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Macrophage-myofibroblast transformation (MMT) transforms macrophages into
myofibroblasts in a specific inflammation or injury microenvironment. MMT is an
essential biological process in fibrosis-related diseases involving the lung, heart,
kidney, liver, skeletal muscle, and other organs and tissues. This process consists
of interacting with various cells and molecules and activating different signal
transduction pathways. This review deeply discussed the molecular mechanism
of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors,
and formed a complex regulatory network. Significantly, the critical role of
transforming growth factor-p (TGF-B) and its downstream signaling pathways
in this process were clarified. Furthermore, we discussed the significance of MMT
in physiological and pathological conditions, such as pulmonary fibrosis and
cardiac fibrosis. This review provides a new perspective for understanding the
interaction between macrophages and myofibroblasts and new strategies and
targets for the prevention and treatment of MMT in fibrotic diseases.
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1 Introduction

Macrophage-myofibroblast transformation (MMT) describes how macrophages from
circulating monocytes originating in the bone marrow transform into myofibroblasts and
contribute to fibrosis (1, 2). The term was coined by Nikolic-Paterson et al. In 2014 (3).
MMT is a newly discovered mechanism that occurs in damaged tissues undergoing fibrosis;
the study of MMT relies on the detection of intermediate cells that co-express macrophage
markers, such as CD68, and myofibroblast markers, such as o-smooth muscle actin (SMA)
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(4, 5). Hematopoietic stem cells (HSC) can differentiate into
monocytes in the bone marrow. Blood monocytes entering the
injured tissue can differentiate into an M2 pro-fibrotic phenotype,
either directly or via an M1 pro-inflammatory phenotype. TGE-3/
Smad3 signaling drives macrophage transition into collagen-
producing ai-SMA myofibroblasts via MMT (6) (Figure 1).

MMT is considered one of the essential mechanisms for the
origin of myofibroblasts in solid organs (7-11). Experimental
models of fibrosis, including lung fibrosis, renal fibrosis following
transplantation or ureteric obstruction, and post-myocardial
infarction fibrosis, have demonstrated MMT as an additional
source of myofibroblasts (2, 3, 6, 12, 13). Wang et al. (1) also
observed the occurrence of MMT, which contributes to interstitial
fibrosis in case of human chronic active renal allograft injury. This
was identified through the co-expression of macrophage markers
(CD68 or F4/80) and myofibroblast markers (c-SMA). Similarly,
Little et al. (14) demonstrated the presence of MMT in the
subretinal fibrotic lesions, which ultimately led to subretinal
fibrosis. Increasing evidence supports the role of macrophages in
promoting fibrosis through their transformation into
myofibroblasts, a process known as the MMT (15). Several
signaling pathways, including TGF-B1/Smad, Notch, and Wnt
signaling pathways, including are involved in MMT (3). It is
worth noting that several studies have specifically highlighted the
promotion of MMT by the TGF-B1/Smad2/B-catenin signaling
pathway (3, 16-19).

This review provides an update on current advancements in
MMT and summarizes recent evidence and mechanisms of MMT
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in fibrosis. Furthermore, we discussed the significance of MMT in
physiological and pathological conditions. Under physiological
conditions, MMT may participate in tissue repair and wound
healing, which helps restore the structure and function of tissues.
Under pathological conditions, excessive transformation may lead
to the occurrence and development of fibrotic diseases, such as
pulmonary fibrosis (PF) and cardiac fibrosis. Understanding this
phenomenon and its underlying signal pathway would be beneficial
in finding therapeutic targets for fibrosis disease.

2 Overview of macrophage

Macrophages were first described by Elie Metchnikoft in 1893
when he observed phagocytes attacking and engulfing microbes in
starfish challenged by a rose thorn (20). Another significant
milestone came in 1924 when Aschoff defined macrophages as a
part of the reticulo-endothelial system (21). However, in 1968, Van
Furth et al. (22) proposed the mononuclear phagocyte system,
challenging the previous definition. According to this system, all
macrophages were believed to originate from the terminal
differentiation of circulating monocytes. This theory was further
supported by other researchers around the world at that time (23-
25). However, more recent studies have identified a dual origin of
tissue macrophages. It has been found that macrophages can
differentiate from circulating monocytes derived from bone
marrow stem cells, as well as primitive macrophages derived from
the embryonic yolk sac and fetal liver (26, 27). The mononuclear
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phagocyte system consists of three parts, including monocytes,
macrophages, and dendritic cells, with macrophages playing a
crucial role within this system (28).

Macrophages are strategically located throughout body tissues,
ingesting and processing foreign bodies, dead cells, and debris while
recruiting additional macrophages in response to inflammatory
signals. These cells are highly heterogeneous cells and have the
ability to rapidly change their function in response to local
microenvironment signals (29). Macrophages are categorized into
subsets based on their anatomical location and functional
phenotype (30). Some examples of specialized tissue-resident
macrophages include osteoclasts (bone), alveolar macrophages
(lung), histiocytes (interstitial connective tissue), and Kupffer cells
(liver). It is important to note that there is considerable overlap in
the expression of surface markers between different subsets of
macrophages (31).

Rather than being discrete and stable subsets, macrophages
represent a spectrum of activated phenotypes (32). Classically
activated macrophages, also known as M1 macrophages, are
involved in host defense against various bacteria, protozoa, and
viruses, and they also play a role in anti-tumor immunity. On the
other hand, alternatively activated macrophages, or M2
macrophages, possess anti-inflammatory properties and
contribute to wound healing. There are also “regulatory”
macrophages that can secrete high levels of interleukin-10 (IL-10)
upon binding to Fc receptors gamma (33, 34). Macrophages found
in the lung (both interstitial and alveoli), peritoneum, liver (Kupffer
cells), and brain (microglia) are generally considered to be distinct
lineage of macrophages with unique functions (35, 36).

2.1 The classification and phenotype
of macrophages

Monocytes are regarded as precursor cells of the mononuclear
phagocytic system, with macrophages being one of the key
members of this cellular system. Within the macrophage
population, there exist various subpopulations of macrophages,
each with its characteristics and functions.

2.1.1 Classification of organizational sources

The specialization of macrophages in particular microenvironments
explains their heterogeneity. Macrophages take different names
according to their tissue location, such as osteoclasts (bone), alveolar
macrophages (lung), microglial cells (central nervous system),
histiocytes (connective tissue), Kupffer cells (liver), and LC (skin).
These populations have such highly different transcriptional profiles
that they could be considered as many different and unique classes of
macrophages (37).

