesvirus HSV-1. The co-

culture of human type I NKT cells with HSV-1 infected human

keratinocytes showed that HSV-1 was able to extensively shut down

both the cytokine- and TCR-dependent activation of human type I

NKT cells, resulting in an impaired cytokine output (38). However,

HSV-1 infected keratinocytes do not exhibit CD1d downregulation

which suggests that this weakened functional phenotype of type I

NKT cells following contact with HSV-1 infected keratinocytes is

independent of CD1d downregulation (38). In contrast to SARS-

CoV-2 infection, type I NKT cell function is not rescued by a-
GalCer treatment after co-culture with HSV-1 infected

keratinocytes (38). Recent studies reveal that in HSV-1 infected

human keratinocytes, the IL-15/IL-15 receptor-a (IL-15R-a)
complex is rapidly upregulated and then subsequently

downregulated with prolonged infection (71). Remarkably, the

profound downregulation of the IL-15/IL-15R-a complex by

HSV-1 infection was counteracted by IFN-g production from type

I NKT cells. The co-culture of type I NKT cells with HSV-1 infected

keratinocytes also resulted in fewer keratinocytes expressing the

HSV-1 envelope glycoprotein D (gD) (71). These novel reports

represent a new perspective of how type I NKT cells may be able to

counteract the modulatory mechanisms of viruses and exert anti-

viral activity.

2.2.3 Hepatitis C virus (HCV)
The infection of liver tissue with HCV often results in

detrimental inflammation and with no viral clearance, will

eventually lead to chronic HCV (72). A patient cohort study

indicated that the progression of acute HCV infection to chronic

HCV infection is strongly correlated with an elevated activation

profile of peripheral blood type I NKT cells as well as pro-

inflammatory Type II NKT cells (73), which could possibly be a

result of the upregulated CD1d expression present in HCV infection
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of the liver (74, 135). This suggests that the elevated

proinflammatory cytokine milieu of type I NKT cells during HCV

infection may contribute to the aggravated liver damage sustained

during the progressing stages of HCV infection. However, recent

studies have utilised a HCV-related hepacivirus murine model with

CD1d knockout mice to explore how the type I NKT cell cytokine

response could simultaneously mediate liver pathology and

influence hepacivirus-specific CD8+ T cells (59). Here, it was

deduced that a paucity of liver type I NKT cells led to heightened

tissue damage during hepacivirus infection despite previous

findings indicating that type I NKT cell function could be

associated with liver pathology. These type I NKT cell deficient

mice also experienced an exacerbated CD8+ T cell response,

suggesting that type I NKT cells do offer an immunoprotective

role during hepatic viral infection. Furthermore, the production of

type 2 cytokines IL-4 and IL-13 from activated type I NKT cell

subsets indicated a skewing towards an NKT2 profile (59). These

results suggest that type I NKT cells could more specifically serve a

regulatory role in viral infections such that the effector functions of

hepacivirus-specific T cells, and potentially HCV-specific T cells

too, are controlled to limit liver damage.
2.2.4 Influenza A virus (IAV)
IAV is a common respiratory virus that can efficiently infect swine,

