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Background: Cartilage repair is a significant clinical challenge because of the

limited intrinsic healing capacity. Current therapeutic strategies, such as cell

transplantation therapy, aim to overcome this challenge by replacing damaged

tissue with healthy cells. However, the long-term survival and functionality of

transplanted cells remain major hurdles.

Objective: This study investigated the impact of chondrocyte passaging on

glycan profiles and their antigenic properties. We hypothesized that alterations

in glycan composition due to passaging may contribute to the enhanced ability

to activate macrophages, thereby affecting the outcome of cel l

transplantation therapy.

Methods: Peritoneal macrophages and primary articular chondrocytes were

isolated from C57BL/6 mice to establish direct and indirect coculture models.

Macrophage activation was assessed by measuring the concentrations of IL-6

and nitric oxide in the culture supernatants or their gene expression. Glycome

analysis of various glycoconjugates was performed by glycoblotting methods

combined with the SALSA procedure for N-glycans and GSLs and the BEP

method for O-glycans.

Results: Our results revealed that direct coculture of macrophages with

passaged chondrocytes increased the production of proinflammatory

cytokines, including IL-6 and NO, as the number of passages increased. With

increasing passage number, the expression of GD3 substantially decreased, and

the expression of GM3, especially GD1a, significantly increased. Coculturing
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passaged GM3S knockout chondrocytes with macrophages significantly

suppressed IL-6 expression, implying reduced macrophage activation.

Conclusion: The observed activation of macrophages due to alterations in the

glycan profile of chondrocytes provides a possible explanation for the

antigenicity and immune rejection of transplanted cells.
KEYWORDS

passage culture, glycome analysis, antigenicity, chondrocyte, macrophage,
cellular transplantation
1 Introduction

Cartilage repair poses a significant clinical challenge worldwide

because of the limited intrinsic healing capacity of these tissues (1).

Current therapeutic approaches, including cell transplantation

therapy, aim to address this challenge by replacing damaged

tissue with healthy cells (2–4). However, the long-term survival

and functionality of transplanted cells remain major obstacles to the

success of such therapies (5–8).

Previous research has highlighted the importance of cell-surface

glycans in mediating cellular communication and signaling (9–11).

Glycans, intricate carbohydrate structures attached to cell-surface

proteins, regulate various cellular processes by facilitating or

hindering the binding of ligands to their receptors (12, 13). In

particular, glycans play crucial roles in modulating immune

responses (14–16), with implications for tissue regeneration and

repair (17).

One critical aspect of cell transplantation therapy that has

received less attention is the process of passaging, wherein cells

are expanded in culture to generate sufficient numbers for

transplantation (18, 19). Passaging is a routine practice in cell

culture, but its effects on the glycan profile and subsequent

immune responses of recipients remain poorly understood.

Recent evidence suggests that passaging-induced alterations in the

glycan profile of chondrocytes may impact their antigenicity and

immune recognition. For example, studies have shown that the

induction of chondrocyte differentiation changes the glycan

composition of the cell as a reflection of the differentiation

process (20–22). These changes in glycan composition may affect

the interaction between transplanted cells and host immune cells,

such as macrophages, potentially influencing the long-term survival

and functionality of the transplanted cells.

This study aims to address this gap in knowledge by

investigating how the expansion of primary chondrocytes

influences their antigenicity against macrophages through changes

in the glycan profile. We hypothesized that passaging-induced

alterations in the glycan profile of chondrocytes may affect their

recognition and subsequent immune response by macrophages.
02
2 Materials and methods

2.1 Experimental animals

All animal experiments were performed in accordance with

protocols approved by the Institute of Animal Care and Use

Committee of the Hokkaido University Graduate School of

Medicine. C57BL/6 mice were obtained from Japan SLC, Inc.

(Shizuoka, Japan) and used as wild-type (WT) mice. GM3S null

mice were generated as previously described (23). This type of null

mouse was backcrossed with C57BL/6 mice for >11 generations.