2.1.2 General functional classification

Macrophages can be defined and classified based on their
functions, such as phagocytosis and immunity, as well as specific
markers like F4/80 and CD68 (38). This classification divides
them into:
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2.1.2.1 Classically activated macrophages

Classically activated macrophages, or M1 macrophages, are
induced in vitro by interferon (IFN)-y and lipopolysaccharide
(LPS). They drive a pro-inflammatory response and aid in the
elimination of infection. Mainly through the secretion of pro-
inflammatory cytokines (such as IL-1, IL-6, TNF-0, etc.) and
chemokines, they promote the occurrence and development of
inflammatory reactions. They can devour and eliminate foreign
pathogens, activate the immune response of T cells, and regulate
and promote the Thl immune response.

2.1.2.2 Selectively activated macrophages

Selectively activated macrophages, known as M2 macrophages,
play a role in controlling the immune response and tissue
remodeling (39). M2 macrophages encompass a variety of
phenotypes that further subdivided into M2a (exposure to IL-4 or
IL-13), M2b (induced by immune complexes in combination with
IL-1B or LPS), M2c cells (after exposure to IL-10, TGF-f or
glucocorticoids) and M2d cells (IL-6, angiogenic adenosineA2A)
(40, 41). M2 macrophages inhibit inflammatory reactions and
promote tissue repair and wound healing mainly by secreting
anti-inflammatory cytokines (such as IL-10) and growth factors
(such as vascular endothelial growth factor (VEGF) and TGF-f).
They also regulate the Th2 immune response, which is beneficial for
disease recovery in the late stage of inflammation.

Stimulated by GM-CSF, IFN-y, and LPS, M0 macrophages
polarize into M1 macrophages. Alternatively, M-CSF, IL-4, IL-13,
and immune complexes (IC) stimulation cause the polarization of
MO macrophages to M2 macrophages. Various cytokines further
induce M2 macrophages to differentiate into M2a, M2b, M2c, and
M2d phenotypes. M1 macrophages are usually associated with
inflammation and represent a prototypic subset of pro-
inflammatory macrophages (39). In contrast, M2 macrophages
are polarized by Th2 cytokines IL-4 and IL-13, among other
factors. They are characterized by high levels of anti-
inflammatory cytokines and pro-fibrotic factors (39, 42),
contributing to matrix deposition and tissue remodeling (43). M2
macrophages are the primary source of TGF-B1, which is widely
recognized as a critical cytokine associated with fibrosis (39, 44, 45).
M2 macrophages have been found to affect pathological fibrosis
(46) and play a role in the process of fibrosis, such as in PF (47-50),
renal fibrosis (51, 52), ischemic cardiac fibrosis (53, 54), and
neovascularization (55).

Therefore, on one end of the extreme, M1 pro-inflammatory
cells facilitate the eradication of infections, albeit with the potential
to inflict damage. On the other extreme, M2 anti-inflammatory cells
have a repair phenotype that promotes a regression phase of the
injury response (51). In response to various signals, macrophages
may undergo classical M1 activation (stimulated by TLR ligands
and IFN-Y) or alternative M2 activation (stimulated by IL-4/IL-13).
These states reflect Th1-Th2 polarization in T cells (56, 57). The M1
phenotype is characterized by high levels of pro-inflammatory
cytokine expression, high production of reactive nitrogen and
oxygen intermediates, promotion of the Th1 response, and potent
bactericidal and tumoricidal activity (58). M1 macrophages are also
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believed to be involved in various chronic inflammatory and
autoimmune diseases (59). M2 macrophages are considered to be
involved in the control of parasites, promoting tissue remodeling
and tumor progression, and have immunomodulatory functions.
They exhibit effective phagocytic activity and high expression of
scavenging molecules, among others (60).

2.1.3 Function classification of
homeostatic activities

Mosser and Edwards proposed a classification of macrophages
based on three primary functions that these cells perform to
maintain homeostasis in the body: host defense (classically
activated), wound healing, and immune regulation (32).

2.1.3.1 Host defense macrophages

The role of classically activated macrophages in host defense
against intracellular pathogens has been well documented. Classically
activated macrophages, as mentioned earlier, are crucial for host
defense. However, their activation needs to be tightly regulated due to
the potential for cytokines and mediators they produce to cause host-
tissue damage. For instance, classically activated macrophages
produce IL-1, IL-6, and IL-23, which have been associated with the
development and expansion of TH17 cells (61). These cells produce
IL-17, a cytokine involved in recruiting polymorphonuclear
leukocytes (PMNs) to tissues, potentially contributing to
inflammatory autoimmune pathologies. On the other hand,
macrophages can inhibit inflammation by clearing apoptotic PMNs
during inflammation, partly due to the production of TGF-f3 (62-64).

2.1.3.2 Wound-healing macrophages

Macrophages play a vital role in wound repair (11, 65).
Alternatively, activated macrophages have anti-inflammatory
functions and are involved in regulating wound healing. They
contribute to dampening inflammation, clearing cell debris, and
coordinating tissue repair, making them essential for the wound
healing process (66). Wound-healing macrophages can develop in
response to innate or adaptive signals. IL-4, released during tissue
damage, is one of the initial innate signals that rapidly convert
resident macrophages into a population of cells programmed to
promote wound healing (67). IL-4 stimulates arginase activity in
macrophages, allowing them to convert arginine to ornithine, a
precursor of polyamines and collagen that contributes to
extracellular matrix (ECM) production (68). When the
inflammatory stimulus or pathogen is eliminated, M1 cell
activation diminishes. Alarmins and Th2-type cytokines drive the
immune response toward a wound-healing response characterized
by the accumulation of M2 macrophages. These M2 macrophages
promote wound healing and fibrosis by producing matrix
metalloproteinases (MMPs), including MMP12, tissue inhibitor of
metalloproteinases 1 (TIMP1), growth factors (including platelet-
derived growth factor (PDGF)) and cytokines (such as TGF-f1) (29).

2.1.3.3 Regulatory macrophage
Regulatory macrophages have a key role in regulating the
inflammatory immune response to limit tissue damage. Their
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primary physiological function is to dampen inflammatory
immune responses and prevent the immunopathology associated
with prolonged activation of classically activated macrophages (66).
They are characterized by the production of high levels of IL-10
(69). Regulatory macrophages can secrete large amounts of this
cytokine in response to Fc receptor y -binding (34, 70). They
represent a relatively broad category of macrophages that play a
crucial role in inhibiting inflammatory immune responses and
preventing the immunopathology associated with prolonged
activation of classically activated macrophage (71). They are
distinct from classically activated macrophages and differ from
macrophages treated with Th2 cytokines, such as IL-4 or IL-13,
known as alternatively activated macrophages (72).