birds, and humans. From an evolutionary standpoint, the success of

IAV within global populations is a result of the virus’ ability to

constantly and rapidly produce antigenically distinct viral strains

(75). The morbidity and mortality associated with IAV is also related

to a substantial viral titre and a destabilising overproduction of

cytokines (76). To determine whether type I NKT cells could reduce

IAV load and regulate the cytokine production in IAV infection, mice

were intraperitoneally administered with a-GalCer concurrent to

intranasal IAV inoculation (77). In treated mice, viral titre was

significantly lower and body weight also remained more consistent

over the course of infection compared to untreated mice. This

improved disease outcome was likely a result of the activation and

subsequent migration of type I NKT cells from the liver to the lungs, as

there was a drop in liver type I NKT cell frequency but a significant

increase in blood and lung type I NKT cell frequencies (77). The

contribution of activated type I NKT cells to anti-viral immunity is

similarly conveyed through IAV-infected CD1d knockout and type I

NKT cell deficient mice experiencing an increased IAV titre compared

to wild-type mice (78). This is suggested to be correlated to increased

myeloid-directed suppressor cell (MDSC) activity, which are a cell-type

capable of suppressing T cell functionality and thus cell-mediated anti-

IAV immunity. Upon adoptive transfer of type I NKT cells into

previously type I NKT cell deficient mice, the suppressive capacity of

MDSCs was no longer observed as mice experienced a reduced viral

titre, thus indicating the importance of type I NKT cells in controlling

MDSC responses in viral environments (78). Type I NKT cells

prepared from IAV-infected mice also expressed a higher level of

IFN-g and IL-22 transcripts. This functional output is subsequent to

IAV-infected dendritic cells (DCs) activating type I NKT cells via toll-

like receptor (TLR)-7/MYD88 signalling and type I NKT cell

recognition of secreted IL-1b and IL-23 from IAV-infected DCs (79).
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The release of IL-22, a critical Th17-related cytokine, from type I NKT

cells had protected lung epithelial cells from IAV-mediated cell death

whereas the depletion of IL-22 in mice had exacerbated the pathology

of airway epithelium (79). In swine models, IAV infection had resulted

in an increased frequency and activation of type I NKT cells within

blood, lung lymph nodes, and broncho-alveolar lavage (80). It is likely

that type I NKT cells may be instrumental in IAV infection of swine as

these tissues are all notable in IAV pathology, however further research

into the precise role of swine type I NKT cells in anti-IAV immunity is

still necessary. These studies thus suggest that type I NKT cells are

functionally dynamic in their ability to serve both an anti-viral and

protective role against IAV infection.
3 Viral immunomodulation of the
CD1d antigen presentation pathway

Due to the efficient viral clearance enacted by conventional

CD4+ and CD8+ T cells, it is unsurprising that a myriad of viruses

targets the classical antigen presentation pathways of both MHC

class -I and -II molecules (81–84). Extensive research has shown

that numerous viral infections also impact CD1d antigen

presentation and thus type I NKT cell effector function, despite

viruses not typically encoding lipid ligands (Figure 1).

SARS-CoV-2 is known to be highly successful at immune

evasion and suppression. Observed in a human kidney epithelial

cell-line, the SARS-CoV-2 envelope (E) protein was found to be

responsible for the specific downregulation of mature CD1d
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activity rescued the presence of mature CD1d, it was deduced

that the downregulation of CD1d by SARS-CoV-2 is mediated by

proteasomal and lysosomal-mediated degradation. However, as

aforementioned, previous studies of human peripheral blood from

SARS-CoV-2 infected patients showed no CD1d downregulation,

thus prompting further research into SARS-CoV-2-mediated

modulation of CD1d across different cell-types.

Human immunodeficiency virus (HIV) is an intensively

researched virus which mainly infects CD4+ T cells, leading to the

destruction of cell-mediated immunity and thus impairing the

body’s overall immune response. In addition to the finding that

CD4+ type I NKT cells are also permissive to HIV-1 infection (85),

it has also been shown that HIV-1 infection can interfere with

CD1d expression and thus, CD1d-dependent activation of type I

NKT cells (86, 87). Jurkat cells, which are an immortalised human T

cell-line, were infected with GFP-HIV-1, resulting in CD1d being

internalised and recycled back to the trans-golgi network (TGN)

(86). Interestingly, in GFP-HIV-1 Nef deficient infections, there was

minimal CD1d downregulation thus indicating that the

immunomodulation of CD1d expression in HIV-1 infection is

Nef-dependent. Upon replacing the tyrosine residues in the CD1d

molecule cytoplasmic tail with alanine, CD1d expression was not

impaired which proposes that the tyrosine-based residues of CD1d

are the target of Nef-dependent CD1d internalisation. In HIV-1-

infected DCs, the interaction of viral protein U (Vpu) with CD1d

resulted in CD1d recycling and retention within the early

endosome, thus inhibiting cell-surface presentation (87). Further
FIGURE 1

Viral interference of the CD1d molecule biosynthesis and recycling pathway. VZV and EBV impede CD1d transcription while HCMV induces CD1d
molecular degradation in the enoplasmic reticulum (ER). HIV-1 and HSV-1 both suppress CD1d cell-surface recycling with HIV-1 also being shown
to recycle CD1d back to the trans-golgi network (TGN). SARS-CoV-2 induces both proteasomal and lysosomal degradation of CD1d. KSHV induces
CD1d endocytosis and internalisation.
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investigation revealed that Vpu does not alter the rate of CD1d

