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A steady dysfunctional state caused by chronic antigen stimulation in the tumor

microenvironment (TME) is known as CD8+ T cell exhaustion. Exhausted-like

CD8+ T cells (CD8+ Tex) displayed decreased effector and proliferative

capabilities, elevated co-inhibitory receptor generation, decreased cytotoxicity,

and changes in metabolism and transcription. TME induces T cell exhaustion

through long-term antigen stimulation, upregulation of immune checkpoints,

recruitment of immunosuppressive cells, and secretion of immunosuppressive

cytokines. CD8+ Tex may be both the reflection of cancer progression and the

reason for poor cancer control. The successful outcome of the current cancer

immunotherapies, which include immune checkpoint blockade and adoptive cell

treatment, depends on CD8+ Tex. In this review, we are interested in the

intercellular signaling network of immune cells interacting with CD8+ Tex.

These findings provide a unique and detailed perspective, which is helpful in

changing this completely unpopular state of hypofunction and intensifying the

effect of immunotherapy.
KEYWORDS

CD8 + T cell, T cell exhaustion, tumormicroenvironment, immune checkpoint blockade,
adoptive T cell treatment
1 Introduction

T cells within the immune system patrol to find pathogens in the human body. When T

cells turn into the tumor microenvironment (TME), they will detect and distinguish normal

cells and cancer cells according to the tumor antigen information presented by major

histocompatibility complex (MHC) molecules on antigen-presenting cells (APC) cells,
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which induces inflammatory response and antitumor response by

secreting cytotoxic secretions (1). However, when antigens

chronically and continuously stimulate CD8+ T cells over an

extended period, CD8+ T cells will have exhausted key

characteristics appearance, including decreased effector function

and proliferation, elevated co-inhibitory receptor expression,

reduced cytotoxicity, and changes in metabolism and

transcription (2). Exhausted-like CD8+ T cells (CD8+ Tex)

initially found in mice with chronic infection with the

lymphocytic choriomeningitis virus (LCMV) (3). Since then,

multiple research efforts have demonstrated that Tex is essential

for chronic infection, tumors, and autoimmune diseases (2, 4).

CD8+ T cells developing into CD8+ Tex will go through the

following four stages: dormant Tex progenitor (Texprog1),

proliferating and circulating Tex progenitor (Texprog2), circulating

and slightly toxic intermediate exhausted T cells (Texint), and

terminally differentiated exhausted T cells (Texterm) (5). T cell

exhaustion is triggered by the following four factors in the TME:

1) long-term antigen stimulation and high expression of co-

inhibitory receptors/immune checkpoints; 2) soluble cytokines

(type I interferon, IL-2, IL-10, and transforming growth factor-b
(TGF-b)) in the TME; 3) recruitment of immunosuppressive cells:

regulatory T cells (Tregs), Myeloid-Derived Suppressor Cell

(MDSC), and tumor-associated macrophages (TAMs); 4) and the

lack of oxygen and nutrients in the TME (6).

The successful outcome of cancer immunotherapy, particularly

immune checkpoint blockade (ICB) and adoptive T cell treatment

(ACT), is diminished by T cell exhaustion (7). Tex is the main

reactive cell of ICB, and it is the breakthrough point in improving

the efficacy of ICB. One of the aims of ICB therapy is expanding and

infiltrating precursor exhausted T cell (Tpex) (8). In addition, TME

induces dysfunctional Chimeric Antigen Receptor T (CAR-T) cells

and T cell receptor-engineered T (TCR-T) cells, which are major

obstacles to ACT in solid tumors. Reducing T cell exhaustion and

intensifying the effectuality of ACT not only need to optimize

chimeric antigen receptors and downstream signal transduction

but also should intervene in transcriptional and metabolic disorders

(9). Notably, CAR-Treg therapy, which induces Treg depletion, can

also inhibit tumor development (10, 11).

