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Introduction: Gliomas are the most common and aggressive type of primary

brain tumor, with a poor prognosis despite current treatment approaches.

Understanding the molecular mechanisms underlying glioma development and

progression is critical for improving therapies and patient outcomes.

Methods: The current study comprehensively analyzed large-scale single-cell

RNA sequencing and bulk RNA sequencing of glioma samples. By utilizing a series

of advanced computational methods, this integrative approach identified the

gene UPP1 (Uridine Phosphorylase 1) as a novel driver of glioma tumorigenesis

and immune evasion.

Results: High levels of UPP1 were linked to poor survival rates in patients.

Functional experiments demonstrated that UPP1 promotes tumor cell

proliferation and invasion and suppresses anti-tumor immune responses.

Moreover, UPP1 was found to be an effective predictor of mutation patterns,

drug response, immunotherapy effectiveness, and immune characteristics.

Conclusions: These findings highlight the power of combining diverse machine

learning methods to identify valuable clinical markers involved in glioma

pathogenesis. Identifying UPP1 as a tumor growth and immune escape driver

may be a promising therapeutic target for this devastating disease.
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Introduction

Gliomas are the most common and aggressive type of primary

brain tumor, with a poor prognosis despite current treatment

approaches. Understanding the molecular mechanisms underlying

glioma development and progression is critical for improving

therapies and patient outcomes (1). Recent advances in single-cell

sequencing (scRNA-seq) have provided unprecedented resolution

into the cellular heterogeneity of gliomas, revealing diverse

populations of tumor, immune, and stromal cells (2, 3). At the

same time, bulk tumor sequencing has identified key driver

mutations and signaling pathways dysregulated in gliomas (4, 5).

However, integrating single-cell and bulk tumor data to identify

critical genes and pathways remains an important challenge.

Immune evasion is a key hallmark of cancer, where tumor cells

are able to avoid detection and destruction by the body’s immune

system. Understanding the mechanisms of immune evasion in cancer

is crucial for the development of effective immunotherapies, which

aim to overcome these immune evasion strategies and reactivate the

body’s immune system to recognize and eliminate cancer cells (6).

In this study, we utilized diverse machine learning methods to

comprehensively analyze scRNA-seq and bulk RNA sequencing of

glioma samples (7). Through a series of advanced computational

techniques, this integrative approach identified UPP1 (Uridine

Phosphorylase 1) as a novel driver of glioma tumorigenesis and

immune evasion. High UPP1 expression was linked to poor patient

survival. Functional experiments revealed that UPP1 promotes tumor

cell proliferation and invasion while suppressing anti-tumor immune

responses. Additionally, UPP1 effectively predicted mutation

characteristics, drug response, immunotherapy response, and

immune features. These findings highlight the power of integrating

single-cell and bulk tumor data from over 3,000 samples to identify

critical genes involved in glioma pathogenesis. Identifying UPP1 as a

tumor growth and immune escape driver suggests it may be a

promising therapeutic target for this devastating disease.
Materials and methods

Data collection and processing

The scRNA-seq data of human glioblastoma (GBM) samples

were obtained from the Single Cell Portal platform (SCP50 and

SCP393) and processed using Smart-seq2. The bulk-sequencing data

of human glioma samples were obtained from the TCGA (The

Cancer Genome Atlas), CGGA (Chinese Glioma Genome Atlas),

and GEO (Gene Expression Omnibus) databases. The current study

included over 3,000 samples. The raw data from the GEO database

was generated using the Affymetrix and Agilent platforms. The robust

multichip average (RMA) technique accomplished the background

correction and normalization. The RNA-sequencing data were

obtained from the TCGA and CGGA data sites. Transcripts per

kilobase million (TPM) values were created by converting the

fragments per kilobase million (FPKM) values into values with a

signal strength comparable to the RMA-processed values.
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Computational analysis

Uniform Manifold Approximation and Projection (UMAP)