internalisation, but rather prevents the ability of CD1d to be

subsequently recycled back to the cell-surface. Patients with HIV-

1 are reported to display a reduced abundance of CD4+ type I NKT

cells (88, 89), which prompts that both the Nef- and Vpu-mediated

retention of CD1d could be partially involved in lowered type I

NKT cell activation.

The Herpesviruses family is highly ubiquitous and successful, a

favourable outcome which is largely underscored by the ability of

these viruses to manipulate and evade the host immune response to

establish a life-long latent infection (90). Multiple herpesviruses

target CD1d expression including HCMV, Kaposi-sarcoma

associated herpesvirus (KSHV), EBV, VZV, and HSV-1. In

contrast to SARS-CoV-2, the immature form of CD1d is more

vulnerable to viral US2-mediated, ubiquitin-dependent

proteasomal degradation in HCMV infection (91). The

ubiquitination of the CD1d cytoplasmic tail by KSHV induces

endocytosis and thus downregulation of cell-surface CD1d (92).

Surprisingly, the modulator of immune recognition (MIR) -induced

downregulation of CD1d in KSHV infection does not seem to

heavily enhance lysosomal degradation, a mechanism that is

commonly triggered upon ubiquitin-dependent internalisation

(93). This suggests that although CD1d expression is hampered,

KSHV has less involvement in its molecular degradation, which

seems to be distinct to other viruses studied. During productive

infection of human B cells with EBV, a gammaherpesvirus closely

related to KSHV, the degradation of CD1d at a transcriptional level

by the EBV shutoff protein BFL5 had been reported (94). Recently,

VZV has also been shown to downregulate CD1d, which was

evident at both a transcript and protein level (95). This

downregulated phenotype was observed in both viral antigen-

positive cells and VZV-exposed cells that remained viral antigen-

negative, a phenomenon unique to VZV infection. This finding is of

particular importance given that ‘bystander’ cells are also targeted

by VZV in order to inhibit CD1d expression, implying that viral-

mediated modulation is not restricted to VZV-infected cells only.

The viral HSV-1 proteins glycoprotein B (gB) and serine-

threonine kinase (US3) have also been shown to inhibit the

recycling capacity of CD1d in immortalised HeLa cells, thus

suppressing type I NKT cell activation (96, 97). As previously

discussed, HSV-1 infection of human keratinocytes does not

downregulate cell-surface CD1d expression (38). Intriguingly, in

human DCs infected with low titres of HSV-1, CD1d expression

was upregulated (98). Downregulation of CD1d on HSV-1 infected

DCs was only identified in cells with high viral titre (98). These

results suggest that the viral-mediated modulation of CD1d is not

only cell-type/virus dependent, but also reliant on viral titre.

The downregulation of CD1d by viruses has also been shown by

human papilloma virus (HPV) (99), vaccinia virus (100, 101) and

vesicular stomatitis virus (100). In contrast, HCV infection caused

an upregulation of CD1d expression in chronically infected HCV-

infected human liver tissue (74). This finding further suggests that

other NKT cell types which hold a stronger CD1d- “self-reactive”

profile, such as type II NKT cells, may play a role in anti-viral

responses or in influencing type I NKT responses. Overall, it is

highlighted that multiple viruses directly encode functions to target
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CD1d expression at various points in the biosynthesis and recycling

pathway, which may contribute to the evolutionary success of

certain viruses.
4 The interplay between lipid
metabolism and viral infections

With such stark modulation of CD1d molecule expression and

type I NKT cell function by viruses, the intricate relationship between

the CD1d-iNKT cell axis and viral infections is evident. However,

there remains postulation as to why viruses may target this

unconventional immune cell axis despite its inability to recognise

viral proteins. Interestingly, it has been recently reviewed that many

viruses manipulate the lipid microenvironment of host cells to

enhance the viral lifecycle, and that host lipid mediators may also

play a role in the innate immune response to viral infections (102).