Therefore, this review mainly focuses on the intercellular

signaling networks interacting with Tex, the immunosuppressive

cells in the TME, and the dendritic cells (DCs) assisting CD8+ T

cells in anti-tumor immunity. In the end, we discussed how to deal

with the challenges of Tex in ICB therapy and ACT.
2 Immune cells regulate T-cell
exhaustion through
intercellular communication

When neoplasm antigens are continuously exposed over an

extended period, the development of CD8+ Tex integrates other

immune cells expressing co-inhibitory or co-stimulatory receptors

and cytokines transmitting inhibitory signals in the TME (6). We
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summarized the intercellular communication between Tregs,

MDSCs, TAMs, DCs, and Tex (Figure 1).
2.1 Tregs

Tregs can maintain self-tolerance and avoid excessive immune

response damage, but Tregs participate in tumor immune evasion

mechanisms in the TME. Tregs in the TME can inhibit effector T

cells (Teff) and myeloid cells from two aspects. On the one hand, it

upregulates the immune checkpoint ligand of tumor cells to avert

CD8+ T cell immunological inspection; On the other hand, it

secretes cytokines to induce CD8+ Tex. Immunosuppressive

cytokines (IL-10, IL-35, and TGF-b) produced by Tregs have the

capacity to both drive CD8+ T cells to cease becoming Teffs and

deliver immunological escape indications to tumor cells (12).

2.1.1 IL-10 and IL-35
In tumor formation and metastasis, Tregs are the main source

of IL-10, a kind of cytokine with durable and versatile anti-

inflammatory effects (13). In the TME, Tregs significantly secrete

more IL-10, which immune checkpoint molecule TIM-3 plays a

non-negligible role. Banerjee H et al. found that Tregs upregulated

the secretion of IL-10 promoting CD8+ Tex through T cell

immunoglobulin and mucin domain-containing protein 3 (TIM-

3) (14). Interestingly, IL-10 also reverses the process of inducing

Treg differentiation in the TME, so that the interaction between IL-

10 and Treg further acts on T cell exhaustion (15). Furthermore, it

was discovered that Salkeni et al. thought IL-10 induced T cell

stimulation in the TME. Thus, more investigation is required to

learn how IL-10 influences T-cell exhaustion (16). Different Treg

subsets produce different cytokines. In the study by Ma et al. of

esophageal squamous cell carcinoma, PD-1+ Tregs were the

primary producers of IL-10, whereas CD177+ Tregs were the

primary producers of IL-35 in the TME (17). As a heterodimer of

IL-12, IL-35 derived by Tregs regulates the generation of immune

checkpoint molecules: programmed cell death protein 1 (PD-1),

TIM-3, and lymphocyte-activation gene 3 (LAG-3), which promote

T cell exhaustion by cooperating with IL-10 (12).
2.1.2 TGF-b
An important modulator of both innate and adaptive immunity

is TGF-b (18), which is released by tumor cells and immune cells

(19, 20). TGF-b prevents immature T cells from differentiating into

Th1 cells, promoting Foxp3 to encourage the differentiation of naïve

CD4+ T cells into Treg cells and regulating TGF-b signaling to

mediate the anti-tumor immune function of Treg inhibiting CD8+

T cells in the TME (21, 22). Knocking down endogenous TGF-b
receptor type-2 (TGFBR2), blocking TGF-b signaling, or inhibiting

the deubiquitination of Foxp3 from upregulating in the TME can

inhibit the differentiation of Tregs in the TME and prevent Tex (23–

26). In addition, colonic carcinoma metastasis signal mediated by

TGF-b can stimulate the upregulation of Foxp3, CD25, and PD-1,

which are markers of CD8+ Tex (27).
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2.2 MDSC

In addition to facilitating tumor vascularization, MDSCs in the

TME also aid in the tumor cells’ invasion and metastasis. MDSCs

inhibit T cell activation and promote the differentiation process of

Tregs. In addition, MDSCs can also polarize TAMs (28). In the

TME, MDSCs recruitment and infiltration are accompanied by a

decrease of Teff-produced cytokines, upregulation of multiple

inhibitory receptors (IR), and alterations to T cell subsets, which

undermine the long-term maintenance of tumor immunity (29).

