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Lung cancer accounts for the highest cancer-related mortality worldwide. While

immunotherapies targeting anti-tumor immune responses have demonstrated

efficacy in clinical practice, the demand for novel treatment modalities remains

urgent. Oncolytic viruses (OVs), which selectively kill tumor cells while

stimulating an anti-tumor immune response, represent a potential

breakthrough in lung cancer therapy. The induction of anti-tumor immunity by

OVs is central to their overall therapeutic effectiveness. Many natural receptors

on the surface of cancer cells are dysregulated, providing potential entry points

for OVs. Furthermore, the inherent dysregulation of some key signaling pathways

in lung cancer cells promotes proliferation, progression and metastasis, which

may facilitate selective viral replication. In this review, we explore the application

of OVs in lung cancer by analyzing several major OVs and their corresponding

entry receptors. Then, we also examine the key signaling pathways and

molecules with the potential to synergize with OVs in modulating the immune

tumormicroenvironment. Finally, we discuss the combination and administration

strategies that warrant further clinical trials for validation. Despite certain

limitations, the tolerability of OVs positions virotherapy as a promising avenue

in the future of lung cancer treatment.
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1 Introduction

1.1 Evolution of lung cancer treatment modalities

Lung cancer is among the most prevalent and deadly cancers globally, affecting

countless individuals and families across various regions (1). In 2022, the International

Agency for Research on Cancer (IARC) estimated 20 million new cancer cases worldwide,

with lung cancer accounting for 12.4% of cases and 1.8 million deaths, the highest among
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all malignant tumors (2). Lung cancer is broadly classified into two

types: small cell lung cancer (SCLC), representing 15% cases, and

non-small cell lung cancer (NSCLC), accounting for 85% (1, 3).

Advances in lung cancer treatment have significantly expanded

therapeutic options (Figure 1). For patients with stage I-II and select

stage III NSCLC, the standard surgical procedure is lobectomy and

mediastinal lymph node dissection, often supplemented with

adjuvant radiation therapy or chemotherapy as needed (4, 5). In

advanced NSCLC or SCLC, comprehensive treatment with targeted

therapy and immunotherapy have become essential (4). Early

intervention is associated with improved outcomes, while the five-

year survival rate for patients diagnosed at advanced stages ranges

between 4% and 30%fluctuating between 4% and 30% when they

are diagnosed in the middle to advanced stages (6, 7).
1.2 Oncolytic virus therapies: new options
in cancer treatment

Over the past century, significant advancements have been

made in lung cancer therapies. However, the biological

complexity and heterogeneity of lung cancer cells present

challenges for conventional treatments. Since the advent of

precision medicine in the 21st century, molecular profiling of

tumors and immune cells has increasingly been used to guide

therapeutic decisions (8). As a form of tumor immunotherapy,

viral therapy shows great potential in lung cancer treatment by

selectively killing cancer cells and activating antitumor immune

responses (9). The use of pathogens in cancer treatment dates back

to the late 1800s, when Dr. Coley used bacterial toxins to treat solid

tumors (10). Additionally, there are reports of leukemia patients

achieving remission after influenza virus infections (11, 12).

Renewed interest in OVs emerged during the 2021 COVID-19

pandemic, when a 61-year-old British man with advanced

Hodgkin’s lymphoma experienced tumor regression following

COVID-19 pneumonia (13). In 2015, the Food and Drug
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Administration (FDA) granted approved the first and only OV

therapy, T-VEC, a modified herpes simplex virus, for advanced

melanoma (14). Table 1 provides a summary of currently approved

OV therapies worldwide.

There are an estimated 1.5 million undiscovered viruses

globally, with around 827,000 are thought believed to be capable

of spilling into humans (19). The biological feature of virus

determines its ability to infect host cells and replicate under

permissive conditions (20). A deeper understanding of viral entry,

replication, and their interactions with host immune responses has

driven interest in using viruses to treat certain cancers (Tables 1, 2).

Although the precise mechanisms of OV therapy are not yet fully

understood, it is generally accepted that OVs exert their antitumor

effects through direct oncolysis and stimulation of systemic

antitumor immune responses (21).

In this review, we explore the application of viral therapy in

lung cancer, focusing on key oncolytic viruses (OVs) and their entry

receptors. We then highlight critical signaling pathways and

molecules that may synergize with OVs to modulate the tumor

immune microenvironment. Finally, we discuss combination

strategies, routes of administration, and address biosafety

concerns and limitations of virotherapy. In conclusion,

virotherapy holds significant promise in advancing lung

cancer treatment.
2 Oncolytic viruses in lung cancer
treatment and entry receptors

2.1 Types of OVs in use

To date, many OVs and engineered viral vectors including

adenovirus, herpesvirus, vaccinia virus, coxsackievirus, reovirus,

poliovirus, Seneca Valley virus, measles virus, and etc., have

progressed to early-phase clinical trials (Table 2). Currently, at

least 6 oncolytic viruses are being evaluated in clinical trials for lung
FIGURE 1

Historical timeline of key developments in lung cancer treatment strategies. CRT, 3D-comformal radiotherapy; LAK, lymphokine-activated killer cells;
IL-2, interleukin-2; VATS, video-assisted thoracic surgery; SBRT, stereotactic body radiation therapy; IMRT, intensity modulated radiation therapy;
VMAT, volumetric modulated arc therapy; TOMO, tomotherapy; CTLA-4, cytotoxic T lymphocyte antigen-4; CAR-T, chimeric antigen receptor T-
cell immunotherapy; LAG3, lymphocyte activation gene-3. Created by Adobe Illustrator 2024.
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cancer (Table 3). The development of OVs for lung cancer therapy

is primarily concentrated in the United States, China, and Europe,

with clinical investigations limited to phase I-II trials. No successful

phase III trials have been reported thus far.
2.2 Entry receptors in lung cancer as a
prerequisite for the oncolytic effects

Surface receptors are the first switch that mediate viral entry

and determine the viral tropism to tumors. The interaction between

viral glycoproteins and host cell receptors facilitates membrane

fusion and subsequent viral replication (44). Each virus has evolved

specific mechanisms for genome integration, often binding to

multiple receptors, while individual receptors may also be
Frontiers in Immunology 03
targeted by different viruses, enhancing viral infectivity from an

evolutionary perspective (45) (Figure 2).