Through manipulation of host lipid synthesis, it is possible that some

viruses may indirectly modulate the presentation of endogenous lipid

antigens on CD1d in infected cells, though this remains an

understudied area that requires further research.

Hepatic steatosis is a common hallmark of pathology in chronic

HCV infection and is characterised by the excess build-up of fat in

liver cells. For HCV to efficiently replicate and spread, the HCV

Core protein, the tail-interacting protein 47 (TIP47), and the non-

structural viral protein 5A (NS5A) all cooperate to transfer viral

RNA to lipid droplets (LDs) (103). These LDs act as sites for the

construction and assembly of de novo virions, in which the Core-

dependent recruitment of nonstructural (NS) proteins and

replication complexes facilitates HCV production (104). Recent

studies have established that although HCV infection does induce

LD accumulation in a human hepatic cell line, the increased LD

accumulation is not associated with greater levels of HCV Core

protein activity (105). Therefore, the accumulation of intracellular

LDs in HCV infection is not a direct result of HCV replication,

which necessitates further investigation into the mechanisms

behind the modulation of lipids during HCV infection. The

increased presence of intracellular lipids upon HCV infection

may ultimately increase the likelihood of the TCR-dependent

activation of type I NKT cells, however, this remains

undetermined and warrants further study. Given the potential

regulatory role that type I NKT cells may play in HCV

pathogenesis (59), we present a valid rationale as to why viruses

such as HCV could target a lipid detecting effector cell or a lipid

antigen presentation molecule, such as CD1d.

On a similar note, it has been demonstrated that SARS-CoV-2-

infected primary human monocytes upregulate lipid metabolism

and display an increased accumulation of intracellular LDs, which

facilitate viral replication (106). Interestingly, the inhibition of LD

synthesis decreases viral progeny production in SARS-CoV-2-

infected monocytes and impedes SARS-CoV-2-induced cell death

(106). This correlation between SARS-CoV-2-induced lipid

accumulation and endogenous lipid ligand availability for type I

NKT cell recognition is highly relevant. As mentioned earlier, type I

NKT cells are also able to be activated via a cytokine-dependent

manner, specifically through IL-12 and IL-18 detection (70). To this
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end, SARS-CoV-2 infected monocytes exhibit an increased

production of IL-12, while the inhibition of lipid synthesis

downregulates IL-12 secretion (106). This suggests that the viral

replication enabled by lipid synthesis may contribute to the IL-12

production from SARS-CoV-2 infected monocytes. Ultimately, the

multi-faceted shut-down of the CD1d-iNKT cell axis by SARS-

CoV-2 represents an immune evasion strategy to potentially

counteract the increased lipid synthesis needed for viral spread,

and thus the potential increase of type I NKT cell surveillance.

While some viruses may manipulate LD production to increase

viral replication, it has recently been proposed that LD formation

may also hold an anti-viral role too (107). Interestingly, the

induction of LD formation following viral infection was exhibited

by IAV, HSV-1, Zika virus (ZIKV), and Dengue virus (DENV). IAV

infection of human THP-1 monocytes, and HSV-1, ZIKV, and

DENV infection of immortalised astrocytes showed that an

increased LD accumulation correlated with an enhanced IFN

response and thus, a decrease in viral replication (107). Such

findings implicate LD accumulation as a possible immune defence

mechanism implemented to restrict viral replication rather than to

solely facilitate it.

Although certain viruses exploit lipid synthesis to enable viral

replication and dissemination, the connection to type I NKT cell

activation must still be determined. Upon the detection of lipid

ligands such as fatty acids, peroxisome proliferator-activated receptor
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(PPAR)g, a lipid-activated transcription factor, is stimulated in DCs