2.2.1 IL-6
IL-6, which can be produced by a variety of cells, is a classical

cytokine regulating various inflammations. In the inflammatory

response, it possesses both opposed- and anti-inflammatory
Frontiers in Immunology 03
characteristics (30). The aberrant production of IL-6 is the result

of TME chronic inflammation (31, 32), so tumor cells will produce

and secrete more endogenous IL-6 when proliferating, infiltrating,

or metastasizing (33, 34). Tumor patients who showed higher

concentrations of IL-6 in their blood in clinical had suppression

of CD8+ T cells proliferation and cytokine generation, and they had

higher adverse clinical outcomes (35). In the TME, IL-6 can bind its

receptor, transmit signals through the downstream JAK/STAT3

pathway, and activate the transcription of tumor-related genes. In

addition, IL-6/JAK/STAT3 signal transduction upregulates immune

checkpoint ligand PD-L1 expressed and regulates MDSCs to

suppress tumor immunity (36). MAPK and IL-6-mediated

signaling pathways impact immature MDSCs (i-MDSCs) in the

TME, which are activated by IL-6 and attracted to tumor locations

where they develop into mature MDSCs and decrease tumor
FIGURE 1

How do tumor cells instigate immune cells into the TME and make them accomplices? T cells in the TME, through their T cell receptor (TCR),
recognize the antigen presented by MHC on the APC (including tumor cells) and secrete effector cytokines to exert antitumor immunity. IL-6, which
is released by tumor cells in the TME, not only restrains the antitumor immunity of effector T cells but also recruits MDSCs into the TME. Hypoxia in
the TME makes HIF-1 a highly expressed. With the mediation of hypoxia-inducible factor-1a (HIF-1a) and IL-6, MDSCs induce monocyte myeloid-
derived suppressor cells (m-MDSCs) to differentiate into TAMs for obstructing T cell activation and effector response. In addition, IL-10 produced by
MDSCs attracts CD4+ T cells to enter the TME and develop into Tregs with TGF-b. The interaction between IL-35 released by CD177+ Tregs and IL-
10 released by PD-1+ Tregs inhibits CD8+ T cells from eliminating tumor cells and mediates T-cell exhaustion.
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immunity (37). IL-6 recruits MDSCs in the TME, which can inhibit

T cell activity and promote partial CD8+ Tex through IFN-g (38).
One important regulator in preserving MDSC differentiation,

proliferation, and function is IL-6. When MDSC inhibitors are

applied to inhibit the number and function of MDSC, the

expression of IL-6 in the TME is also inhibited, and the active

immune response is re-established (39). It’s interesting to note that

IL-6 released by MDSCs was linked to multidrug resistance via the

IL-6/STAT1 axis in the work by Dhar S et al. (40). Within the

congenital drug resistance model, combining treatment of

Cytotoxic T-Lymphocyte Associated Antigen 4 (CTLA-4)

inhibitor and BET inhibitor induced the decrease of MDSCs

infiltration and downregulated TIM-3 and LAG-3 in the TME

(41). IL-6 in the TME recruits MDSCs to participate in the drug

resistance of tumor therapy and may be related to CD8+ Tex, but

the clear mechanism needs further exploration.