function from the R package Seurat was used to depict the

microenvironment cells in the scRNA-seq data. Differentially

expressed genes (DEGs) between the immune cells and neoplastic

cells were identified. 182 immune escape (IE) pathway genes were

collected (8). Weighted Correlation Network Analysis (WGCNA) was

performed on the TCGA glioma dataset to determine the IE-related

genes (9). Soft threshold settings were established to ensure a scale-free

topology network and generate a TOMmatrix. A power of b = 10 was

used as the parameter. Blue module genes were extracted for

subsequent analysis. The intersected genes between IE-related genes

and DEGs were identified. Univariate Cox regression analysis was

performed on intersected genes. Machine learning, RSF (Random

Survival Forests) analysis (10), was performed on prognostic

intersected genes. Machine learning, LASSO (Least Absolute

Shrinkage and Selection Operator) regression analysis (11), was

further performed on prognostic intersected genes. The R package

survminer was used to create the survival curves of UPP1-related

groups. Gene Set Enrichment Analysis (GSEA) was performed on

UPP1. The R package oncoPredict was used to predict drug responses

related to UPP1 (12). GISTIC 2.0 analysis was performed on UPP1

(13). The R packages maftools was used to generate the mutation

landscape (14). The R package ComplexHeatmap was used to generate

a heatmap of the immune infiltrating cells calculated by TIMER,

MCPcounter, and ssGSEA (15–18) related to UPP1. The R package

ComplexHeatmap was also to create a heatmap of the immune

modulators related to UPP1.
In vitro validation on UPP1

The glioma cell lines U251 and LN229 and microglia cell line

HMC3 were purchased from iCell. Two siRNA sequences of UPP1

(Forward AGGCAGAGUUUGAGCAGAUTT; Forward

UCAAGAAGAAACUGAGCAATT) were used to silence the

expression of UPP1. Total RNA was extracted from siRNA-

transfected glioma cells. The extracted RNA was then reverse-

transcribed into cDNA using a reverse transcriptase enzyme. Next,

the cDNA was used as a qPCR amplification template. Gene-specific

primers were used to measure the abundance of target gene transcripts.

The qPCR reaction was monitored in real-time, allowing for precise

quantification of mRNA levels. Relative expression was calculated

using the 2^-DDCt method, with normalization to endogenous

control genes. The EdU assay was employed to assess cell

proliferation. Glioma cells were incubated with the thymidine analog

EdU, which gets incorporated into the DNA of proliferating cells

during S-phase. The stained cells were then analyzed by microscopy.

The percentage of EdU-positive cells reflects the fraction of

proliferating cells in the population, providing a quantitative measure

of cell proliferation. The Transwell assay was used to evaluate the

migratory capabilities of glioma cells. Cells were seeded onto the top

chamber of a Transwell plate with a porous membrane. Cells that

migrated through the porous membrane to the bottom chamber were
frontiersin.org
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quantified. The Co-culture Transwell assay was used to evaluate the

migratory capabilities of macrophages. Macrophages were seeded onto

the top chamber of a Transwell plate, and glioma cells were seeded onto

the down chamber of a Transwell plate. Cells that migrated through the

porous membrane to the bottom chamber were quantified.
Statistical analysis

All statistical analyses were conducted with R. Student’s t-test

and wilcoxon test were used to compare normally distributed

variables and non-normally distributed data between the two

groups, respectively. P <0.05 was considered statistically significant.
Results

The scRNA-seq analysis for
malignant markers

The microenvironment cells (astrocyte, oligodendrocyte,

macrophage, microglial cell, neoplastic, neural stem cell, neuron,

T cell, etc.) in GBM are shown in Figure 1A. The major types of

immune cells (macrophage, microglial cell, T cell) and neoplastic

cells in GBM are shown in Figure 1B. The immune cells and

neoplastic cells in GBM are shown in Figures 1C, D. DEGs

between the immune cells and neoplastic cells are shown

in Figure 1D.
WGCNA for IE-related markers

ssGSEA was performed on IE pathway genes to calculate the IE

score. Scale-free topology model fit and mean connectivity are

shown in Figure 2A. WGCNA-based gene models in the glioma

dataset are shown in Figure 2B. Correlation between gene modules

and IE score showed that the blue module was the most correlated

among the nine gene modules (Figure 2C). Gene significance is

significantly associated with module membership in the blue

module (Figure 2D).
Machine learning for potent markers

The high IE group is related to worse survival (Figure 3A). 69

intersected genes between IE-related genes and malignant genes are

identified (Figure 3B). Univariate Cox regression analysis on

intersected genes showed that 21 genes were hazardous

(Figure 3C). RSF analysis was performed for dimension reduction

of prognostic intersected genes, which came to CD151, EFEMP2,

PLS3, TMSB10, and UPP1 (Figure 3D). LASSO regression analysis

was further performed for dimension reduction of prognostic
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intersected genes, which also came to CD151, EFEMP2, PLS3,

TMSB10, and UPP1 (Figure 3E).
Prognostic value of UPP1

Univariate and multivariate Cox regression analysis on UPP1 and

clinical factors (age, gender, IDH, 1p19q, MGMT) showed that UPP1

was an independent prognostic factor (Figure 4A). The high UPP1

group was related to worse survival (Figure 4B). Univariate Cox

regression analysis on UPP1 in different glioma datasets showed that

UPP1 was a hazardous marker (Figure 4C). The high UPP1 group

was related to worse survival in different glioma datasets (Figure 4D).
In vitro validation on UPP1