The GM3S genotypes of the mice were analyzed via PCR as

described previously (23).
2.2 Isolation of mouse
peritoneal macrophages

Peritoneal macrophages were isolated from six- to eight-week-old

C57BL/6 mice (24). Briefly, one milliliter of 4% Brewer thioglycolate

medium was injected into the peritoneal cavity, allowing the

inflammatory response to proceed for four days. Then, the cells

were harvested by injecting 10 mL of ice-cold PBS into this cavity and

collecting the fluid from the peritoneum. Thereafter, the cells were

washed three times and freshly used in further experiments.
2.3 Isolation of mouse primary
chondrocytes and cell culture

Primary articular chondrocytes were isolated from five-day-old

C57BL/6 N mice via collagenase D according to a standard protocol

(22, 25). In brief, we isolated cartilage from the femoral condyles and

tibial plateau. We took care to remove the hypertrophic zone from

the collected tissues. Then, we treated the tissues with collagenase D

in DMEM at 37°C overnight. The isolated cells were seeded into

dishes or flasks. Primary chondrocytes were cultured in DMEM

supplemented with 10% heat-inactivated fetal bovine serum (FBS;
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Sigma−Aldrich), 2 mM L-glutamine, and 25 mg/L penicillin/

streptomycin. The cells were used between passages 0 and 3.
2.4 Direct coculture of chondrocytes
with macrophages

Murine peritoneal macrophages were seeded on 24-well plates

or 48-well plates at a ratio of 2×105. After three hours, the medium

was changed to remove the nonadherent cells, and the cells were

incubated overnight at 37°C and 5% CO2. Mouse cultured cells were

prepared as described above and resuspended at 4.0×105 cells/ml.

Then, 500 µl of the cell suspension was placed directly upon the

monolayer of the macrophages and incubated at 37°C for 48 hours.

Thereafter, the cells and supernatants were harvested for further

analyses. All experiments were repeated at least two times to obtain

reproducible data.
2.5 Indirect coculture of chondrocytes
with macrophages and cultured cells

Murine macrophages and cultured cells were prepared in the same

manner as those used for direct coculture. The cultured cells were

seeded (2 × 105 cells) onto transwell insert cell cultures (Falcon cell

culture inserts, BD, Franklin Lakes, NJ, USA) and placed on a 24-well

plate of macrophagemonolayer cultures. After 48 hours of incubation,

the cells and supernatants were harvested for further analyses.
2.6 Detection of interleukin-6 (IL-6)
by ELISA

The concentrations of IL-6 in the culture supernatants were

measured via mouse IL-6 DuoSet ELISA (R&D Systems, Inc., USA)

according to the manufacturer’s instructions.
2.7 Quantification of nitric oxide (NO)

NO in the culture supernatant was quantified on the basis of the

amount of nitrite, the product generated upon degradation of NO

(26). A Griess reagent system was used for this assay according to

the manufacturer’s recommendations (Promega, Tokyo, Japan).
2.8 Immunofluorescence (IF) of
chondrocytes with macrophages

Isolated murine macrophages and primary or passaged

chondrocytes were seeded onto a 15 mm micro cover glass

(MASATANI, Japan) and cultured in a 24-well plate for six

hours. The cells were fixed with 10% formalin (Wako, Japan),

treated with 0.1% Triton X-100 for 3 min, and then incubated with

5% FBS (Sigma)-PBS (blocking buffer) for one hour at RT. The cells

were incubated with primary antibodies against murine F4/80 and
Frontiers in Immunology 03
IL-6 (BioLegend) at 1:200 for one hour at 37°C. The bound

antibody was detected by a specific secondary antibody

conjugated with Alexa Fluor®594 (Jackson ImmunoResearch,

West Grove, PA, USA). The cell nuclei were stained with DAPI

(DojindoMolecular Technologies, Kumamoto, Japan). Imaging was

performed by using a Keyence all-in-one microscope (Itasca, IL

60143, USA).
2.9 RNA isolation and quantitative real-
time polymerase chain reaction (PCR)