2.2.2 Immune checkpoint
The reason why acquired resistance happens to ICB therapy is

that MDSCs induce CD8+ Tex. According to Koh J et al., the greater

the infiltration of MDSCs with the progression of the patients’ non-

small cell lung cancer, MDSCs inhibited T cell activity and induced

T cell exhaustion in the TME, which contributed to resistance in

anti-PD-1 therapy (42). Additionally, Galectin 9 (Gal-9) acts as an

immune checkpoint ligand for TIM-3. MDSCs upregulate the

expression of Gal-9 in the TME. A rise in Gal-9 causes CD8+ T

cells to overexpress TIM-3, which prevents T cells from secreting

effector cytokines. Thus, the TIM-3/Gal-9 route may be used by

MDSCs to promote CD8+ T cell exhaustion (43). In addition,

clinical research on the treatment of breast cancer showed that

CDK4/6 inhibitors avoided the T cell exhaustion phenotype by

reducing the expression levels of multiple immune checkpoints and

the quantity of MDSCs (44).
2.2.3 MDSCs interact with Tregs
As mentioned above, the primary source of IL-10 in the TME is

Tregs. It is undeniable that cytokines including IL-10 released by

MDSCs can activate Tregs and TAMs in the TME (45). MDSCs and

Tregs in the TME share common microRNAs related to immune

regulatory pathways, including TNF, TGF-b, FOXO, and Hippo

(46, 47). Therefore, MDSCs and Tregs not only have the effect of

inhibiting tumor immunity, but also interact and cooperate with

each other in TME.

Following the injection of carboplatin, MDSCs stimulated IL-

13/IL-33 via the VCAM/RANTES pathway, facilitating CD4+ T

cells to convert into Tregs and encouraging Tregs aggregation at

tumor locations. The inhibitory receptor TIGIT was upregulated by

CD155. The expression of TIGIT was favorably linked with the ratio

of T cells to MDSCs in TME. CD8+ T cells upregulated the

expression of CTLA-4, TIM-3, and CD160 (48). Blocking TIGIT/

CD155 signal transduction alleviates Tex and delays tumor growth

(49). MDSCs recruited in the TME, mediate the growth and

metastasis of tumors through phosphatidylinositol-3-hydroxylase

(PI3Kg), inhibiting the transcription of down-regulated T cell
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exhaustion genes in mouse tumors with PI3Kg, and reducing

infiltrated Foxp3+ Tregs in the TME (50).

2.2.4 MDSC with TREM1
The triggering receptor expressed on myeloid cell 1 (TREM1) is

a key mediator of innate immunity (51). The high expression of

TREM1 in polymeric myeloid-derived suppressor cells (PMN-

MDSCs) and M2-like macrophages is associated with the inferior

prognosis of lung cancer (52), liver cancer (53), renal cell carcinoma

(54), breast cancer (51)and other tumors. Knockdown of TREM1

can enhance the therapeutic effect of anti-PD-1, probably by

inhibiting the function of MDSCs and T cell exhaustion in the

TME (55). In the DLL3-TREM1/DAP12 CAR-T (DLL3-DT CAR-

T) therapy developed by Nie F et al., DLL3-DT CAR-T cells have

durable antitumor responses and increased production of memory

T cells in the TME (56).

2.2.5 MDSC with exosome
Increasing evidence suggests that exosomes can promote

chemoresistance within the TME (57). Tumors regulate the TME

by secreting microRNAs from exosomes. Pancreatic cancer-derived

exosomes have a macrophage migration inhibitor factor (MIF), and

MIF tautomerase regulates the expression of genes required for the

differentiation, recruitment, and activation of MDSCs (58). In

addition, exosome mir-1298-5p promotes the immunosuppressive

effect of MDSCs, promoting the growth of neuroglioma (59).

Interestingly, MDSC−derived exosomes (MDSC exo) are

hyperactivated inducing CD8+ T cell exhaustion and promoting

the production of reactive oxygen species to meet the oxygen supply

of tumor cells (60).
2.3 TAMs

Tumor cells in the TME recruit TAMs and induce M2

polar izat ion by secret ing cytokines and creat ing an

immunosuppressive environmental state (61). Liu C et al. found

that APOE+ macrophages are closely connected to CD8+ Tex (62),

which means TAMs inhibit antitumor T‐cell immunity in solid

tumors. In the study of Yin C et al., hepatocellular carcinoma

(HCC) induced M2 polarization by upregulating the expression of

miR-146a-5p in exosomes and activating NF-kB signaling to induce

proinflammatory factors for remodeling macrophages. Blocking the

interaction between the transcription factor Sal-like protein-4

(SALL4) and mir-146a-5p reduces the expression of inhibitory

receptors and reverses the exhaustion of CD8+ T cells (63). In

addition, M2-like macrophages secrete extracellular vesicles to

promote CD8+ T cells exhaustion of HCC through the mir-21-

5p/YOD1/YAP/b-catenin pathway (64).