(108). PPARg subsequentially triggers the transcription of

retinaldehyde dehydrogenase type 2 (RALDH2) through the

promotor activity of peroxisome proliferator responsive element

(PPRE). This subsequently increases the abundance of all-trans

retinoic acid (ATRA). ATRA then binds and activates the retinoic

acid receptor (RAR)a which is found within the CD1d promoter site

(109). Therefore, the binding of ATRA to RARa upregulates CD1d

transcription and thus, molecular expression (Figure 2). As

aforementioned, upregulated CD1d expression in a viral

environment was indeed reported in HCV infection of human liver

tissue (74). While increased lipid metabolism may facilitate de novo

virion synthesis, the resulting LD accumulationmay also indirectly lead

to CD1d molecule upregulation and consequently, leave infected cells

vulnerable to detection by type I NKT cells. Therefore, the

immunomodulation of the CD1d-iNKT cell pathway by certain

viruses may stand as an attempt to circumvent the anti-viral capacity

of activated type I NKT cells.
5 Type I NKT cells in anti-viral
immunotherapy and prophylaxis

The use of type I NKT cells in cancer therapeutic approaches is

underpinned by their multifaceted ability to activate and enhance
FIGURE 2

Viral modulation of host cell lipid metabolism. Multiple viruses have been identified to increase lipid droplet (LD) accumulation to facilitate
replication. Upon increased LD accumulation, LDs bind to the PPARg nuclear hormone receptor. PPARg, which is associated to RXRa, binds to and
enhances PPRE promoter activity to upregulate RALDH2 transcription. Increased retinal metabolism through RALDH2 activity leads to an increase of
ATRA. ATRA activates the RARa receptor which is bound to the putative RARE promoter sequence found within the CD1d target gene, resulting in
greater CD1d transcription. The increased lipid accumulation in consequence of viral replication may indirectly upregulate CD1d expression and
thus, the viral modulation of lipid metabolism could promote TCR-dependent type I NKT cell recognition of an infected cell. Therefore, viruses may
target CD1d expression and type I NKT cell function to evade potential recognition.
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anti-tumour immunity. Such therapeutic advances have been seen

through allogeneic human stem cell (HSC)-engineered type I NKT

cells which have been able to induce potent anti-tumour NK cell

activity (110). Moreover, type I NKT cells do not risk graft-versus-

host disease (GVHD) following allogenic cancer therapy because they

are unresponsive to mismatchedMHCmolecules between donor and

patient, thus proving valuable in anti-tumour therapy applications

(111). Such anti-tumour therapeutic advances also include generating

chimeric antigen receptor (CAR)-type I NKT cells (30), in which

these allogeneic CAR-type I NKT cells selectively target

immunosuppressive cells in tumour environments (112), and also

the ex-vivo expansion and activation of autologous iNKT cells (113).

Induced pluripotent stem cell (iPSC)-derived type I NKT cells, which

hold a similar genotype and functional profile to primary type I NKT

cells, have also shown strong anti-tumour capacity and reduce the

limitation of low type I NKT cell frequency in human peripheral

blood (114).

Given the importance that type I NKT cells may also play in

anti-viral immunity, type I NKT cells are now being harnessed for

viral immunotherapy and prophylactic applications. As explored

more specifically in this review, the anti-viral therapeutic use of

type I NKT cells is being exploited through the adoptive

administration of type I NKT cells to mediate viral pathology

(115) and through the administration of glycolipid analogues as

vaccine adjuvants (115–117).

Allogenic cell-based therapy, where a single donor’s immune

cells are modified and introduced back into multiple patients’ blood,

is emerging as a promising immunotherapy approach. AgenT-797

is an allogeneic, ex-vivo expanded type I NKT cell product (115).

Preliminary clinical use against acute respiratory distress syndrome

(ARDS) induced by SARS-CoV-2, has shown value in secondary

infection prevention and rescue of exhausted T cells (115). Moreso,

the key markers of cytokine response syndrome (CRS) were

unchanged, with the general cytokine response post-

administration favouring an anti-inflammatory profile. Such

results indicate that agenT-797 has a dual role in preventing both

virus and immune-mediated pathogenesis in SARS-CoV-2

induction of ARDS. The success of cellular therapeutic

approaches for viral infections is underpinned by their longevity

and persistence within the hosts’ immune system post-

administration. In this respect, agenT-797 remained detectable

within patient blood and bronchoalveolar lavage (BAL)

throughout hospitalisation, with patients who received

cardiopulmonary bypass sustaining a stronger retention (115).