2.1.4 Other classifications

Apart from M1 and M2 macrophages, there are additional
subpopulations of macrophages, including tumor-associated
macrophages (TAMs), CD169 macrophages, and T cell receptor-
positive (TCR) macrophages (73).

2141TAM

Macrophages display plasticity, with their phenotype determined
by their location and the physiological or pathological context.
Classically activated macrophages (M1) and alternatively activated
macrophages (M2) represent two ends of the macrophage phenotype
spectrum (74). TAMs closely resemble M2 macrophages and are
associated with the inhibition of anti-tumor immunity (75). Myeloid-
derived suppressor cells (MDSC) are often associated with TAM and
may serve as their precursors (32, 76). TAMs promote tumorigenesis,
tumor growth, invasion, metastasis, and affect tumor metabolism
through various mechanisms (77). Recent study indicated that TAMs
have protumoral functions, indicating that they play a direct or
indirect role in promoting tumor progression (78).

2.1.4.2 CD169 macrophages

As a specific subpopulation of macrophages, CD169
macrophages have been recently studied in malignant tumors (79).
Current research suggests that CD169 macrophages have inhibitory
effect on tumors. CD169/Siglecl/sialoadhesin, a sialic acid-binding
immunoglobulin-like lectin, is primarily expressed in metallophilic
macrophages in the marginal zone of the spleen and macrophages in
the subcapsular sinus and medulla of lymph nodes. In addition to
their role in anti-infectious immunity, recent study has
demonstrated the involvement of CD169 macrophages in tumor
immunity and their association with a favorable prognosis (79).

2.1.4.3 T cell receptor

The T cell receptor (TCR) is a molecule essential for antigen
recognition and forms a complex with CD3 (80). Previous studies
have reported the presence of TCR macrophages in both human
and murine populations. TCR-0/ has been observed in peripheral
blood monocytes and in vitro in activated monocyte-derived
macrophages. TCR macrophages can release CCL2 and exhibit a
high phagocytosis capacity (81). Recently, Fuchs et al. (82) reported
that TCR-0f macrophages are present in murine and human
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atherosclerotic lesions, indicating their potential as a novel
molecular target for diagnosing and treating diseases where
cholesterol plays a central role in the pathophysiology.

2.2 Macrophage function

Macrophages have highly diverse roles in maintaining the
body’s integrity, including direct participation in pathogen
elimination and tissue repair during aseptic inflammatory
conditions. Their functions vary across different tissues, playing
crucial roles in tissue development, immune response to pathogens,
surveillance and monitoring of tissue changes, and maintenance of

tissue homeostasis.

2.2.1 Phagocytosis and elimination of
pathogenic microorganisms

Macrophages are specialized phagocytes that, often with a long
lifespan, are present in all organs to maintain tissue integrity, remove
debris, and respond rapidly to initiate repair in the event of innate
immunity after injury or infection (30, 83). Plasticity and functional
polarization are the hallmarks of the mononuclear phagocyte system
(41). Their phagocytic activity is crucial for fibrogenesis, with the type
of engulfed dead cells influencing fibrosis progression (84).
Macrophages also act as heterologous phagocytes, detecting
pathogen-related molecular patterns and injury-related molecular
patterns through pattern recognition receptors (85, 86). TAMs
demonstrate bidirectional transformation between anti-
inflammatory and immunosuppressive phenotypes (57, 87).
Furthermore, macrophages play a vital role in wound repair (65).

2.2.2 Antigen presentation, immunomodulation,
and anti-inflammatory function

Macrophages have the capacity to take up and present antigens,
bridging innate and adaptive immunity (88). They can act as
antigen-presenting cells (APCs) and influence adaptive immune
responses (89). Monocytes that enter the tissue during
inflammation can carry antigens to lymph nodes and present
them to naive T-cells (90). Regulatory macrophages have been
shown to efficiently present antigens and induce antigen-specific T-
cell responses dominated by the production of Th2 cytokines (89).
Macrophages also play a crucial role in cellular immunity by
secreting cytokines and chemokines, regulating the activities of
other immune cells, and balancing the body’s immune response.
They can secrete both pro-inflammatory cytokines, such as IL-1 and
IL-6, to promote inflammatory reactions, and anti-inflammatory
cytokines, such as IL-10, to inhibit excessive inflammation.

2.2.3 Regulation function regulating fibrosis
Macrophages are considered to be the critical cell types in the
development of fibrotic diseases (17). Recent studies have also
revealed that their role as regulators of fibrosis. Like myofibroblasts,
these cells are derived from resident tissue populations such as
Kupfter cells or bone marrow migrants (91-95). Current studies
have shown that the pathogenesis of fibrosis is tightly regulated by
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different populations of macrophages, which exert unique functional
activities in the initiation, maintenance, and regression stages of
fibrosis (96, 97). Activated hepatic stellate cells (HSCs) attract and
stimulate macrophages, which produce profibrotic mediators like
TGF-B1 and PDGF, directly activating fibroblasts (94, 98). Several
studies have identified macrophages as a major source of TGF-f1 and
PDGF in fibrosis (71, 99). While macrophages contribute to fibrosis
progression, they may also mediate its regression (11). Given the
multifunctional capacity and heterogeneous phenotype of
macrophages, it is not surprising that they can enhance and limit
fibrosis (100). M2 macrophages may be a promising potential target
for future anti-fibrosis therapies.

3 Overview of myofibroblast

3.1 Source and characteristics
of myofibroblasts

In 1971, Gabbiani and his colleagues discovered and
characterized myofibroblasts, which are fibroblasts modified to
exhibit active contraction in rat wound granulation tissue. This
was the first time it had been shown that myofibroblasts promote
dermal wound contraction (101). Myofibroblasts are a subset of
activated fibroblasts that express molecular markers such as o.-SMA
and the fibronectin (FN) splice variant extracellular domain (ED)-A
FN (102). Hyperactive myofibroblasts, marked by the expression of
0-SMA, are primarily responsible for the production of pathogenic
collagen tissue fibrosis (7, 103). One of the defining features of
myofibroblasts is the development of in vivo stress fibers and
contractile force (104). They exhibit morphological and structural
characteristics similar to smooth muscle cells, including a flat and
irregular morphology, developed cell-ECM interactions, and
intercellular space junctions (105). The activation of
myofibroblasts is crucial for physiological and pathological tissue
repair. Myofibroblasts are the main ECM secretory cells in wound
healing and fibrosis and are mainly responsible for the contractility
of scar tissue when it matures (106). Myofibroblasts combine the
ECM synthesis characteristics of fibroblasts with the cytoskeletal
characteristics of contractile smooth muscle cells, regulating
connective tissue remodeling (107).