2.3.1 Hypoxia
TAMs are abundant in TME, tumor blood vessels, and stromal

regions, which have immunosuppressive effects and promote Tex

(61). Hypoxia is frequently seen in TME, and there is a high
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expression of hypoxia-inducible factor-1a (HIF-1a). HIF-1a can

induce monocyte myeloid-derived suppressor cells (m-MDSCs) to

differentiate into TAMs through IL-6/STAT3/p-STAT3 and inhibit

T cell activation and effector function (65, 66). Targeted STAT3

tumor immunotherapy reverses the polarizat ion and

immunosuppression of TAMs in the TME (67, 68). Through the

regulation of XOR-IDH3a, TAMs may impact the function of

TAMs and CD8+ T cells. According to Lu Y et al. of

hepatocellular carcinoma and xanthine oxidoreductase (XOR),

within hypoxia TME, enzymes involved in macrophage

polarization interact with IDH3a to mediate TAMs polarization

and inhibit anti-tumor immunity of CD8+ T cells (69). The

upregulation of CD8+ T cell immune checkpoints (PD-1, CD38,

TOX) was positively correlated with the abundance of TAMs in the

TME. In addition, Kersten K’s team also found that exhausted T

cells would recruit monocytes to the TME and form TAMs to

induce CD8+ T cell exhaustion, further inhibiting anti-tumor

immunity (70).

HIF-1a can not only induce m-MDSCs to differentiate into

TAMs but also upregulate the expression of PD-L1 on the surface of

MDSCs by binding to PD-L1 receptor on the surface of T cells,

which induces Tex (71, 72). In a therapeutic study of nanomaterials

transporting catalase into the TME, ROS were increased by

degrading H2O2, significantly reducing MDSCs and Tregs (73).

2.3.2 Chemokines
Chemokines which are a kind of guiding cell migration

cytokines expressed in the TME will recruit immune cells into the

TME (74–77). There are many different chemokines produced by

different cells in the complex TME. In the study of Kamat K et al.,

CCL23 secreted by TAMs induced T cell exhaustion by mediating

GSK3b to upregulate T cell exhaustion markers in ovarian cancer

(78). In this part, we focus on the chemokines related to T cells

exhaustion and explore their potential research directions in ICB

and ACT therapy.

As mentioned above, hypoxia in the TME induces the

polarization of TAMs and the exhaustion of T cells (65). Several

studies have shown that TAMs play an immunosuppressive role in

the TME through the CCR5-dependent signaling axis (79–81),

which can block the CCR5-related pathway to inhibit tumor

invasion and metastasis (82). In advanced cancer patients, the

proportion of exhausted T cells in a hypoxic environment is

significantly increased. Analysis of exhausted T cells ligand-

receptor interactions revealed that tumor cells would recruit T

cells into hypoxic TME through the chemokine CCL3/CCL4/CCL5-

CCR5 axis (83). Hernández-Verdin I et al. found that the increased

expression of activation-induced cytidine deaminase (AID) caused

by mutation induced T cells exhaustion by upregulating the

expression of CXCL13/CCR5. The application of ICB therapy can

block it, thereby reactivating exhausted T cells (84). Coincidentally,

the study of Liu Z et al. found that RUNX3 was the key mediator of

decitabine improving anti-PD-1 immunotherapy, and knockdown

of RUNX3 significantly reduced the levels of CCR3 and CCR5 (85).