Total RNA was extracted from each sample via TRIzol reagent

(Thermo Fisher Scientific). For the synthesis of cDNA, reverse

transcription was performed via the GoScript TM reverse

transcriptase kit (Pro-mega, Madison, USA). The cDNA samples

were subjected to quantitative real-time PCR via TB Green® Premix

Ex Taq™ II (Takara, Japan) on a Thermal Cycler Dice Real-Time

System II (model TP900; Takara Bio, Shiga, Japan) with gene-

specific primers (Supplementary Table 1). The relative expression of

each targeted gene to the expression of GAPDH was calculated via

the 2-DDCt method.
2.10 Glycome analysis of
various glycoconjugates

Cultured chondrocytes (> 1 × 106 cells) were washed five times

with PBS and collected via a scraper (Sumilon, Japan). The collected

cells were resuspended in 100 mL of PBS and homogenized via an

ultrasonic homogenizer (TAITEC, Saitama, Japan). The cell lysates

were precipitated with EtOH, and subsequently, the proteinous

pellet and supernatant fractions were separated via centrifugation

(22, 27, 28). The resulting pellet was dissolved in H2O, and the

cellular protein concentration was measured via a BCA protein

assay kit (Thermo Fisher Scientific). The pellet fractions

corresponding to 25 mg and 50 mg of protein were used for N-

glycan and O-glycan analyses, respectively. The supernatant

fraction corresponding to 100 mg of protein was concentrated for

GSL analysis. Glycomic analyses of N-glycans and GSLs were

performed by glycoblotting methods combined with the SALSA

procedure (29, 30). O-glycome analysis was performed via b-
elimination in the presence of pyrazolone analogs (BEP) as

previously described (31). This methodology allows a comparative

analysis of glycomes.
2.11 Statistical analysis

The data were statistically analyzed via an unpaired two-tailed

Student’s t test and one-way analysis of variance followed by the

Kruskal−Wallis test followed by Dunn’s multiple comparison test

via GraphPad software (GraphPad Software, La Jolla, CA, USA).

Differences between groups with a P value less than 0.05 were

considered statistically significant. The results are presented as the

means ± standard deviations (SDs).
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3 Results

3.1 Immunological behaviors of
macrophages to the passaged chondrocytes

Direct coculture of macrophages with passaged chondrocytes

increased the production of proinflammatory cytokines, including
Frontiers in Immunology 04
IL-6 and NO, as the number of passages increased (Figures 1A, B).

However, indirect coculture did not activate macrophages

(Supplementary Figure 1). NO levels were below the datable

limits of the kit used. In cocultured macrophages with passaged

chondrocytes, IL-6 was predominantly detected in F4/80

macrophages (Figure 1C).
FIGURE 1

Immunological behavior through coculture with macrophages and passaged cells. (A), Schematic overview of the increase in the macrophage
immune response due to glycosylation with increasing passage number. (B), IL-6 levels (left panel) and nitric oxide (NO) levels (right panel) released
into the medium at different passage numbers of chondrocytes in a macrophage coculture system (n = 4 mice). The data are presented as the
means ± s.d.s; Kruskal−Wallis test. (C), IL-6-stained cells were mainly costained with F4/80-stained cells. Scale bars, 50 mm. P, passage; MF,
macrophage; C, chondrocyte.
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FIGURE 2

Fluctuations in N- and O-glycans with passaging. (A), Spectra of chondrocytes for each passage, annotated with confirmed N-glycan structures from
MALDI-TOF MS. HM, high mannose; IS, internal standard. (B), Profiling of O-glycans. The glycan population detected included core substituents, and
a trend toward the biosynthesis of branched O-glycans was observed. (C), Absolute value and relative levels of O-glycans in chondrocytes at each
passage. P, passaged.
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3.2 Comprehensive and comparative
glycomic profiling of
passaged chondrocytes

3.2.1 N-linked glycosylation
N-glycans can be structurally classified into pauci-mannose

(PM; Man1−4GlcNAc2Fuc0−1), high-mannose (HM; Man5

−9GlcNAc2), and hybrid- and complex-types. Among these four
Frontiers in Immunology 06
types, the most distinct expression was HM-type N-glycans, which

accounted for 70–80% of the total number of glycans in the

passaged cells (Figure 2A) (Supplementary Table 2).