Several surface proteins are overexpressed in certain lung cancer

cells, such as the coxsackie-adenovirus receptor (CAR), herpesvirus

entry mediator (HVEM), and CD46. These receptors not only

promote cancer cell invasion and metastasis but also serve as

natural targets for OV infection (46, 47). Conversely, low receptor

expression can limit the efficacy of oncolysis.

Differences in viral receptor expression provide opportunities

for OVs modification. For instance, viral capsid proteins can be

modified with peptide ligands or antibody fragments to target

specific receptors. Adenoviral capsid fibers have been modified

with an Arg-Gly-Asp (RGD) motif to bind integrins

overexpressed in tumors, significantly enhancing the targeting

efficiency of oncolytic adenovirus type 5 (48). However, limited

data exist on the preclinical and clinical characterization of these

modifications, highlighting the need for further investigation into

receptor expression and associated signaling pathways in lung

cancer cells to identify OVs with enhanced tropism.

2.2.1 Adenovirus
Adenovirus (Ad) is non-enveloped viruses, 90-100 nm in size,

with a genome contained within an icosahedral capsid (49). There

are 57 known Ad serotypes, with Ad2 and Ad5, both from subtype

C, the most widely used for OVs (50, 51). Ad is considered a

promising oncolytic virus due to its wide range of serotypes and

receptors, high titer production, genomic stability, feasibility of

genetic modification and well-characterized replication (52).

The coxsackie and adenovirus receptor (CAR) is a 46 kDa

transmembrane glycoprotein in the junction adhesion molecule
TABLE 1 Currently approved oncolytic virus products worldwide.

Name Virus
Country
(approval
Time)

Indication

Rigvir*
ECHO-

7
Latvia (2004) Stage I–II melanoma (15)

H101 AdV-5 China (2005)
Nasopharyngeal
carcinoma (16)

T-VEC HSV-1 USA (2015) Stage IIIB–IV melanoma (17)

Delytact HSV-1 Japan (2021) Glioblastoma (18)
ECHO-7, wild-type echovirus type 7; AdV-5, recombinant adenovirus type 5; HSV-1,
recombinant herpes simplex virus type 1; T-VEC, also known as Talimogene
laherparepvec; Delytact, Teserpaturev/G47△; * Rigvir has been discontinued in 2019.
TABLE 2 Examples some major oncolytic viruses in research and biological features.

Virus Genotype
Genome
length

Entry receptor
Replication
site

Associated
studies*

Ref

Herpesvirus dsDNA 150kb HVEM/nectin-1/2 Nucleus/cytoplasm T-VEC/Delytact/OH2 (22)

Adenovirus dsDNA 36kb CAR/CD46/DSG2/Integrins Nucleus/cytoplasm H101/ONYX-015 (23–25)

Vaccinia virus dsDNA 192kb Receptor-mediated endocytosis Cytoplasm GL-ONC1/JX-594 (26–28)

Parvovirus ssDNA 5kb SARs Nucleus/cytoplasm H-1PV (29, 30)

Reovirus dsRNA 123kb
Receptor-mediated endocytosis/
JAM-A

Cytoplasm Reolysin (31)

Coxsackievirus ss(+)RNA 7.4kb
CAR/ICAM-1/DAF/
KRM1/SCARB2

Cytoplasm V937 (32–34)

Seneca Valley virus ss(+)RNA 7.3kb TEM8 Cytoplasm SVV-001 (35, 36)

Poliovirus ss(+)RNA 7.5kb CD155 Cytoplasm PVS-RIPO (35, 37)

Newcastle
disease virus

ss (–)RNA 15kb SARs Cytoplasm MTH-68/H/NDV-HUJ (38)

Measles virus ss (–)RNA 16kb CD46/SLAM/nectin-4 Cytoplasm MV-NIS (39–41)

Vesicular
stomatitis virus

ss (–)RNA 11kb LDLR Cytoplasm rVSV-ZEBOV (42, 43)
dsDNA, double-stranded DNA; ssDNA, single-stranded DNA; dsRNA, double-stranded RNA; ss(+)RNA, positive-sense single-stranded RNA; ss(-)RNA, negative-sense single-stranded RNA;
HVEM, herpesvirus entry mediator; CAR, coxsackie-adenovirus receptor; DSG2, desmoglein-2; SARs, sialic acid residues; JAM-A, junctional adhesion molecule A; ICAM-1, intercellular
adhesion molecule 1 or CD54; DAF, decay-accelerating factor or CD55; KRM1, Kringle-containing transmembrane protein 1; SCARB2, scavenger receptor class B member 2; TEM8, tumor
endothelial marker 8; SLAM, signaling lymphocyte activity molecule; LDLR, low-density lipoprotein receptor. * In addition to the OVs products approved in Table 1, others are still in the
preclinical or clinical trial stage.
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(JAM) family and serves as a common mediator for both

coxsackieviruses B and most Ads (53) (Figure 2). CAR plays a

crucial role in epithelial cell adhesion and signal transduction, as

well as cancer development (44). Notably, CAR is rarely expressed

on normal lung cells but shows variable levels of expression on lung

cancer cells (54). H101, with E1b55K and partial E3 deleted, infects

cells by the binding of the viral fiber knob with CAR (55). Deletion

of E1b55K allows Ad preferentially replicate in p53-deficient cancer

cells (56) and E3 genes mainly participate in host anti-virus

immune response (Figure 3), however, the mechanism by which

H101 selectively replicates in cancer cells remains uncharacterized.

A preclinical study confirmed that the lung adenocarcinoma cell

line XWLC-05 from Xuanwei highly expresses CAR by RT-PCR

and immunocytochemistry staining, thereby the oncolytic

adenovirus H101 is able to efficiently infect XWLC-05 and lead to

oncolysis in vivo (57). However, the hypoxic environment of some

solid tumors is often associated with CAR downregulation, and the
Frontiers in Immunology 04
RAS-MEK signaling pathway has also been linked to reduced CAR

levels (58). Stecker et al. proposed that CAR expression in tumor

cells may vary by stage and correlate with tumor aggressiveness,

suggesting the need to assess CAR expression and the tumor

microenvironment before selecting a viral therapy (59).