Defining characteristics of myofibroblasts include abundant
rough endoplasmic reticulum, moderately developed peripheral
myofilaments with focal density, fibronectin, and o-SMA
immunostaining (108). In wound granulation tissue,
myofibroblasts coexist with prominent endoplasmic reticulum
and contractile microfilaments (109). The transformation of
myofibroblasts is triggered by integrating neurohumoral, cytokine,
growth factor, and mechanical signals from the extracellular
environment (110). Myofibroblast differentiation is a critical event
for wound healing, tissue repair, and chronic fibrosis (104, 107,
111). Atleast three local events are required for the differentiation of
o-SMA-positive myofibroblasts: accumulation of biologically active
TGF-B1, the presence of specialized ECM proteins like ED-A splice
variants of fibronectin, and high extracellular stress are caused by
the mechanical properties of ECM and cellular remodeling activity

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1474688
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Li et al.

(104). The mechanical resistance of the ECM, combined with the
action of fibrotic TGF-B1, is the primary stimulus for the
differentiation and persistence of myofibroblasts (104).

3.2 Distribution of myofibroblasts

Myofibroblasts can originate from various sources, including
epithelial-mesenchymal transition (EMT) (7), endothelial-
mesenchymal transition (112, 113), resident fibroblast or pericyte
proliferation (114), and the newly discovered phenomenon of
MMT (115). Experimental evidence demonstrates that about 50%
of myofibroblast accumulation comes from local proliferation of
resident tissue fibroblasts, while approximately 35% comes from
bone marrow-derived cells (116). Bone marrow transplantation
studies have demonstrated the ability of bone marrow-derived
cells to populate distal tissue sites (115, 117, 118).

3.3 The hazards of myofibroblasts

Myofibroblasts pose hazards in various ways. They are the
primary cells responsible for collagen production in tissue
fibrosis, and their contraction and ECM remodeling activity play
a crucial role in fibrotic diseases (119-121). The fate of
myofibroblasts in injured tissues, regardless of their origin, may
ultimately determine whether healing occurs normally or progress
to end-stage fibrosis (107). Persistent myofibroblast activity leads to
progressive tissue fibrosis and distortion of the typical tissue
architecture, resulting in organ failure and, ultimately, death (89).
While the high contractile force generated by myofibroblasts is
beneficial for physiological tissue remodeling, excessive force can be
detrimental to tissue function, as seen in hypertrophic scars, fibrotic
diseases, and stromal reactions to tumors (111).

Myofibroblasts are also critical components of the matrix
reaction around hepatocellular carcinoma, contributing to the
extracellular matrix component (122, 123). Activated hepatic
stellate cells, portal vein fibroblasts, and bone marrow-derived
myofibroblasts have been identified as central collagen-producing
cells in the damaged liver (91). They play significant roles in renal
fibrosis and are implicated in its pathogenesis (124). Additionally,
myofibroblasts contribute to chronic cardiac fibrosis (110).
Experimental and clinical observations suggest that myofibroblasts
produce pro-invasive signals that may be associated with cancer
progression and pain (125). Myofibroblasts present in the matrix
reaction of epithelial tumors may contribute to the progression of
cancer invasion (126, 127).

4 The contribution of MMT to the
pathogenesis of PF

4.1 Introduction of PF

PF is a chronic and progressive irreversible pulmonary
interstitial disease that poses a significant public threat health
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(128). It is a characteristic feature of a large class of interstitial
lung diseases (ILD) (129, 130). Symptoms of PF typically include
shortness of breath, unproductive cough, weight loss, and fatigue
due to hypoxia (131). It is characterized by thickened fibrotic
alveolar walls leading to impaired gas transfer, restricted
ventilatory patterns, and, as a result, respiratory failure (132, 133).

Pre-existing inflammation is a key factor in PF development.
Acute lung injury (ALI) and its more severe manifestation, acute
respiratory distress syndrome (ARDS), are specific forms of lung
inflammation characterized by diffuse alteration of the alveoli, non-
cardiogenic lung edema, and local and systemic inflammation (134-
137). Inflammatory cascades contribute to the pathogenesis of ALI,
resulting in increased permeability of lung capillary vessels and
diffuse alveolar damage (138-140). The pathomorphological
changes in the lungs during ALI/ARDS include neutrophilic
inflammatory infiltration, diffuse alveolar damage, alveolar and
interstitial edema, hyalin membrane formation in the exudative
phase, and ECM deposition in the proliferative phase (139, 141, 142).

PF is a heterogeneous disease characterized by a distinct pattern
of tissue pathology and comprises a large number of chronic
respiratory pathologies accompanied by connective tissue growth in
various lung compartments, among which interstitial lung disease
(ILD) and idiopathic PF (IPF) are the most severe and irreversible
ones with progressive fibrosing of the lung parenchyma (130, 143-
145). IPF, specifically, is a significant type of pulmonary fibrosis,
predominantly affecting the elderly, with high mortality and poor
prognosis (146). It can cause dyspnea, cough, impaired lung function,
and death (147-149). The prevalence of IPF is around 10 cases per
100,000 population, while ILDs have a prevalence of 19.4 cases per
100,000 population (150, 151). In 2014, two drugs, pirfenidone and
nintedanib, were approved by the FDA for the treatment of PF (152).
However, effective therapeutic options for PF are still lacking, and
current treatments only delay disease progression without providing
a complete cure. Moreover, these drugs have undesirable side effects,
such as gastric and intestinal bleeding and severe diarrhea. Lung
transplantation is the last resort for patients, offering some extension
of lifespan, but it is not accessible to most individuals. Therefore,
studying the molecular mechanisms underlying the transition from
acute lung inflammation to PF and identifying new molecular
markers and promising therapeutic targets for preventing PF
development remain important objectives.