Given the potential prognostic value of UPP1, experimental

validation was performed. RT-qPCR assay showed that UPP1

expression was significantly suppressed in siRNA-transfected

groups in U251 (Figure 5A) and LN229 (Figure 5B) cells. EdU

assay showed that the proliferated glioma cells were significantly

reduced in siRNA-transfected groups in U251 and LN229 cells

(Figures 5C, F). Transwell assay shows the migrated glioma cells

were significantly reduced in siRNA-transfected groups in U251

and LN229 cells (Figures 5D, F). Co-culture Transwell assay showed

the migrated macrophages were significantly reduced in siRNA-

transfected groups in U251 and LN229 cells (Figures 5E, F).
Functional annotations of UPP1

GSEA on UPP1 was performed, and immune pathways such as

cytokine, chemokine, T cell activation, and macrophage activation

were significantly enriched (Figure 6A). This indicates that UPP1 is

intimately linked to the regulation of the tumor immune

microenvironment. Drug prediction of UPP1 revealed that

Dasatinib, Temozolomide, AZD5582, Fludarabine, AZD3759, and

AZD8186 in the low UPP1 group had significantly higher drug

sensitivity (Figure 6B).
Immunological features of UPP1

UPP1 was significantly associated with immune modulators

CD274, CD276, CD28, and ICOSLG (Figure 7A). This suggests that

UPP1 may contribute to immune evasion by modulating the

expression of these immune checkpoint molecules. Besides, UPP1

was significantly associated with immune cells DCs, B cells, T cells,

MDSCs, Tregs, and macrophages (Figure 7B). This indicates that

UPP1 may play a role in shaping the composition and function of

the tumor immune microenvironment.
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Immunotherapy response prediction
of UPP1

ROC curves of UPP1 in four immunotherapy cohorts

showed that UPP1 could effectively predict immunotherapy

responses (Figure 8A). Besides, the high UPP1 group was

associated with better survival in four immunotherapy

cohorts (Figure 8B).
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Mutation characteristics of UPP1

The mutation landscape in the high UPP1 group is shown in

Figure 9A, in which EGFR and PTEN were highly mutated. The

mutation landscape in the low UPP1 group is shown in Figure 9B,

in which TP53 and IDH were highly mutated. Differentially

expressed mutation genes in the high and low UPP1 groups are

shown in Supplementary Figure 1A, in which IDH was the top-
FIGURE 1

scRNA-seq analysis for malignant genes. (A) UMAP shows the microenvironment cells. (B) UMAP shows the major types of immune cells and
neoplastic cells. (C) UMAP shows the immune cells and neoplastic cells. (D) DEGs between the immune cells and neoplastic cells.
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ranked mutated gene in the low UPP1 group. Mutually mutated

gene pairs in the high UPP1 group are shown in Supplementary

Figure 1B. Mutually mutated gene pairs in the low UPP1 group are

shown in Supplementary Figure 1C.
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Pan-cancer analysis of UPP1

UPP1 expression was significantly higher in tumor and normal

tissues in most cancer types (Supplementary Figure 2A). Univariate
FIGURE 2

WGCNA for IE-related genes. (A) Scale-free topology model fit and mean connectivity. (B) Waterfall plot shows the gene models. (C) Correlation
between gene modules and immune escape. (D) Correlation between gene significance and module membership.
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Cox regression analysis of UPP1 confirmed that UPP1 was a

hazardous marker in most cancer types (Supplementary Figure 2B).

Discussion

The rapid advancement of high-throughput genomic and

molecular profiling technologies has generated vast amounts of
Frontiers in Immunology 06
complex biological data in cancer research. This data deluge has

necessitated the development of sophisticated computational

approaches to extract meaningful insights and patterns from the

data (19). Machine learning, a field of artificial intelligence, has

emerged as a powerful tool to tackle these challenges in cancer

research. Machine learning models can analyze multi-omics data,

such as genomics, transcriptomics, and proteomics, to identify
FIGURE 3

Machine learning for potent genes. (A) Survival plot shows the survival outcomes in the high and low IE groups. (B) Intersected genes between
IE-related genes and malignant genes. (C) Univariate Cox regression analysis on intersected genes. (D) RSF analysis on prognostic intersected genes.
(E) LASSO regression analysis on prognostic intersected genes.
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robust molecular biomarkers predictive of cancer risk, prognosis, or