CD46, a transmembrane protein, serve as an inhibitor of

complement activation and negatively regulates the complement

system, as well as the primary receptor for most species B Ad types

(60). While CD46 is widely expressed in normal tissues, it is often

overexpressed in lung cancer, potentially due to abnormal signal

transducers and activators of transcription 3 (STAT3) activation

and p53 mutations (61). Additionally, CD46 also protects cancer

cells from complement-mediated cell death (62). Studies have

shown that CD46 is upregulated in lung adenocarcinomas (A549,

Z793) more than in squamous lung cancers (QG56, NCI-H520), but

the latter has a relatively higher levels of CAR (46). Other

complement inhibitory proteins, such as decay-accelerating factor
TABLE 3 Current clinical trials of lung cancer-related OVs.

Virus (Submission Time)
Registration
Number

Modification Tumor type Phase Location

Adenovirus

YSCH-01(2021) NCT05180851 Recombinant L-IFN adenovirus Lung Cancer I China

MEM-288(2021) NCT05076760 Chimeric IFNb/CD40-ligand NSCLC I USA

CAdVEC(2018) NCT03740256 Unknown* Lung Cancer I USA

ADV/HSV-tk(2016) NCT03004183
Replication-defective recombinant
adenovirus vector

NSCLC II USA

Ad/MG1-MAGEA3 (2016) NCT02879760 E1/E3 deletion/hMAGE-A3 insertion NSCLC I/II Canada

Colo-Ad1(2014) NCT02053220 Chimeric Ad11/3 group B NSCLC I Spain

Herpesvirus

R130(2023) NCT05886075
NCT05961111
NCT05860374

anti-CD3 scFv/CD86/PD1/HSV2-
US11 insertion

Lung Cancer I China

T3011(2022) NCT05598268 Unknown* Lung Cancer I/II China

Vaccinia virus

BT-001(2021) NCT04725331 Chimeric 4-E03/GM-CSF NSCLC I/II Belgium/France

JX-594(Pexa-Vec) (2008) NCT00625456 GM-CSF insertion, TK disruption Lung Cancer I Canada/USA

Coxsackievirus

V937(2014) NCT02043665 None NSCLC I
USA/
Australia/UK

Reovirus

REOLYSIN®(2009) NCT00861627 None NSCLC II USA

Seneca Valley Virus

SVV-001(2006) NCT00314925 None
Carcinoid
Neuroendocrine

I USA

Unknown*

RT-01(2022) NCT05205421 Unknown*
Extensive-
Stage SCLC

I China
NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; *Data not published or not retrievable. Data were collected from National Clinical Trials (https://clinicaltrials.gov/).
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(DAF, or CD55), also play a role in protecting tumor cells from

immune surveillance (63).

Desmoglein-2 (DSG2), another major receptor for Ad, a

transmembrane glycoprotein belonging to the cadherin family

(20). DSG2 has been shown to be involved in cell-cell adhesion

and tumorigenesis, and is also overexpressed in NSCLC (64). Sun

et al. analyzed lung adenocarcinoma (LUAD) patients and

corresponding normal tissues to assess DSG2 expression.

Combining their results with the data from TCGA and

Oncomine, showed that high DSG2 expression positively

correlates with tumor size, lymph node metastasis and TNM

stage (65). A meta-analysis demonstrated that high DSG2

expression is associated with poor overall survival (OS) in NSCLC

patients (66). Another preclinical and clinical study found that

DSG2 overexpression promoted LUAD cell proliferation and

migration, potentially through the regulation of EGFR and Src

phosphorylation, activation of the PAK1 signaling pathway, and

alterations in the tumor microenvironment (TME). DSG2

overexpression was also associated with increased resistance to

the EGFR tyrosine kinase inhibitor Osimertinib. However,

subsequent studies confirmed that DSG2 expression was not

statistically associated with tumor size, differentiation, lymph

node metastasis or stages (67), which contradicts the fundings of

Sun et al.

Additionally, Ad can use integrins as entry receptor, others like

SARs, CD80 and CD86 (61), MHC-I (68), etc. The receptors

mentioned above are representative examples. Ad uses a variety
Frontiers in Immunology 05
of receptors for cell entry, lacking inherent specificity for

tumor cells.

2.2.1.1 Genetic modification strategies of adenovirus in
clinical trials

Ads utilize a range of receptors to enter cells, which gives them

high tissue tropism but limits their specificity in targeting lung

cancer cells. Ads are the most commonly used virus in tumor

treatments due to various modifications for tumor cell targeting,

making it a promising candidate for lung cancer oncolytic therapy

(51). Similar to adenoviral engineering strategies, the basic

principles of oncolytic viral modification strategies include

deletion of pathogenic genes, enhancement of viral tropism and

integration of immunostimulatory factors (69).

The pathogenicity of Ads is primarily linked to genes in the E

region, which are activated early in the replication cycle and

regulate viral replication, cell cycle control, and immune evasion

(57). Consequently, in the design of oncolytic adenoviruses, the E1

region is frequently modified or deleted to reduce adenoviral

pathogenicity and enhance safety, such as above mentioned H101

and YSCH-01. YSCH-01 is a kind of recombinant Ad modified in

the E1A region and inserted with multifunctional anti-cancer L-IFN

gene (Table 3). The L-IFN gene will induce tumor lysis and anti-

tumor immunity when Ad replicates in lung cancer cells (70). An

investigator-initiated trial about YSCH-01 reported an objective

response rate (ORR) of 27.3%, a median progression-free survival

(PFS) of 4.97 months, and a median overall survival (OS) of 8.62
FIGURE 2

Surface receptors of oncolytic virus entry into cancer cells. OVs utilize several natural receptors to infect host cells, some of which are often
overexpressed on lung cancer cells. However, more effective entry targets for OVs remain to be identified. Created using Adobe Illustrator 2024,
with data referenced from published literature.
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months. These results indicate preliminary efficacy of YSCH-01 in

advanced solid tumors, including 5 lung cancer patients (71). Viral

tropism is determined by the interaction between viral surface

proteins and host cell receptors. In type 5 adenovirus variant

VCN-01, the substitution of the heparan sulfate proteoglycan

(HSG)-binding domain with an RGD motif improves infectivity

and selectively targets integrins-expressing tumor cells (48, 72).

Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)

promotes the proliferation, differentiation, and maturation of

granulocytes (e.g., neutrophils) and macrophages, enhancing

immune resistance to infections and tumors (73). OVs carrying

the GM-CSF gene, such as JX-594 (Table 3), destroy cancer cells

through replication-dependent lysis and activation of antitumor

immune responses.

2.2.2 Herpesvirus
Herpesvirus (HSV) is large enveloped dsDNA virus, with 9

known types, including the commonly studied HSV-1 and HSV-2

from the a-Herpesviridae family (74). HSV replicates in cellular

nucleus without integrating into the host genome (75), a feature

that enhances its safety profile as an OV.

HSV-1 glycoprotein D and B mediate viral entry by binding to

specific receptors on the surface of cancer cells (76). gD serves as a

ligand protein for most a-Herpesviridae receptors, which binds to 3

primary receptors: herpes virus entry medium (HVEM), nectin-1,
Frontiers in Immunology 06
and 3-O-sulfated heparan sulfate (3-OS-HS) (77, 78). gB is a trigger

protein that is responsible for viral fusion. Reported receptors

b ind ing to gB and media te ent ry inc lud ing pa i red

immunoglobulin-like type 2 receptor-a (79), myosin-9 (80),

myelin-associated glycoprotein (81). However, the exact

mechanisms by which gB receptors mediate viral entry remain

incompletely understood and only a few studies have characterized

myosin-9 and myelin-associated glycoprotein in NSCLC (82, 83).

HVEM, belonging to the tumor necrosis factor receptor

(TNFR), is expressed predominantly on immune cells, and

functions as a primary receptor for HSV-1 and HSV-2, excluding

other a HSVs (84, 85). Notably, Ren et al. evaluated 527 NSCLC

samples and 56 NSCLC cell lines, suggest that HVEM is

overexpressed in NSCLC patients (positive rate 18.6% & 48.2%)

with N2 lymph node metastasis or advanced stages, but its

expression levels is not capable to predicting OS (86, 87). HVEM

is a key immune checkpoint, interacting with B and T lymphocyte

attenuator (BTLA) and CD160 (BY55) to trigger inhibitory signals

(47). It is independent from PD-1/PD-L1 network and may

contribute to immune evasion in lung cancer, making it a

promising therapeutic target (88).

Nectin-1 is a cell adhesion protein belonging to the

immunoglobulin superfamily, which functions as an entry

receptor for a big part of a HSVs (89). The nectin family mainly

consists of nectins 1-4, but not much research has been done on
FIGURE 3

Defective antiviral responses and aberrantly activated signaling pathways OVs can use in lung cancer cells. The clearance of OVs in normal cells
depends on the regulation of IFN-related signaling pathways, however, they are frequently dysregulated in cancer cells, which provide great
convenience for the OVs’ replication. In normal cells, when viral components are recognized by Toll-like receptors (TLRs) or retinoic acid-inducible
gene 1 (RIG-1), they further activate the transcription and translation of downstream NF-kB and interferon regulatory factor (IRF) signals, causing the
release of pro-inflammatory factors (IL-1b, IL-18, IL-6, TNF-a) and interferons (IFNs). IFNs bind to IFN receptors (IFNR), activating the JAK/STAT
pathway, which induces interferon-stimulated genes (ISGs) expression and further IFNs production. Dysregulation of tumor suppressor genes such
as p53 and Rb can promote OV replication (e.g., Ads, reovirus). The PKR pathway regulates transcription and can induce abortive apoptosis in
response to viral infection. The EGFR-KRAS pathway is frequently dysregulated in lung cancer, making these cells susceptible to OVs like NDV and
VSV. Similarly, the PI3K/AKT/mTOR pathway could upregulate the HIF-1a expression that promote the transduction of vascular endothelial growth
factor (VEGF) and growth factors, a certain VV could target the VEGF and generates anti-angiogenic effects. Created using Adobe Illustrator 2024,
with data referenced from published literature.
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how HSV infects cells with the help of nectin-1 or its expression in

lung cancer cells. In contrast, nectin-4, a receptor for Measles virus,

has demonstrated significant predictive and applied value (90).

Nectin-2 also facilitates the entry of certain HSV strains and it

might be used in lung cancer diagnosis since high nectin-2

expression in LUAD has been found to be associated with

recurrence after surgery (91–93).

HSV-1 was the first oncolytic virus to be genetically engineered

for therapeutic use. T-VEC, based on HSV-1 JS-1 strain, is modified

to the deletion of neurovirulence factor ICP34.5 and ICP47 genes,

also armed with GM-CSF gene, which enhancing the recruitment of

APCs and immune filtration of TME (94). OH2 is a novel OV

derived from HSV-2 HG52 strain, with the same modification

strategy as T-VEC (95). HSV-2-based OVs for lung cancer

remain in preclinical development, with no evidence

distinguishing HSV-1 from HSV-2 in this context (96, 97).
2.2.3 Vaccinia virus
Vaccinia virus (VV) is a large dsDNA virus from the poxviridae

family, approximately 192 kb in length, with a characteristic

asymmetric brick-like complex structure (69). It can enter the

host cells through membrane fusion or via receptor-mediated

endocytosis in acidic environments, though the involvement of a

specific host cell receptor remains unclear (26, 98). VV is

considered a safe oncolytic agent, as demonstrated by its

successful use in smallpox vaccines and its cytoplasmic

replication, preventing host genome integration (98).

VV’s tumor selectivity depends largely on the thymidine kinase

(TK) gene, which supports viral replication. Since TK is

overexpressed in cancer cells and minimally expressed in normal

somatic cells, oncolytic VVs with TK deletions have been

engineered. Additionally, VV-infected tumor cells secrete viral

proteins that activate the EGFR-RAS pathway, further promoting

TK synthesis and enhancing VV replication (27).