4.2 Role of macrophages in
pulmonary fibrosis

Macrophages, as innate immune cells with antibacterial and
phagocytic activity, play a significant role in PF. They are the most
abundant immune cell population, accounting for about 70% (153).
They are widely distributed in the lung and alveolar tissue and are
involved in almost all the physiological and pathological processes of
the lung (154). They are the host lung defense, indispensable
paramount sentry (155, 156), and also play a vital role in the
pathogenesis of PF. Macrophage infiltration is observed in PF (157).
Macrophages are involved in all stages of lung injury and repair and
can both promote and inhibit fibrosis. They play an essential role in
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the removal of lung pathogens clearance and maintaining homeostasis
(157, 158). The pathogenic role of macrophages in PF has been
investigated in multiple studies, involving reactive oxygen species
generation (159-161), stimulation of proteinase-activated receptors
(162, 163), and secretion of pro-fibrotic cytokines (164, 165).

There are three main types of pulmonary macrophages: alveolar
macrophages (AM), interstitial macrophages (IM), and bronchial
macrophages (BM), with AM accounting for more than 90% (166).
Different subtypes of macrophages play distinct roles in lung injury,
repair, and fibrosis (167). Single-cell sequencing of lung tissue from
patients with PF have confirmed that alveolar macrophages play an
essential role in PF (168-170). Alveolar macrophages are the first
cells to come into contact with external pathogens and irritants,
initiating and later resolving lung immune responses. Additionally,
macrophages have other organ-specific functions, such as surfactant
utilization and absorption of apoptosing and destroying cells (171-
174). Monocyte-derived macrophages are key drivers of PF and
supplement alveolar macrophages that are lost immediately upon
injury (175, 176).

The effect of macrophages on PF is mainly related to their
polarization, which occurs during the repeated damage and
abnormal repair of alveolar epithelial cells (177, 178). Epithelial
apoptosis is a critical component of fibrotic disease in many organs,
including the lung (179, 180). Down-regulating the pro-fibrosis
activity of alveolar macrophages or depleting this group of cells can
effectively treat experimental PF (181-183). Macrophages can
polarize into either a pro-inflammatory M1 phenotype or an
alternatively activated M2 phenotype, depending on the
microenvironment in which they reside (184). In response to lung
injury, macrophages undergo a transition into pro-inflammatory
M1 phenotypes and begin to secrete pro-inflammatory cytokines
(TNF-a, IL-6, IL-1) and chemokines (IL-8, CCL7, CCL2), which
leads to the increased chemotaxis and progressive enrichment of
alveolar spaces by monocytes and neutrophils (185), which
aggravate the pulmonary inflammatory response. On the other
hand, M2 polarization releases various cytokines, such as TGF-B1
and IL-10, promoting the generation of myofibroblasts and the
deposition of extracellular matrix, ultimately leading to PF.

During tissue damage and early inflammation stages, the
activation of M1 macrophages promotes inflammation through
extracellular matrix-degrading MMP and pro-inflammatory
cytokines. An active cytokine environment, including Thl
cytokines, IL2, IFN-y, and TNF-a, drives M1 macrophage
activation. In contrast, other types of interstitial lung diseases
(ILDs), including PF, often have a higher proportion of anti-
inflammatory M2 macrophages (186) (Figure 2).

In the progression of PF, M1, and M2, macrophages are recruited
to the site of the lung tissue injury site to regulate the fibrotic process
after basement membrane destruction. M1 macrophages play a crucial
role in matrix degradation by directly and indirectly producing MMP
and various anti-fibrotic cytokines, essential for ECM remodeling and
help reduce the pathological fibrous proliferation observed in late ALI
(187). In contrast, M2 macrophages promote fibrous proliferation and
ECM deposition in lung tissue (188, 189). Therefore, the degree of PF
depends on the balance between M1 and M2 macrophages in the local
microenvironment of lung tissue injury. Studies have shown that
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macrophages, predominantly M2 macrophages, contribute to the
pathogenesis of PF (155, 190). M2 macrophages are the primary
source of TGF-B1 and platelet-derived growth factors that induce
fibroblast differentiation into myofibroblasts, initiating PF (191).
Macrophage subsets may regulate fibrosis by differentiating into
myofibroblasts, acting as sources of cytokines and growth factors
with fibrotic properties, and secreting proteases involved in matrix
remodeling (192). Therefore, the number and phenotype of
macrophages are considered essential for the pathological process of
PF (193, 194). While macrophages are essential for lung defense, they
can also lead to tissue damage (195). Different subtypes of
macrophages play distinct roles in lung injury, repair, and
fibrosis (196).

4.3 Role of myofibroblasts in PF

The main morphological characteristics of PF, such as ECM
deposition and remodeling of lung architecture, are consequences
of a disbalance between two physiological processes in the lungs: (1)
proliferation/apoptosis of fibroblasts and myofibroblasts; (2)
synthesis/degradation of ECM components (197). These processes
are closely interconnected, and the disruption of fibroblast and
myofibroblast functioning is the primary driver behind the
imbalance of ECM homeostasis and the development of PF. The
fibroblastic phenotype present in that diseased lung primarily by the
production of several soluble factors, such as TGF-B, PDGF, VEGF,
and thrombospondin 1, which can differentiate resident fibroblast
into myofibroblasts (170, 181, 195). Regardless of the source of lung
fibroblasts, myofibroblasts, which resemble smooth muscle cells in
terms of their contractile ability and expression of o-SMA, are
considered the key cells in PF development.

Myofibroblasts are the primary effectors responsible for the
excessive production of collagen and other extracellular matrix
proteins in fibrotic lungs (104, 198). These contractile fibroblasts
express 0-SMA and abnormally proliferate in PF. They play a
significant role in the occurrence and progression of PF by
synthesizing and secreting large amounts of ECM components,
such as collagen (I, III, IV, V, and VI), fibronectin, and laminin
(199-201), making them critical in regulating the progression of PF.
Myofibroblasts have also been found to secrete or release various
proteins, lipids, and nucleic acid molecules that contribute to the
pathological characteristics of other cell types in fibrotic lungs (129).