treatment response (20). This can help guide the development of

personalized cancer diagnostics and therapeutics. Our integrative

analysis of single-cell and bulk tumor sequencing data by machine

learning identified the gene UPP1 as a critical driver of glioma

tumorigenesis and immune evasion. UPP1 encodes the enzyme
Frontiers in Immunology 0
uridine phosphorylase 1, which catalyzes the reversible

phosphorolysis of uridine and 2’-deoxyuridine (21). It plays a

significant role in the ubiquitin-proteasome system, which is

essential for maintaining cellular homeostasis by regulating

protein turnover. In the context of cancer, UPP1 is involved in

various aspects of cancer development and progression, including
FIGURE 4

Prognostic value of UPP1. (A) Univariate and multivariate Cox regression analysis on UPP1 and clinical factors. (B) Survival plot shows the survival
outcomes in the high and low UPP1 groups. (C) Univariate Cox regression analysis on UPP1 in different glioma datasets. (D) Survival plot shows the
survival outcomes in the high and low UPP1 groups in different glioma datasets.
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regulation of protein homeostasis, cell cycle regulation, apoptosis

and survival, angiogenesis and metastasis, and immune

evasion (22).

Elevated expression of UPP1 was associated with significantly

worse patient survival across multiple independent glioma cohorts.
Frontiers in Immunology 08
Functional studies demonstrated that silencing UPP1 in glioma cell

lines reduced tumor cell proliferation and invasion, enhancing

anti-tumor immune responses through increased cell recruitment

and activation of macrophages. These results indicate that UPP1

plays a dual role in promoting intrinsic tumor growth and
FIGURE 5

In vitro validation on UPP1. (A) RT-qPCR assay shows the RNA expression of UPP1 in different groups in U251 cells. (B) RT-qPCR assay shows the
RNA expression of UPP1 in different groups in LN229 cells. (C) EdU assay shows the proliferated glioma cells in different groups in U251 and LN229
cells. (D) Transwell assay shows the migrated glioma cells in different groups in U251 and LN229 cells. (E) Co-culture Transwell assay shows the
migrated macrophages in different groups in U251 and LN229 cells. (F) Statistical analysis of RT-qPCR, EdU, and Transwell assays in U251 cells.
(G) Statistical analysis of RT-qPCR, EdU, and Transwell assays in LN229 cells. **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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immunosuppression within the glioma microenvironment. UPP1

plays a significant role in modulating macrophage activity through

several potential mechanisms: UPP1 is involved in the ubiquitin-

proteasome pathway, where it tags dysfunctional proteins for

degradation. By regulating protein turnover, UPP1 helps maintain

macrophage homeostasis, ensuring that only functional proteins are

present for critical immune responses. UPP1 can influence the
Frontiers in Immunology 09
production of pro-inflammatory cytokines. By degrading specific

proteins involved in inflammatory signaling pathways, UPP1 may

help fine-tune the macrophage response to pathogens and tissue

damage, preventing excessive inflammation that could lead to tissue

injury. Macrophages play a crucial role in antigen presentation.

UPP1 may facilitate the processing of antigens by regulating the

degradation of precursor proteins, thus enhancing the ability of
FIGURE 6

Functional annotation of UPP1. (A) GSEA on UPP1. (B) Drug prediction of UPP1. **, P < 0.01; ***, P < 0.001.
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macrophages to present antigens to T cells and initiate adaptive

immune responses. UPP1 can affect the expression of surface

receptors involved in phagocytosis. By regulating the turnover of

these receptors, UPP1 may enhance or diminish the macrophage’s

ability to engulf and eliminate pathogens or debris. In response to

environmental stress, UPP1 can help macrophages adapt by

managing the levels of proteins involved in stress responses. This

may enhance macrophage survival and functionality under adverse

conditions, such as during infection or inflammation. UPP1 may

interact with various signaling pathways, such as NF-kB and MAPK

pathways, which are critical for macrophage activation and

function. By modulating these pathways, UPP1 can influence

macrophage differentiation, activation, and effector functions.

The identification of UPP1 as a driver of glioma malignancy is

notable, as the role of this enzyme in cancer pathogenesis has been

relatively unexplored. Previous studies have primarily focused on

the potential utility of UPP1 as a target for cancer chemotherapy,

given its involvement in the metabolism of nucleoside analogs (23,

24). Our findings suggest a more fundamental role for UPP1 in

regulating core tumorigenic processes, including cell proliferation,

migration, and immune evasion.