In addition, VV’s large genome can accommodate substantial

exogenous DNA without impairing its replication capacity (99). JX-

594, the most well-known VV derivative, has been engineered with

a GM-CSF gene insertion and TK deletion, showing promise for

intravenous administration (73). Moreover, VV holds significant

potential for future tumor vaccine development, particularly due to

its ability to deliver therapeutic genes and stimulate robust immune

responses (100).
2.2.4 Coxsackievirus
Coxsackievirus (CV), a member of the Picornaviridae family, is

a positive-sense single-stranded RNA virus with a genome of

approximately 7.4 kb, encapsulated by icosahedral capsid proteins

(101). CV possesses several features that make it a promising

candidate for lung cancer therapy, including multiple receptor

targets, ease of genetic modification, cytoplasmic replication, and

the ability to specifically target hypermutated molecular pathways

in lung cancer (102).

Kirsten rat sarcoma homolog (KRAS) mutations are present in

approximately 30% of NSCLC patients, with 20%-40% in LUAD

and only 5% in squamous NSCLC (5, 61). CV-B3, a well-studied
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oncolytic virus, effectively targets KRAS-mutant LUAD cells (A549,

H23, H2030) with minimal effects on normal lung epithelial and

EGFR-mutant LUAD cells (H1975, PC-9, H3255, H4006) (103,

104). However, CV-B3 can cause severe viral myocarditis and

pancreatitis, limiting its therapeutic potential, and further genetic

modifications are needed to reduce its toxicity (105).

CVs primarily enter cells via receptors such as CAR,

intercellular adhesion molecule 1 (ICAM-1), decay accelerating

factor (DAF, or CD55), KRM1 and SCARB2 (scavenger receptor

class B member 2, also known as lysosomal integration membrane

protein-2, LIMP-2) (32, 33, 106, 107).

As mentioned above, CAR is a common receptor for Ad and

CV, and lung cancer cells that express CAR on their surface would

be attacked by both of them theoretically. Future studies may need

to find the expression of this receptor on more lung cancer cell lines

and patient-derived tumor tissue or primary cells to maximize the

oncolytic effect of CV that use this receptor to infect lung cancer

cells. Deng et al. found that KRAS mutations downregulate CAR

expression by activating the ERK1/2 signaling pathway (103).

ICAM-1 (CD54) is an inducible glycoprotein involved in cell

adhesion during immune and inflammatory responses (108). CV-

A21, is the most researched recently with ICAM-1 (109). Infection

with CVB upregulates ICAM-1 expression and increases

production of the pro-inflammatory cytokines, including IL-6, IL-

8 and TNF-a (110). NSCLC cell lines with high ICAM-1 expression

are sensitive to CV-A11-mediated cytotoxicity, while DAF

expression levels do not correlate with cytotoxic effects (32, 111).

Preclinical and clinical trials showed that the CV-A21-based OVs

product V937, which preferentially lyses ICAM-1 upregulated

NSCLC cells, is currently in Phase I clinical trials, but the clinical

efficacy intravenously administered V937 with pembrolizumab does

not appear to be superior to that of monotherapy (34, 112).

DAF/CD55 is a co-receptor that is expressed in both lung

cancer and normal lung fibroblast cell lines (113). It has been

shown that DAF assists in the entry of ICAM-1 and CAR (114).

DAF can act as a lower affinity attachment site, enhancing virus

presentation, or as a virus binding site for subsequent higher affinity

binding to ICAM-1 and CAR (63, 111). Overexpression or

mutations of epidermal growth factor receptor (EGFR) can be

detected in 10%-20% NSCLC patients (115). Shao et al. treated

H1395 and H322M NSCLC cells with EGF for 24h, and suggest that

EGFR activation increases the expression of CD55, but not CD46,

upregulated CD55 expression inhibited the complement system and

cytokine secretion required for CD8+ T cell activation, and CD55

levels were negatively correlated with infiltration of M1

macrophages and CD8+ T cells in human lung cancer specimens

(n=24), which indirectly promoted tumor growth and could use

predicted patient prognosis (116). Therefore, EGFR mutations may

enhance CV infection by upregulating CD55, but this also

contributes to immune suppression within the tumor

microenvironment (TME), which may facilitate tumor progression.

KRM1 is a widespread membrane-anchoring protein located on

the cell surface and in the intracellular membrane which is recently

identified as an important entry receptor of a major subset of CV-

As (117). Most studies on KRM1 focus on its interaction with CV-

A10, yet its expression in lung cancer cells and the oncolytic effects
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1473288
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dong et al. 10.3389/fimmu.2024.1473288
of KRM1-targeting CVs remain unexplored, likely due to

incomplete understanding of CV-A10’s infection mechanisms and

pathogenesis (117, 118).

SCARB2 is a type-III transmembrane protein which mediates

the translocation and reorganization of the endosomal/lysosomal

compartment membranes (119). However, the expression

conditions and the mechanism of how coxsackieviruses use

SCARB2 to infect lung cancer cells needs to be further investigated.

2.2.5 Other OVs
Seneca Valley virus (SVV) is a ss (+) RNA virus that selectively

infects and kills neuroendocrine SCLC cells (35, 36, 120). Preclinical

studies showed that repeated passaging of SVV in SCLC cell

cultures enhances its cytolytic activity over time, suggesting

increased anti-tumor efficacy (121). Reovirus, an enveloped

dsRNA virus (122), infects host cells via receptor-mediated

endocytosis, primarily binding to junction adhesion molecule A

(JAM-A), which is overexpressed in NSCLC and thus makes it a

target for oncolytic virotherapy (31). Additional OVs, including

Measles virus (MV) (123), Newcastle disease virus (NDV) (38),

Vesicular stomatitis virus (VSV) (124), and Semliki Forest virus

(SFV) have been explored for their potential in lung cancer therapy

in preclinical settings (125).