The accumulation of myofibroblasts is considered a marker of
PF (202). Current research indicates that myofibroblasts involved in
PF originate from several sources, including the proliferation and
differentiation of resident fibroblasts, the recruitment of circulating
fibroblasts to injury sites in organs, endothelial-mesenchymal
transformation, and epithelial-mesenchymal transformation (203-
205). The synthesis of pathogenic collagen by myofibroblasts, as the
main effector of tissue fibrosis, and the process of MMT are essential
regardless of the etiology of fibrosis (3, 206-208). Myofibroblast
transdifferentiation is a marker of the fibrotic response. Evidence
suggests that macrophages are involved in regulating fibrotic
responses, with pulmonary myofibroblasts being the primary
target for the development of new therapies for IPF (104, 198).
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4.4 MMT related signaling pathways in the
development of PF

As described earlier, fibrosis is defined by the excessive
accumulation of fibrous connective tissue in and around inflamed
or damaged tissue, which can lead to permanent scarring, organ
malfunction, and, ultimately, death, as seen in end-stage liver
disease, kidney disease, IPF, and heart failure (91, 209). The
development of PF involves genes and molecular pathways that
primarily participate in pre- and postnatal lung development (210,
211). The key pathophysiological events of IPF include repetitive
alveolar epithelial cell injury, the presence or absence of local
inflammation, impaired epithelial-mesenchymal crosstalk, and
subsequent fibroblast-to-myofibroblast activation (212-214).
These mechanisms are mediated by abnormally activated
signaling molecules that drive the process of fibrosis, such as
TGF-B, Wnt/B-catenin, hedgehog, Notch, and fibroblast growth
factor signaling pathways, with the TGF-f signaling pathway being
the most critical (215, 216). While most of these pathways are
inactive in the adult organism, they become active during tissue
regeneration, and the chronic pathological activation of these
signaling pathways is associated with injury restoration processes
in all organs, including the lungs (210, 217, 218). Furthermore, a
recent study demonstrated that nintedanib, one of the FDA-
approved anti-fibrotic drugs, modulates TGE-3, VEGF, and Wnt/
[3-catenin signaling pathways, further supporting the central role of
these pathways in PF development (219) (Figure 3).
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4.4.1 TGF-B pathway
4.4.1.1 TGF-f biology

TGF-B is a member of a large polypeptide family, modulating
several biological processes, including proliferation, differentiation,
and cell apoptosis in internal organs (219). Initially isolated from
platelets, TGE-B is a multifunctional cytokine that plays a crucial
role in regulating fibrosis both at physiological and pathological
levels (220, 221). The TGF-P signaling pathway is activated during
the development of fibrosis in different tissues and regardless of the
underlying cause. It leads to increased de novo synthesis of TGF-3
by multiple cell types, including macrophages, platelets, and T-cells,
as well as increased release from the extracellular matrix (222-225).
Among the three identified members of the TGF-B family in
mammals (TGF-B1, TGF-B2, and TGF-B3), TGF-B1 is the
predominant form expressed in the immune system, and it is the
most abundant subtype in most tissues, including the skin. TGF-f1
is a pro-fibrotic cytokine and a key initiator of organ inflammation
and fibrosis (226-228). It can induce the differentiation of epithelial
or endothelial cells into myofibroblasts in vitro (229-231).

4.4.1.2 TGF-B/Smad pathway

The TGF-B/Smad pathway is the primary signaling cascade
through which the TGF-f signal is transduced into various cellular
responses. Smad proteins, a family of cytoplasmic signal
transduction proteins, mediate the signals from activated TGF-3
receptors and interact with TGE-P responsive promoters. Smad2
and Smad3 are the key mediators of signals from activated TGF-3
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receptors, and they form complexes with other transcription factors
to bind to DNA and regulate gene expression (232). Classical TGF-
B1 signal transduction operates through TGF-f receptors and
Smad2/3/4 transcription factors (230). In the tissue fibrosis
models, the protective effects observed in Smad3 gene knockout
mice indicate that TGF-B/Smad3 signaling is pro-fibrotic, while
conditional Smad2 deficiency promotes fibrosis, indicating the
opposite effects of Smad2 and Smad3 (233-235). It has been
demonstrated that Smad3 is a key signaling pathway for fibrosis
both in vivo and in vitro (131, 236, 237). The key role of Smad3 in
the development of fibrosis has also been reported in many disease
models, including bleomycin-induced PF (234). The TGF-B
signaling cascade involves the binding of TGF-f to its receptors
(TGF-BRII and TGF-BRI), leading to the activation of Smad2 and
Smad3, their translocation into the nucleus, and the transcription of
target genes (238).

4.4.1.3 Pathogenic effect of TGF-J in fibrosis

Macrophages are the primary source of the main effector
molecule TGF-B in fibrosis. TGF-B is the primary effector
molecule in fibrosis, promoting the proliferation of fibroblasts and
collagen synthesis by producing growth factors, thereby promoting
fibrosis (239). It accelerates the progression of PF by recruiting and
activating monocytes and fibroblasts and inducing ECM production
at the site of injury (240). Macrophages are one of the most
important regulators of the fibrotic response, secreting cytokines,
growth factors, and ECM-regulating proteins (43). They promote
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PF by releasing pro-fibrotic mediators (such as TGEF-B),
chemokines, and matrix metalloproteinases. TGF-f3 stimulates
lung fibroblasts, circulating fibroblasts, and small airway epithelial
cells to transdifferentiate into myofibroblasts (199).

TGEF-B promotes fibrosis through various mechanisms,
including the induction of myofibroblasts, increased synthesis of
ECM components, and inhibition of collagen degradation (241). It
plays a central role in the pathogenesis of PF by promoting the
activation, proliferation, and differentiation of epithelial cells and
collagen-producing myofibroblasts (242). TGE-f signaling is one of
the most potent inducers of fibroblast activation, stimulating the
synthesis of ECM components and inhibiting their degradation by
matrix metalloproteinases (243, 244). It also regulates the
differentiation of fibroblasts into myofibroblasts (245). TGF-B1,
2, and B3 are all involved in embryonic lung development, the
maintenance of organ homeostasis, and responses to tissue damage.
Increasing evidence suggests that the TGF-[3 pathway is activated in
chronic lung diseases, including IPF (246). IPF and interstitial PF
are particularly serious lung diseases, with TGF-f3 signaling pathway
playing a significant role in fibrosis (247, 248).

4.4.2 Wnt/B- catenin signaling pathway

The Wnt gene family consists of 19 secreted glycoproteins and
is involved in the regulation of mammalian embryonic development
and tissue regeneration, making up the Wnt signaling pathway
(249). Classical Wnt signal transduction inhibits the
phosphorylation of B -catenin in the cytoplasm and subsequent
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translocation into the nucleus and activation of the transcription
factor TCF/LEF (250). The Wnt signaling pathway plays a vital role
in the development and maintenance of multiple organ systems,
including the brain, intestine, hematopoietic system, skin, and lung
(251-253). Increasing evidence shows that the Wnt family of
secreted glycoproteins and their associated signaling pathways are
involved in the development and play an active role in wound repair
and regeneration events, including PF, cancer, heart valve
formation, and aortic valve calcification (217, 254-257).