IL-4, initially coined as B cell growth factor-1 (BSF-1), plays a

significant role in B cell activation and differentiation, and thus is

partly responsible for antibody secretion (118, 119). During early

stages of influenza infection, type I NKT cells have been found to

comprise approximately 70% of the IL-4 producing cells in patient

lymph node samples and thus are critical for infection resolution

(120). The genetic patterns of type I NKT cells and IL-4 secretion

have also corresponded with the abundance of antibodies in

macaques infected with ZIKV (120). Recently, a glycolipid agonist

adjuvanted to the SARS-CoV-2 RBD-Fc protein ‘aGC-CPOEt’ has
shown promise as an effective SARS-CoV-2 vaccine adjuvant in

murine models, with the ability to induce a greater secretion of IL-4
Frontiers in Immunology 08
from type I NKT cells when compared to a vaccine adjuvanted by

a-GalCer (116). Multiple administrations of aGC-CPOEt-

adjuvanted vaccinations resulted in increased levels of

neutralising antibodies against SARS-CoV-2 (116). This resolves a

setback presented by a-GalCer adjuvanted vaccines as multiple

exposures to a-GalCer may stun type I NKT cells into anergy and

unresponsiveness (121).

A prominent hurdle of vaccine production is the constantly

changing SARS-CoV-2 variants which hold distinct antigenic

profiles from existing vaccine strains. To address this, a novel

type I NKT cell agonist 7DW8-5 has recently shown protection

against three antigenically distinct mouse-adapted SARS-CoV-2

strains when administered pre-infection (117). 7DW8-5 is an a-
GalCer analogue, which through various biological assays was

found to be more potent than a-GalCer at activation of type I

NKT cells (122). Analysis of the cytokine profile post-

administration of 7DW8-5 showed a skewing towards IFN-g
production from type I NKT, NK, T, and gd T cells (117).

Interestingly, in IFN-g knockout mice, the anti-viral potential of

7DW8-5 was completely lost, which implies that the potent anti-

viral effect of 7DW8-5 is dependent on the induction of an IFN-g
response. In testing whether 7DW8-5 induced anergy in type I NKT

cells upon secondary administration, it was established that the

repeated administration of 7DW8-5 at both low and high doses did

not induce anergy and had maintained protective efficacy (117).

Although this agonist still requires extensive clinical testing, in vitro

testing in human type I NKT cells corroborates with the protective

adjuvant activity of 7DW8-5 seen in HIV and malaria murine

vaccines (122).

Similar to SARS-CoV-2, swine IAV inflicts a major disease

burden in pig populations due to the virus’ ability to evolve and

develop drug resistance rapidly. Zoonotic IAV strains can also be

transmitted to humans and therefore, swine IAV presents a

substantial burden for human populations too (123). The

intranasal administration of a-GalCer to H1N1 IAV-infected

piglets resulted in complete amelioration of body weight, flu

symptoms, and IAV-induced destruction of lung architecture

(124). Moreover, a-GalCer-treated piglets had significantly

reduced IAV titres compared to untreated piglets (124). This

reinforces that activated type I NKT cells could serve as an

effective, long-term therapeutic target against swine IAV

infection, especially as it may prove difficult for IAV to adapt to

the broad functionality of type I NKT cells. Within a prophylactic

context, the intramuscular and intranasal administration of a-
GalCer to pigs prior to IAV infection did not reduce subsequent

viral replication or shedding (125). However, more recent studies

have examined the efficacy of a-GalCer treatments for IAV

infection in comparison to oseltamivir (126), a widely used anti-

viral drug that blocks IAV virion release and spread (127). Here,

a-GalCer treatment was ineffective at stimulating an anti-IAV

immune response in pigs whereas oseltamivir was able to

significantly reduce lung immunopathology and viral spread,

suggesting that a-GalCer treatment for swine IAV infection

may be highly variable (126). The intranasal co-immunisation of

mice with a-GalCer and IAV hemagglutinin glytoprotein had

offered substantial protection by inducing a strong mucosal
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immune response (128). Pigs however represent a more

translational animal model than mice, so the therapeutic

potential of swine type I NKT cells may be a predictor of type I

NKT cell therapy effectiveness in humans with IAV and warrants

further investigation.