In conclusion, OVs can target lung cancer cells by binding to

overexpressed surface receptors. Different viruses show varying

potential and limitations in lung cancer therapy, and optimizing

viral genetic modifications and receptor selection is key to

improving efficacy. Ads offer strong tumor-targeting potential due

to their multiple serotypes, ease of genetic modification, and ability

to use various receptors for cell entry. However, they lack tumor

specificity, are prone to be cleared by immune responses, and show

off-target effects, including liver accumulation in vivo. HSVs avoid

host genome integration risk, their large genomes allow for gene

insertions and effective immune activation. However, limited

expression of key receptors like HVEM and Nectin-1 in lung

cancer and potential neurotoxicity remain concerns for clinical

application. VV have large genomes capable of carrying exogenous

genes, and their cytoplasmic replication avoids integration into the

host genome. Their safety is supported by widespread vaccine use,

and deletion of the thymidine kinase (TK) gene enhances tumor cell

selectivity. However, unidentified specific receptors limit their

targeting, and replication depends on the high metabolic state of

tumor cells, reducing efficacy in low-proliferation tumors. CVs can

target multiple receptors and certain CVs show selective efficacy in

KRAS-mutant lung adenocarcinomas. Its small genome allows easy

modification, and cytoplasmic replication reduces integration risks.

However, it can cause toxic effects like myocarditis and pancreatitis,

requiring further modification to minimize side effects.

Additionally, receptor expression (e.g., CAR, ICAM-1) varies

across lung cancer types, affecting oncolytic efficacy. Other

viruses, such as Seneca Valley virus (SVV), have potential for

targeting specific lung cancer subtypes (e.g., small-cell lung

cancer) and have shown antitumor activity in early studies.

However, clinical data are scarce, mechanisms are unclear, and

most are in early development, necessitating further validation of

their efficacy and safety.
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Future research should focus on understanding the molecular

mechanisms of viral entry into tumor cells to enhance specificity

and reduce toxicity. Additionally, the therapeutic potential of OVs

in clinical settings remains underexplored (Table 3) and warrants

extensive clinical trials to validate efficacy and safety.

2.2.6 Viral receptor expression may change after
lung cancer treatment

Notably, OVs are usually used in combination with other

therapies, and cancer cells often undergo molecular and

phenotypic changes in response to treatment. Changes in surface

receptor expression have been observed after radiotherapy or

chemotherapy, though results are inconsistent across studies

(126–128).

Harrington et al. assessed the combining effects of oncolytic Ad

and the external beam radiotherapy, suggested that CAR and

integrins were upregulated in colorectal (HCT116) and head-neck

(SIHN-5B) cancer cell lines after radiation (129), but Geoerger et al.

(130) reported that radiation does not upregulate CAR and

integrins expression in glioma cell lines. that radiation CAR and

integrins expression in glioma cell lines. Another experimental

research also showed radiotherapy fails to increase CD46 receptor

expression in glioblastoma for measles virus (131). Wu et al. (126)

demonstrated that pre-medication of camptothecin or doxorubicin

downregulated the CAR expression in tumor lines including H1299

(lung), HCT 116 (colon) and BxPC-3 (pancreas), this

chemotherapy-induced downregulation was observed in patients

undergoing chemoradiotherapy prior to colorectal cancer resection.

However, Sakhawat et al. showed that CAR expression was

enhanced by using cisplatin which improving the infection of Ad

in breast cancer cells lines (127). Further research is needed to

elucidate receptor expression changes in cell lines and primary

tumors following neoadjuvant chemoradiotherapy, and the

intracellular signaling pathways mediating these changes.

Therefore, assessing receptor expression before and after

combination therapy is crucial to enhancing its clinical benefit,

additional studies are required to clarify the impact of combination

therapy on OVs receptor expression across different tumor types.
3 Key signaling pathways of OVs entry
into lung cancer cells

Upregulation of specific surface receptors and dysregulation of

key signaling pathways are critical for OVs’ anti-lung cancer activity

(102). Upon recognition by entry receptors, OVs selectively replicate

in cancer cells and exploit dysregulated signaling pathways. In normal

cells, multiple signaling pathways detect and clear viral particles, a

mechanism often impaired in cancer cells (Figure 3). The first line of

anti-viral response defense depends on the interferon (IFN) release

producing by endosomal Toll-like receptors (TLRs) associated

signaling pathways (132). TLRs, a class of pattern recognition

receptors (PRRs), detect conserved pathogen-associated molecular

patterns (PAMPs) (133). TLR1-10 were identified in the past decades,

every TLR has capability to induce cytokines and activate different

innate immune signals (133).
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IFNs are classified into three main types: type-I (IFN-I), type-II

(IFN-II), and type-III (IFN-III). In normal cells, IFN-I and IFN-III are

induced by OVs infection (134). IFN-I is a pro-inflammatory signaling

cytokine that consists of two major isoforms, IFN-a and IFN-b, that
performs executing cancer immunosurveillance and promotes the

remodeling of the TME, while IFN-II is the IFN-g that is produced by
activated NK cells and T cells (132). IFN-III act as an autocrine signal

that triggers the production of IFN-a and IFN-l to enhance the

antiviral and antitumor activities of normal cells (135). When multiple

TLRs are activated by PAMPs (including viral capsids, DNA, RNA,

and viral protein products), and further triggering host cytokine

signaling transduction, these factors including myeloid

differentiation primary response protein (MYD88), TIR-domain-

containing adapter-inducing IFNb (TRIF), TNF receptor-associated

factor (TRAF) family, interferon regulatory factor 3 (IRF3), interferon

regulatory factor 7 (IRF7) and retinoic acid-inducible gene 1 (RIG-1),

which in turn recruit the downstream kinases (136). IRF3 binding to

IRF7 as a dimer, induces the production of IFNs and stimulates the

anti-viral responses via autocrine and paracrine methods (137). These

IFN-signals further lead to the phosphorylation and activation of

Janus family protein kinases (JAK-STAT signaling pathway), which

mediate the signals transduction and activate the transcription factor 1

(STAT1) and STAT2 (138). STAT1 and STAT2 form a multimer with

IRF9, which transfers to the nucleus and ultimately induces the

expression of interferon stimulated genes (ISGs), assisting in the

antiviral response (137, 138).

Enhanced IFNs-release induces the activation of the

downstream PKR (an intracellular protein kinase that recognizes

dsRNA and other viral components) (139, 140) and initiates a

cascade of events leading to the phosphorylation of eIF-2a. This
phosphorylation inhibits protein synthesis, thereby suppressing

further viral replication within cells (141, 142). However, it is

possible that the signaling pathways of IFN and PKR are defective

in certain cancer cell types, which could result in increased viral

replication and impaired viral clearance. Conversely, these

pathways may be more active in other cancer cell types, which

could impact the therapeutic effect of oncolytic viruses (101, 143).