Classical Wnt signal transduction regulates the expression of
multiple gene families, including MMPs and angiogenic growth
factors, which play a role in PF development (258, 259). Activation
of the classical Wnt pathway is a common feature observed in
fibrotic disorders, occurring in systemic fibrotic conditions like SSc
and isolated organ fibrosis in the lung, kidney, or liver (19, 260-
265). The data suggest that inhibition of the classical Wnt pathway
may be an effective way to target TGF-f signaling in fibrotic
diseases (266). Several Wnt genes, including Wnt2, Wnt5a,
Wnt7b, Wntll, and Wntl3, are expressed in developing and
adult lungs (251). In the adult lung, the Wnt pathway maintains
balance by regulating stem and precursor cells in both healthy
conditions and during the response to injury (267).

Wnt/B-catenin signal transduction induces an anti-apoptotic
and pro-fibrotic phenotype in lung fibroblasts, leading to fibroblast
proliferation and differentiation into myofibroblasts, exacerbating
lung tissue fibrosis (268). Activation of AEC II by Wnt/fB-catenin
increases the production of IL-1B, stimulating inflammatory and
pro-fibrotic responses (269). Atypical activation of Wnt also
stimulates fibroblast proliferation and increases the synthesis of
ECM components (270). In adult lungs, the Wnt pathway
maintains homeostasis by regulating stem and precursor cells,
both in healthy conditions and during response to injury (267,
271). Additionally, Wnt signaling is involved in epithelial cell
proliferation, EMT, myofibroblast differentiation, and collagen
synthesis (217). In the epithelial cells of the lungs, Wnt stimulates
the production of surfactant and AEC II into AEC I differentiation
(272). In contrast, in lung fibroblasts, Wnt increases proliferation
and fibronectin expression and inhibits apoptosis (270). Recent
studies have also demonstrated the activation of Wnt signaling in
IPF, suggesting that this pathway plays a role in the pathogenesis of
human PF (19, 217). Inhibition of Wnt/B-catenin signaling leads to
the neutralizing of bleomycin-induced PF (273). The Wnt pathway
takes part in PF pathogenesis through multiple mechanisms,
including: (1) Wnt/B-catenin signaling pathway induces the anti-
apoptotic and pro-fibrotic phenotype in lung fibroblasts, leading to
fibroblast proliferation and their differentiation into myofibroblasts,
exacerbating lung tissue fibrosis (268). (2) Activation of AEC II by
Wnt/B-catenin increases IL-1B production, stimulating
inflammatory and pro-fibrotic responses (269). (3) Atypical
activation of Wnt also stimulates fibroblast proliferation and
increases the synthesis of ECM components (270).

Additionally, cooperative signaling pathways of Wnt/f3-catenin
and TGF- play an essential role in the development of PF: TGF-3
was shown to induce EMT synergistically with Wnt/B-catenin
(274). These findings suggest that targeting the interplay between
TGF-B and Wnt/B-catenin may be a promising therapeutic
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approach for PF. By inhibiting or modulating the cross-talks
between these pathways, it may be possible to intervene in the
pathogenesis of PF and potentially mitigate its progression.

4.4.3 Notch signaling pathway

The Notch signaling pathway is composed of four members in
mammalian cells (275). With the exception of Notch4, all genes
have been shown to regulate myofibroblast differentiation (276-
279). Notchl and Notch3 are known to stimulate lung fibroblasts
(280). Moreover, Notch2 inhibit TGF-B induced o-SMA and
collagen I gene expression by down-regulating Notch3 in
myoblasts in hepatic stellate cells (278, 281), while in alveolar
epithelial cells, Notchl induces phosphorylation of Smad3 and
activates o-SMA gene transcription in a manner dependent on
SRF binding sites and TGF-B control elements (282). Other
experiments have also shown that Notchl inhibits fibroblast
proliferation dependent on Wntl1-dependent WISP-1 expression
(283). Notch signal transduction in fibrosis (including scleroderma
(284)), may be due to the activation of this signaling pathway for
myofibroblast differentiation, including through EMT)and
endothelial-mesenchymal transformation.

The Notch signaling pathway is highly conserved and plays a
crucial role in embryonic development and the homeostasis of
various organs, including the lungs (285). It functions through
paracrine signaling and one-way transmembrane receptors,
regulating cell development during organogenesis. In adult lungs,
along with other signaling pathways, the Notch pathway regulates
stem cell functions and wound healing (285, 286). Enhanced Notch
signaling has been observed during the development of PF (287),
and the suppression of JAG1, Notchl, NICD, and Hes-1 has been
shown to mitigate bleomycin-induced PF (288).

4.5 Effects of MMT on PF

MMT has been shown to contribute to interstitial fibrosis in
patients with chronic renal allograft injury, a mouse model of
unilateral ureteral obstruction (UUO), and progressive chronic
kidney disease (1). Macrophages expressing CD68+ and o-SMA+
markers play a significant role in collagen production, particularly
collagen I, and are associated with lung injury and interstitial
fibrosis (12, 196, 289). MMT cells with M2 phenotype have been
found to contribute to PF in animal models, including the lungs of
rats with unilateral ureteral obstruction (UUO) (1, 196, 289).
Eplerenone reduced the accumulation of MMT cells in the lung.
In UUO rat lung fibrosis, UUO-induced lung injury, and fibrosis,
MMT cells were found to account for the myofibroblast group,
confirming that MMT plays a role in PF. These MMT cells in the
lung exhibited an apparent M2 phenotype, indicating that the MMT
process may be an important pathway leading to PF (12).

MMT plays a crucial role in the progression of chronic
inflammation to pathological fibrosis, and the severity of interstitial
fibrosis is closely related to the number of MMT cells (1, 51, 196, 289).
MMT contributes to an increase in the population of myofibroblasts in
the lungs, which have a strong proliferative capacity and further
promote the proliferation of fibroblasts. Myofibroblasts, a subset of
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activated fibroblasts, are primarily responsible for organ deformation
by inducing the deposition of fibrous collagen during tissue fibrosis
(290). Upon transdifferentiation, myofibroblasts secrete various
components of the extracellular matrix, including collagen, leading to
excessive deposition of extracellular matrix in the lungs, a key
pathological characteristic of PF. This excessive deposition disrupts
the normal alveolar structure, resulting in alveolar collapse and reduced
lung function.