3.2.2 O-linked glycosylation
For O-glycans, only in the succeeding cells were (P1-3),

(HexNAc)2, (Hex)2(HexNAc)2, and (Hex)1(HexNAc)2(NeuAc)1

glycans expressed, indicating the generation of core 2 glycans
FIGURE 3

Evaluation of GSL-glycan profiles on chondrocyte per passage. (A), MALDI-TOF MS spectra showing GSL-glycans on chondrocytes after successive
passages. IS, internal standard. (B), Expression profiles of ganglioside depending on passage number. (C), The total amount of GSL-glycans increased
with each successive passage. SphinGOMAP (http://www.sphingomap.org/) online databases were used for the structural estimation of the GSL
glycans. NS, not significant; P, passage.
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(Figure 2B). The total amount of O-glycans decreased in passaged

cells, and the expression of core 2 glycans accounted for only a small

fraction of the total O-glycans in the passaged cells (Figure 2C)

(Supplementary Table 3).

3.2.3 Lipid-bound glycans
Glycosphingolipids (GSLs) are characterized by the initial

addition of glucose or galactose to a ceramide unit to produce

glucosylceramide (GlcCer) or galactosylceramide (GalCer),

respectively. The GSL profile dynamically changed during serial

passaging of the chondrocytes (Figure 3A). With increasing

passages, GD3 expression was extremely low, and the expression

of GM3, especially GD1a, predominantly increased (Figure 3B).

GSL-glycans were markedly more abundant, as were GM3 and

GD1a (Figure 3C). GD3 was predominantly detected in lactone

form (97.0%) (Supplementary Table 4). This is presumed to be due

to the tandem-linked a2,8-sialic acids readily forming lactones (32).

In contrast, GM3 was predominantly detected as a methyl-esterified
Frontiers in Immunology 07
form of sialic acid (94.8%). Additionally, GD1 was detected in

almost all the methyl-esterified forms (93.6%). These results

suggested that GD1 is likely a structural isomer, such as GD1a,

which lacks an a2,8-linked-disialyl moiety.
3.3 Suppression of inflammatory responses
in GM3 synthase-null mice

To determine whether gangliosides influence immunological

behavior cocultured macrophages with passaged chondrocytes, we

established mice with a disrupted gene (ST3Gal-5) encoding GM3

synthase (GM3S) (23), an a2,3 sialyltransferase that transfers a sialic

acid residue to lactosylceramide to yield GM3 ganglioside

(Figure 4A). We performed genotyping PCR using Yamashita’s

primer sets (Supplementary Figure 2). The expression level of the

GM3S genes was assessed at the mRNA level in primary

chondrocytes via qRT−PCR, which revealed efficient knockout of
FIGURE 4

Immunological behavior through coculture with macrophages and passaged cells. (A), Pathway of ganglioside synthesis showing the block in GM3
synthase (GM3S) null mice. The approved gene name for GM3S is ST3Gal-5. (B), mRNA expression of ST3Gal-5 in wild-type and GM3S-/-
chondrocytes on passage 0 (n = 3 mice). Data are mean ± s.d.; unpaired t-test. (C), mRNA expression of il-6 in co-cultured with GM3S-/-
chondrocytes and macrophage on passage 3 (n = 3 mice). Data are mean ± s.d.; unpaired t-test. P, passage; MF, macrophage; KO, knockout.
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the target ST3Gal-4 gene in the cells (Figure 4B). Coculturing