The mitogen-activated protein kinase (MAPK) cascade (RAS/

RAF/MEK/ERK signaling pathway) is frequently dysregulated in

cancer and regulates processes like apoptosis, proliferation, and

motility (144, 145). The KRAS (Kirsten rat sarcoma viral oncogene)

mutant accounts for almost 75% of RAS mutant cancers, which are

the most common mutations in NSCLC patients (5, 146). However,

despite a long history of preclinical and clinical studies, attempts to

develop molecularly targeted drugs against mutations in KRAS in

the past decades have ended in failure, therefore, KRAS as a

molecular target has been named to be “undruggable”.

KRAS always acts as an intracellular switch, it is activated when

bound to guanosine triphosphate (GTP) and inactivated by

guanosine diphosphate (GDP)-bound state (147). KRAS-

activation further promotes the RAF recruitment and PI3K,

which facilitates the process of oncogenesis through downstream

effectors (148, 149). Notably, EGFR is proposed to induce the KRAS

activation through recruitment and interaction of some growth

factor receptor-bound proteins, so upregulated EGFR expression

may promote the KRAS activation (149). VV enters cells via
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receptor-mediated endocytosis, and its replication depends on

EGFR-induced RAS signaling, so cancer cells with overexpression

of EGFR are more susceptible to VV infection (145) (Figure 3).

Furthermore, people have been noted that certain viruses such

as coxsackievirus and herpesvirus are capable of selectively targeting

cancer cells that exhibit elevated RAS signaling activity. RAS-

activated cancer cells fail to activate the PKR pathway, allowing

viral infection and oncolysis (103, 150). MEK inhibition disrupts

RAF-MEK-ERK signaling, upregulates CAR expression, and

enhances adenovirus entry and oncolysis (151). The loss of CAR

expression in cancer cells is at least in part mediated by the RAF-

MEK-ERK transduction pathway. Restoring CAR expression on the

cell surface could enhance Ad-based cancer therapies (152).

PI3K/AKT/mTOR is another RAF/MEK/ERK-independent

KRAS downstream signaling pathway, which regulates the

expression of hypoxia-inducible factors (HIFs) (153) (Figure 3).

Jiang et al. (154) showed that NDV triggers autophagy in A549 lung

cancer cells resistant to first-line therapeutics (cisplatin and

paclitaxel) by targeting the PI3K/Akt/mTOR pathway. Similarly, a

recombinant CV-B3 (155) have shown in vitro experiments that it

induces apoptosis and phosphoinositide 3-kinase/Akt and mitogen-

activated protein (MAP)/modulated extracellular signaling (ERK)

kinase (MEK) survival signaling pathways, leading to cytotoxicity

and modulation of CVB3 replication (104). BCL-xL is a therapeutic

target for SCLC and NSCLC (156, 157), an anti-apoptotic protein

belongs to the B cell lymphoma (BCL) family of cell survival

proteins, and BCL-xL-overexpressed cancer cells permit NDV

infection and viral syncytium formation required for viral spread

(Figure 3) (157).
4 OVs induce systemic immune
response against lung cancer

Descriptions of the receptors for several major OVs and key

signaling pathways provide a general framework for lung cancer

therapy. The presence of multiple natural receptors on the surface

of lung cancer cells provides targets for viral entry, and defects in

the antiviral response and signaling pathways of cancer cells create a

microenvironment that supports viral replication, viral elements

and cytokines-releasing further lead to an antitumor immune

microenvironment (158). Although the specific molecular and

cellular mechanisms of OVs are not fully elucidated, they can

generally be described in two steps: selective killing of lung cancer

cells and induction of an anti-tumor immune response (159, 160).

OVs induce the establishment of acquired immunity and turn

“cold” TME into “hot” one (161) (Figure 4). OVs infect and replicate

in tumor cells which induces an inflammatory response and

immunogenic cell death (ICD), for instance, pyroptosis, autophagy

and necroptosis are more immunogenic forms of cell death than

apoptosis (162, 163). Various forms of ICD are observed following

OV infection, which enhances tumor cell oncolysis (164), then a large

number of damage-associated molecular patterns (DAMPs)

including calreticulin, heat-shock proteins (HSPs), ATP, uric acid,

high mobility group box 1 (HMGB1), pathogen-associated molecular

patterns (PAMPs) including viral elements, tumor-associated
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antigens (TAAs) and cytokines (including IL-2, TNF-a, IFN-g) are
released (104, 165, 166). These factors recruit antigen-presenting cells

(APCs) to the site of infection, which present antigens to T and B

cells, inducing infiltration of cytotoxic T lymphocytes (CTLs), natural

killer (NK) cells, CD4+ and CD8+ T cells (162).

The CD4+ T cells function as helpers by secreting cytokines such

as IFN-g, TNF-a, IL-2, and IL-12, which support the activation of

CD8+ T cells. These cells are known as well as Th1 cells (167). Once

activated, CD8+ T cells exert anti-tumor effects locally or by migrating

to tumor sites. Meanwhile, NK cells could be activated by IFN-I and

DAMPs, and down-regulation of human major histocompatibility

complex I (MHC-I) in cancer cells and increased MHC-II expression

in APCs also further remodeled the inherent immune response and

systemic immune status of TMEs (14, 21). Notably, in addition to the

direct killing and TME-reshaping effect to tumor cells, the OVs also

shows antiangiogenic effects through killing the tumoral vascular

endothelial cells (168, 169), for example, VSV infects and destroys the

tumor vascular system in vivo but leaves the normal vascular system

intact (170). However, circulating OVs face the risk of clearance by

neutralizing antibodies. The mechanisms balancing immune-

mediated viral clearance and antitumor immune induction require

further investigation.
5 Combination therapy and route
of administration

Given the tumoral heterogeneity, complex genetic mutations,

and the immunosuppressive TME, OV-based monotherapy often
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fails to achieve optimal oncolysis in lung cancer, as demonstrated in