Mechanistically, UPP1 may promote glioma progression through

several potential pathways. At the metabolic level, UPP1-mediated

catabolism of nucleosides could influence nucleotide biosynthesis,
Frontiers in Immunology 10
DNA repair, and other proliferation-associated processes (25). UPP1

has also been linked to regulating inflammatory signaling cascades,

which could modulate the anti-tumor immune response (26, 27).

Through the PI3K/AKT/mTOR pathway, UPP1 overexpression also

increases the production of PD-L1, which aids in inhibiting CD8+ T

cells and shapes the immunosuppressive nature of the TME (27).

Further investigation is needed to fully elucidate the downstream

effectors of UPP1 that drive its pro-tumorigenic and

immunosuppressive functions. It is hypothesized that PP1’s role in

nucleotide metabolism allows cancer cells to adapt their energy

production and biosynthetic pathways, enhancing their survival

and competitive advantage in nutrient-poor environments.

In addition to its prognostic significance, our analysis indicates

that UPP1 expression levels could be a useful biomarker to predict

other clinically relevant tumor characteristics. High UPP1 was

associated with specific genomic alterations, drug response

profiles, and immune infiltration patterns. The differential

mutation patterns observed in the high UPP1 and low UPP1

groups may provide insights into the potential mechanisms by

which UPP1 expression influences cancer biology. For example, the

interplay between UPP1 and the deubiquitination of key oncogenic

or tumor suppressor proteins, such as those encoded by EGFR,

PTEN, TP53, and IDH, may be an important factor in cancer

development (28). This suggests that UPP1 could be a versatile
FIGURE 7

Immune features of UPP1. (A) Correlation between UPP1 and immune modulators. (B) Correlation between UPP1 and immune cells. **, P < 0.01; ***,
P < 0.001; ****, P < 0.0001.
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marker to help guide personalized treatment approaches for glioma

patients. Notably, the expression level of UPP1 could be used as a

biomarker to predict the sensitivity of cancer cells to certain drugs,

such as Dasatinib, Temozolomide, AZD5582, Fludarabine,

AZD3759, and AZD8186. Understanding the relationship

between UPP1 expression and drug sensitivity could help develop

personalized treatment strategies where the choice of drug therapy

is based on the UPP1 status of the cancer (29, 30). In addition, the
Frontiers in Immunology 11
ability of UPP1 to predict immunotherapy responses and its

association with better survival in immunotherapy-treated

patients suggest a complex interplay between UPP1 and anti-

tumor immunity. While high UPP1 expression was generally

associated with immune suppression, the improved outcomes in

the immunotherapy cohorts indicate that the heightened immune

response elicited by immunotherapy can overcome the suppressive

effects of UPP1.
FIGURE 8

Immunotherapy prediction of UPP1. (A) ROC curves of UPP1 in four immunotherapy cohorts. (B) Survival plot shows the survival outcomes in the
high and low UPP1 groups in four immunotherapy cohorts.
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In conclusion, our study has uncovered a previously

unappreciated role for the metabolic enzyme UPP1 as a driver of

glioma malignancy. Targeting UPP1 or its downstream effectors

may represent a promising therapeutic strategy for this devastating

disease. Further research is needed to elucidate the precise

molecular mechanisms by which UPP1 drives tumor progression

and immune evasion. Investigating the downstream signaling

pathways and regulatory networks of UPP1 could uncover
Frontiers in Immunology 12
additional therapeutic vulnerabilities. Besides, the role of UPP1 in

tumorigenesis and immune evasion identified in this study may not

be limited to glioma. Investigating the potential implications of

UPP1 in other cancer types could uncover broader therapeutic

applications. There are also some limitations of the study. While

UPP1 shows promise as a therapeutic target, the study does not

provide a detailed analysis of potential resistance mechanisms or

how targeting UPP1 could interact with existing therapies. Besides,
FIGURE 9

Mutation characteristics of UPP1. (A) Mutation landscape in high UPP1 group. (B) Mutation landscape in low UPP1 group.
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a real-world cohort is expected to confirm the prognostic roles

of UPP1.
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SUPPLEMENTARY FIGURE 1

Mutation characteristics of UPP1. (A) Differentially expressed mutation genes
in the high and low UPP1 groups. (B) Mutually mutated gene pairs in high

UPP1 group. (C) Mutually mutated gene pairs in low UPP1 group.

SUPPLEMENTARY FIGURE 2

Pan-cancer analysis of UPP1. (A) Vlnplot shows the expression of UPP1 in
tumor and normal tissues in pan-cancer. (B) Univariate Cox regression

analysis of UPP1 in pan-cancer.
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