ABX196 is a variant of a-GalCer with a galactosyl 6-deoxy-6-N-

acyl modification and produces a more potent agonistic activity in

murine type I NKT cells when compared to the super agonist PBS-57

(129). Preclinical studies in ABX196-treated mice had indicated a

large production of IFN-g from type I NKT cells and NK cells, and

did not generate substantial toxicity at any doses (129). Due to the

monomorphic nature of the CD1dmolecule, ABX196 was also able to

be assessed in human subjects as a prophylactic vaccine in

combination with HBV surface antigen (HBsAg). In a large portion

of patients, an effective anti-HBV antibody response was generated,

which is especially noteworthy given the poor immunogenicity of

HBsAg. This agonist also established sufficient protective immunity

against HBV after only one administration. Activation of liver type I

NKT cells by ABX196 did induce cytotoxicity and cellular damage,

however future studies can focus on altering the systemic delivery

system to overcome this side effect. More recently, a conjugate

vaccine platform has incorporated both a-GalCer and HBV viral

antigens, such that antigen presenting cells are able to simultaneously

activate type I NKT cells and HBV-specific CD8+ T cells respectively

(130). This co-delivery vaccine design had successfully improved viral

clearance in a murine model of chronic HBV however efficacy and

safety within human populations is still being evaluated (130). In

previous human studies, the treatment of a-GalCer alone produced
significant immune activation however this was not enough to

efficiently clear HBV, suggesting that the co-delivery of a-GalCer
and virus-specific antigens may be a better alternative (131). Unlike

the polymorphic MHCmolecules, CD1d is a monomorphic molecule

and is highly conserved between species and individuals (132), thus

representing a likely candidate to explore for future therapeutic gain.

Overall, NKT cells are a functionally dynamic and highly

competent cell type that are well-documented in their ability to

infiltrate tumour microenvironments and secrete anti-tumour

cytokines. In addition, glycolipids are demonstrating significant

protection and enhanced efficacy as adjuvants for vaccines against

murine models of malaria (133) and as combination treatments

with antibiotics against tuberculosis (134). Recent data has

introduced a multitude of strategies to harness the multifaceted

function of type I NKT cells in anti-viral prophylaxis or treatment,

with each approach becoming increasingly valuable.
6 Concluding remarks

Type I NKT cells and CD1d antigen presentation molecules

represent increasingly relevant players in host responses to viral

infections. Although a direct causal relationship between the viral

manipulation of host lipid metabolism and type I NKT cell function
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has yet to be meticulously explored, this review presents a

perspective as to why viruses could view the CD1d presentation

pathway and type I NKT cells as ideal targets for exploitation. In

better understanding the intricate interaction between the CD1d-

iNKT cell pathway and viral infections, type I NKT cells could be

more prominently placed at the forefront of future viral

prophylactic and therapeutic approaches, given their ability to

quickly secrete cytokines and aid immune responses. Future

exploration into this area may also divulge a better understanding

of the unexplored role of type II NKT cells in viral infections and

thus, reveal a new appreciation for NKT cells in viral infections.
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111. Rubio MT, Bouillié M, Bouazza N, Coman T, Trebeden-Nègre H, Gomez A, et al.
Pre-transplant donor CD4– invariant NKT cell expansion capacity predicts the occurrence of
acute graft-versus-host disease. Leukemia. (2017) 31:903–12. doi: 10.1038/leu.2016.281

112. Li Y-R, Zhou Y, Yu J, Kim YJ, Li M, Lee D, et al. Generation of allogeneic CAR-
NKT cells from hematopoietic stem and progenitor cells using a clinically guided
culture method. Nat Biotechnol. (2024). doi: 10.1038/s41587-024-02226-y

113. Motohashi S, Ishikawa A, Ishikawa E, Otsuji M, Iizasa T, Hanaoka H, et al. A
phase I study of in vitro expanded natural killer T cells in patients with advanced and
recurrent non–small cell lung cancer. Clin Cancer Res. (2006) 12:6079–86. doi: 10.1158/
1078-0432.CCR-06-0114