The pro-fibrotic cytokine TGF-B1 is an essential initiator of
organ inflammation and fibrosis by activating the downstream
Smad signaling cascade, especially the Smad3 signaling cascade (6).
Smad3 is a crucial transcription factor for classical TGF-B1 signal
transduction (234, 291). The inhibition of MMT by targeting
cytokines such as TGF-B1 or blocking the Smad3 signal pathway
can slow down the process of PF. Moreover, the non-receptor
tyrosine kinase Src, which can be activated by TGF-B1, has been
closely associated with tissue fibrosis. Inhibition of Src has been
shown to block MMT in animal models and reduce the severity of PF
induced by bleomycin (292-294). However, further research is
needed to fully understand the role of MMT in Src-mediated PF
and explore the potential of Src-targeted therapy for blocking MMT
and treating PF.

In summary, MMT plays an essential role in the process of PF,
which accelerates the process of PF by promoting the
transdifferentiation of macrophages into myofibroblasts. Inhibiting
the MMT process represents a potential therapeutic target for anti-
fibrotic treatment. Future studies should focus on elucidating the
regulatory mechanisms of MMT and its specific role in PF to provide
novel insights and treatment strategies for PF. A comprehensive
treatment approach considering various factors, including
inflammation control, inhibition of the fibrotic process, and
improvement of lung function, is essential for effectively
managing PF.

4.6 Effects of MMT on lung cancer

Lung cancer is the leading cause of death worldwide. For
decades, it has remained the second most common cancer and
the leading cause of cancer deaths, accounting for about 11.4% of
new cancer cases and 18% of cancer deaths globally in 2020.
Cancer-associated fibroblasts (CAFs) are essential in tumor
microenvironment (TME) driven cancer progression. CAFs are
the most prominent stromal components (295). CAFs, a subtype
of myofibroblasts, contribute to the malignancy and advancement
of cancer (296). Cancer cells possess heterogeneity, versatility, and
adaptability, resulting in primary and secondary drug resistance
(297). The degree of macrophage-myofibroblast transition (MMT)
has been found to be closely associated with the prognosis of certain
cancers (297). MMT is an essential source of CAFs in non-small cell
lung cancer (NSCLC). The hematopoietic transcription factor
Runxl has been identified as a critical regulator of MMT in
cancer patients. Inhibition of Runxl, macrophage-specific and
systemic, effectively blocks MMT-driven tumor formation in vivo,
making it a potential therapeutic target for eliminating pro-tumor
CAFs in patients with NSCLC (298).
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Myofibroblasts can secrete various growth factors and
cytokines, such as TGF-B and PDGF, which can stimulate the
proliferation and migration of tumor cells and promote the progress
of cancer. The TGF-P/Smad3 signal pathway is a critical regulatory
factor promoting tumor microenvironment (299-301). It is
essential to initiate MMT in chronic inflammatory diseases,
including cancer. The MMT process and tumor growth in lung
cancer are tightly regulated by Smad3 (302). TGF-f/Smad3 signal
transduction is a key regulatory factor in the tumorigenic
microenvironment. Recent evidence indicates that TGF-f can
trigger the M1/M2 polarization of TAMs by activating Smad2/3
and PI3K/AKT pathways, thus enhancing the transcription of
tumorigenic effectors such as IL-10, VEGFA, and CXCR4 (303).
However, targeting Smad3 also inhibits T cell anti-cancer
immunity, highlighting the complexity of potential therapeutic
strategies (5, 207, 293, 304).

MMT is a critical pathophysiological process within the tumor
microenvironment, leading to the generation of myofibroblasts that
secrete inflammatory factors and fibrosis-related proteins in tumor
tissues, promoting inflammation and fibrosis changes in the tumor
microenvironment (305). Co-expression of TAM markers (CD68)
and CAF markers (0-SMA) has been observed in lung, renal, and
prostate cancers, indicating the presence of MMT in these types of
cancer (1, 2, 196, 301). An interesting phenomenon in MMT is the
further differentiation of TAMs into CAFs. Silencing Smad3
specifically in macrophages effectively inhibits MMT and
consequently impedes CAF-mediated cancer progression. These
findings highlight the significance of macrophage Smad3 in
regulating CAFs through MMT, providing a specific therapeutic
target for cancer immunotherapy (5). Given the critical role of
MMT in cancer progression, inhibiting MMT may become a new
target for cancer treatment. By blocking the process of MMT, the
support of the tumor microenvironment can be weakened, the
proliferation and migration of cancer cells can be inhibited, and the
prognosis of cancer can be improved. Therefore, it is significant to
study the mechanism and intervention strategy of MMT for
developing new cancer treatment methods and improving
cancer prognosis.

5 Summary and prospect

Organ fibrosis is a common pathway by which various chronic
diseases progress to an end-stage state. The conversion of MMT is a
process where bone marrow-derived macrophages differentiate into
myofibroblasts, promoting organ fibrosis during injury. This paper
reviews the origin, distribution, and characteristics of macrophages
and myofibroblasts in organ fibrosis, along with their pathological
effects on diseases caused by organ fibrosis. The purpose is to
further understand MMT and its signaling pathway and to
determine a new target for organ fibrosis treatment.

Current research on MMT primarily focuses on renal fibrosis,
with limited studies on fibrotic diseases in other organs. The
mechanisms and influencing factors of the conversion of MMT
still require deeper exploration. Under specific conditions, MMT
provides new ideas and possibilities for treating kidney, lung, and
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liver diseases. Future studies need to focus on the crucial role of the
TGF-B/Smad3 signaling pathway in the progression of MMT and
organ fibrosis. Targeting the TGF-f/Smad3 signaling pathway for
MMT treatment is expected to become a viable strategy for the
prevention and treatment of progressive fibrosis.

The discovery of the MMT process also provides a new
direction for studying the possible mechanisms by which
macrophages promote fibrosis and offers a basis for intervening
in myofibroblast activity through multiple pathways. MMT not
only serves as a new therapeutic target for the prevention of fibrotic
diseases but also acts as a key checkpoint for the development of
chronic inflammation into pathogenic fibrosis. Understanding and
elucidating the phenomenon of MMT and its potential signaling
pathways will aid in identifying therapeutic targets for fibrosis.
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