passaged GM3S knockout chondrocytes with macrophages

significantly suppressed IL-6 expression (Figure 4C), indicating

the reduction of macrophages activation.
4 Discussion

The results of this study provide evidence of the impact of

chondrocyte passaging on glycan profiles and their antigenic

properties. Our results demonstrated that alterations in glycan

composition, particularly the increased activity of the GM3 to

GD1a pathway, may contribute to the increased ability to activate

macrophages. In fact, coculture experiments using chondrocytes

isolated from GM3S-/- deficient mice lacking the gene encoding

glycosyltransferase GM3 synthase demonstrated a reduction in the

production of IL-6, a marker used for macrophage activation. These

results suggest a critical role for specific glycan structures of

passaged chondrocytes in modulating the macrophage response

in the recipients.

The sialylation of proteins is known to be important in

regulating antibody activity (15, 16), but gangliosides, GSLs

containing sialic acid, have also been shown to function in

immune responses. Modifications to ganglioside GM3 modulate

the innate immune function of macrophages and act as pro- and

anti-inflammatory endogenous Toll-like receptor 4 (TLR4)

modulators (33, 34). GD1a increases IL-6 production by

monocytes, and monocytes treated with GD1a promote Ig

production by B cells (35). On the other hand, GM1 has a tissue-

protective effect by inhibiting oxidative stress and preventing

apoptosis (36–39). In the present study, the number of GM3

genes increased, and the number of downstream GD1a

genes increased sharply in successional chondrocytes, suggesting

that the a-series ganglioside biosynthetic pathway was activated.

Our findings are consistent with those of previous studies that

demonstrated the immunomodulatory effects of glycans on

macrophage activation. However, this study uniquely focused

on the impact of passaging-induced glycan alterations on

immune react ivi ty , providing a more comprehensive

understanding of the relationship between cell culture practices

and immune responses.

In our previous study that followed the glycosylation process

during the chondrocyte differentiation (22), N-glycans continued to

increase while GSL-glycans decreased and then leveled off as

differentiation progressed; O-glycans increased temporarily and

then reduced, similar to a decrease after passaging in the present

study. The increase in GSLs by passage is a distinctly different

phenotype from glycosylation in chondrogenic differentiation, and

the glycans associated with antigenic changes in transplanted cells

are likely found in GSL-glycans. The observed activation of

macrophages due to alterations in the glycan profile of

chondrocytes provides a possible explanation for the antigenicity

and immune rejection of transplanted cells. These findings have

important implications for the development of cell transplantation

therapies for cartilage repair, highlighting the need to optimize cell
Frontiers in Immunology 08
culture conditions to minimize immune responses. Additionally,

the identification of specific glycan structures involved in

modulating the macrophage response provides potential targets

for therapeutic intervention to improve the long-term survival and

functionality of transplanted cells. Before its clinical application, the

challenge of transplantation and analysis of the survival of passage-

cultured cells treated with glucosylceramide synthase inhibitors

remains unclear.

One limitation of this study is the use of murine models, which

may not fully recapitulate the complex immune responses observed

in humans. Additionally, while the GD3S-/- deficient mice provided

valuable insights into the role of specific glycan structures, further

studies are needed to validate these findings in human cell models

and clinical settings. Moreover, the in vitro nature of the coculture

assays may not fully reflect the in vivo microenvironment,

highlighting the need for additional studies using animal models

and clinical samples.

In conclusion, our study highlights the importance of glycan

profile alterations in passaged chondrocytes in the activation of

macrophages, the first line of our immune system. These findings

provide novel insights into the mechanisms underlying the immune

response to passaged cells, highlighting the importance of

considering glycan dynamics in cell transplantation therapy and

providing insights into potential strategies to increase the long-term

success of such treatments. Further research is warranted to validate

these findings in clinical settings and explore their translational

potential for improving patient outcomes.
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