114. Aoki T, Motohashi S, Koseki H. Regeneration of invariant natural killer T
(iNKT) cells: application of iPSC technology for iNKT cell-targeted tumor
Frontiers in Immunology 12
immunotherapy. Inflammation Regener. (2023) 43:27. doi: 10.1186/s41232-023-
00275-5

115. Hammond TC, Purbhoo MA, Kadel S, Ritz J, Nikiforow S, Daley H, et al. A
phase 1/2 clinical trial of invariant natural killer T cell therapy in moderate-severe acute
respiratory distress syndrome. Nat Commun. (2024) 15:974. doi: 10.1038/s41467-024-
44905-z

116. Li Y-Q, Yan C, Wang X-F, Xian M-Y, Zou G-Q, Gao X-F, et al. A new iNKT-
cell agonist-adjuvanted SARS-CoV-2 subunit vaccine elicits robust neutralizing
antibody responses. ASC Infect Dis. (2022) 8:2161–70. doi: 10.1021/acsinfecdis.2c00296

117. Tsuji M, Nair MS, Masuda K, Castagna C, Chong Z, Darling TL, et al. An
immunostimulatory glycolipid that blocks SARS-CoV-2, RSV, and influenza infections
in vivo. Nat Commun. (2023) 14:3959. doi: 10.1038/s41467-023-39738-1

118. Weinstein JS, Herman EI, Lainez B, Licona-Limón P, Esplugues E, Flavell R,
et al. TFH cells progressively differentiate to regulate the germinal center response. Nat
Immunol. (2016) 17:1197–205. doi: 10.1038/ni.3554

119. McGuire HM, Vogelzang A, Warren J, Loetsch C, Natividad KD, Chan TD,
et al. IL-21 and IL-4 collaborate to shape T-dependent antibody responses. J Immunol.
(2015) 195:5123–35. doi: 10.4049/jimmunol.1501463

120. Gaya M, Barral P, Burbage M, Aggarwal S, Montaner B, Warren Navia A, et al.
Initiation of antiviral B cell immunity relies on innate signals from spatially positioned
NKT cells. Cell. (2018) 172:517–533.e20. doi: 10.1016/j.cell.2017.11.036

121. Parekh VV, Wilson MT, Olivares-Villagómez D, Singh AK, Wu L, Wang CR,
et al. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin
Invest. (2005) 115:2572–83. doi: 10.1172/JCI24762

122. Li X, Fujio M, Imamura M, Wu D, Vasan S, Wong CH, et al. Design of a potent
CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci U.S.A. (2010)
107:13010–5. doi: 10.1073/pnas.1006662107

123. Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC,
et al. Influenza. Nat Rev Dis Primers. (2018) 4:3. doi: 10.1038/s41572-018-0002-y

124. Artiaga BL, Yang G, Hutchinson TE, Loeb JC, Richt JA, Lednicky JA, et al.
Rapid control of pandemic H1N1 influenza by targeting NKT-cells. Sci Rep. (2016)
6:37999. doi: 10.1038/srep37999

125. Gu W, Madrid DMD, Yang G, Artiaga BL, Loeb JC, Castleman WL, et al.
Unaltered influenza disease outcomes in swine prophylactically treated with a-
galactosylceramide. Dev Comp Immunol. (2021) 114:103843. doi: 10.1016/
j.dci.2020.103843

126. Madrid DMDC, Gu W, Artiaga BL, Yang G, Loeb J, Hawkins IK, et al.
Comparison of oseltamivir and a-galactosylceramide for reducing disease and
transmission in pigs infected with 2009 H1N1 pandemic influenza virus. Front Vet
Sci. (2022) 9. doi: 10.3389/fvets.2022.999507

127. Kamali A, Holodniy M. Influenza treatment and prophylaxis with
neuraminidase inhibitors: a review. Infect Drug Resist. (2013) 6:187–98. doi: 10.2147/
IDR.S36601

128. Ko S-Y, Ko H-J, Chang W-S, Park S-H, Kweon M-N, Kang C-Y. [amp]]alpha;-
galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune
responses against viral infection and tumor. J Immunol. (2005) 175:3309–17.
doi: 10.4049/jimmunol.175.5.3309
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