most studies (34, 171, 172). Combination strategies involve

conventional lung cancer treatments, immune checkpoint

inhibitors (ICIs), chimeric antigen receptor (CAR) T-cell therapy,

and molecular targeted drugs. For example, H101 has demonstrated

oncolytic potential in both in vivo and in vitro studies, though in

vivo effects remain relatively mild (57), a meta-analysis shows the

overal l response rate (ORR) of H101 combined with

chemoradiotherapy is significantly higher than those lung cancer

patients treated alone, and improving both patient survival rates

and quality of life (173). Sei et al. investigated the combination

effects of Reovirus type 3 Dearing strain (ReoT3D) and

chemotherapeutics in 9 NSCLC cell l ines, the results

demonstrated ReoT3D combined with paclitaxel can increase the

proportion of mitotic blocked and apoptotic cells, and strong

oncolytic effects on tumor killing synergized with cisplatin,

gemcitabine, or vinblastine (174). A single-arm study for 37

NSCLC patients with metastatic KRAS or EGFR mutations using

Reolysin (an OV product based on Reovirus type 3) in combination

with paclitaxel and carboplatin, compared favorably (the median

progression-free survival (PFS) and overall survival (OS) were 4

months and 13.1 months, respectively) with previous studies for the

chemotherapy-alone (171). Cui et al. (54) screened a coxsackievirus

B5/Faulkner strain (CV-B5) as an oncolytic virus candidate against

NSCLCs (A-549, NCI-H1299, NCI-H460) through in vivo and in

vitro experiments, and CV-B5/F can accelerate cell apoptosis,

autophagy and endoplasmic reticulum stress in combination with

DNA-dependent protein kinase (DNA-PK) or ataxia telangiectasia

mutated protein (ATM) inhibitors. Collectively, pre-clinical and
FIGURE 4

Mechanisms from “Cold” tumor becomes “Hot” tumor. Oncolytic efficacy depends on the selectively killing effect and the activation of anti-tumor
immunity, and some OVs have the ability to destroy tumor vascular system. OVs can be cleared by the antiviral responses in normal cells but
replicate in cancer cells, which finally leads to the recruitment of cytotoxicity cells such as CD8+ T cells via several signaling pathways. Notes:
PAMPs, pathogen-associated molecular patterns, include viral capsids, DNA, dsRNA/ssRNA, viral proteins; DAMPs, damage-associated molecular
patterns, include HSPs, calreticulin, HMGB1, ATP, uric acid; cytokines include TNF-a, IFNs, IL-12, IL-2, etc. IL-2, interleukin-2; IL-2R, IL-2 receptor;
TLR, Toll-like receptor. Created using Adobe Illustrator 2024, with data referenced from published literature.
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clinical data are still limited and more clinical trials are needed to

validate the therapeutic efficacy of OVs and different combination

strategies in lung cancer patients.

The method of administration is another major challenge in the

clinical application of OVs. The modes of administration of OVs

include intra-tumoral (i.t.), intravenous (i.v.), intraarterial (i.a.), and

even inhalation (37). Direct i.t. injection is the most studied

method, offering advantages such as reduced risk of neutralization

by antibodies, more targeted delivery, and localized infection, as for

solid tumor in the thoracic, i.t. injections can also be performed by

image-guided techniques (41). A study concerning oncolytic VV for

malignant pleural effusion caused by NSCLCs, demonstrated that

i.t. administration of oncolytic VV was safe and feasible, could

produce local immune responses without other significant systemic

symptoms (175). However, for metastatic or infiltrative tumors

such as neuroendocrine tumors and leukemia, patients may require

multiple injections, and OVs may struggle to reach all target tissues.

Although systemic methods such as i.v. and i.a. injections are less

studied, they offer the ability to treat multifocal or infiltrative

tumors with the possibility of repeated administrations (176). i.v.

injection may lead to immune clearance of OVs by neutralizing

antibodies. However, this issue could potentially be addressed by

using extracellular vesicles (EVs) to encapsulate and deliver OVs.

Garofalo et al. (177) have validated that human lung cancer cell-

derived EVs can be utilized to the delivery of OVs and

chemotherapeutics, and its lipid membranes protect OVs from

degradation by the immune system. Additionally, inhalation has

been explored in viral vaccines, but few studies have investigated

OV delivery via inhalation (178, 179), This limited research may be

due to concerns over its lower immunogenicity. However, lung

cancer usually originates from malignant transformation of

bronchial epithelial cells, inhalation administration may be a

specific delivery modality for the treatment.
6 Biosafety and limitations

Oncolytic viruses, including engineered variants, have

demonstrated efficacy as an anti-tumor strategy in numerous

preclinical and clinical trials. However, as replicating viruses, OVs

raise biological safety concerns related to their potential for

replication and infection in non-target tissues. These concerns

necessitate careful consideration of storage, handling, and

administration protocols (180, 181). Moreover, the toxicity limits of

many OVs remain incompletely assessed, and data on potential long-

term effects or survival outcomes are still limited. Achieving a balance

between antiviral and antitumor immunity is essential for the

successful development of OVs. The immune response can restrict

viral biodistribution, and OVs are susceptible to detection and

inactivation by neutralizing antibodies. Thus, reducing viral toxicity

while enhancing antitumor efficacy through genetic engineering and

combination with immunotherapy will be crucial future directions.

Second, many studies use immunocompromised mice as models,

which limits the ability to study virus-immune system interactions in

humans. A more rational selection of animal models is needed to
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better understand the tumor microenvironment (TME) and the

interactions among different cellular components.
7 Conclusions

Lung cancer is an escalating global public health issue, and its

therapeutic strategies are continuously evolving. The emergence of

OVs offers a favorable risk-benefit ratio for lung cancer treatment.

However, the molecular and cellular mechanisms underlying the

oncolytic effects of OVs are not yet fully elucidated.

As previously discussed, several viruses are potential candidates

for OVs, with natural receptors on the surface of lung cancer cells

serving as therapeutic targets. Future research should focus on

identifying more effective targets on the surface of lung cancer cells,

elucidating key oncolytic signaling pathways of OVs, and further

investigating the TME reshaping process.

In conclusion, while oncolytic virotherapy shows significant

promise for lung cancer treatment, additional research is necessary

to optimize OVs design and improve clinical efficacy. Combining

OVs with other therapeutic modalities could offer a more

comprehensive and effective strategy for treating lung cancer.
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