In addition, TAMs in the TME will conduct cellular and molecular

communication with immature DCs induced by tumor cells
Frontiers in Immunology 05
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presenting function of DCs (86). Similarly, the study of Horie M

et al. also showed that HIF-1a would promote the recruitment of

TAMs and DCs in the TME under hypoxia, and create an

immunosuppressive microenvironment by upregulating the

expression of CCR5/CCL5, inducing T cells exhaustion and

peritoneal dissemination of cancer cells (87). TAMs in TME not

only inhibit the anti-tumor effect of T cells, but also destroy the

auxiliary function of DCs in this process. How DCs become a good

helper of CD8+ T cells will be described in the next section.

Hedgehog (Hh) signaling in myeloid cells is essential for M2

polarization of TAMs and tumor growth. Tumor cells secrete an Hh

ligand (SHH) to drive TAMs to polarize towards M2 (88). The

production of CXCL9 and CXCL10 by polarized TAMs is inhibited,

blocking the CXCL9/10/CXCR3 axis and inhibiting the recruitment

of CD8+ T cells to the TME (88). Compared with normal renal

tissue, the mRNA expression of CXCR3/CXCL9/10/11 in renal cell

carcinoma was significantly increased (89), and the upregulation of

CXCR3 expression in renal cell carcinoma was related to the hypoxic

state in TME (90). In addition, the study of Azuma M et al.

demonstrated that Poly (I: C) interacted with DCs, cross-

upregulated the expression of CXCR3, and promoted the

recruitment of CD8+ T cells to the TME (91). However, CD8+ T

cells recruited to the TME will gradually downregulate the

expression of CXCR3 under chronic antigen stimulation, while

upregulating the exhaustion markers PD-1 and LAG-3. In

addition, the knockdown of CXCR3 can enhance the production

of IFN-g, an effector molecule of CD8+ T cells, indicating that

CXCR3 promotes the loss of effector function and the process of T

cell exhaustion (92). Interestingly, the expression of CXCR3 in

tumor mice that did not respond to ICB therapy was significantly

reduced (93). Enhancing the CXCR3/CXCL9 axis can promote the

interaction between DCs and CD8+ T cells in the TME and improve

the sensitivity to PD-1 blockade and clinical therapeutic efficacy (94).

The enhancing effect of CXCR3 in PD-1/PD-L1 therapy may be

related to its ability to recruit T cells into the TME in an antigen-

independent manner and to activate the bystander memory T cells

(95). At the same time, previous studies have shown that the CXCR3

ligand helps T cells and B cells recruited to the TME form a cell

network directly contacting each other. This network contains

TCF1+ PD-1+ CD8+ T cell progenitors, which can be transformed

into cytotoxic CD8+ T cells during ICB treatment (96, 97).

Therefore, Sullivan PM et al. demonstrated that overexpressed

CXCR3 can be applied to ACT therapy to drive the trafficking of

CD8+ T cells into the TME and synergize with PD-1 checkpoint

blockade immunotherapy (98). In addition, although it played an

important role in the entry of CD8+ T cells into the TME, they gave

an explanation for the incomprehensible result that CXCR3

expression was downregulated in the TME: it may be attributed to

cell-extrinsic variables in the TME, such as inhibitory receptor signal

transduction and TGF-b secreted by tumor cells (99). Similarly, Li A

et al. demonstrated that a unique anti-human GARP antibody

(named PIIO-1) treatment could block CD8+ T cell exhaustion by

reducing TGF-b signaling in the TME while enhancing CD8+ T

migration into the TME in a CXCR3-dependent manner (25).
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2.3.3 Interferon regulatory factor 8 (IRF8)
As mentioned above, tumor cells secrete Shh to drive TAMs to

polarize towards M2, and the production of CXCL9 and CXCL10 by

polarized TAMs is inhibited (88). In the study of He N et al., it was

found that the polarization of TAMs in microwave ablation (MWA)

therapy was mediated through the nuclear factor-kB/JAK-STAT1
signaling pathway. MWA significantly upregulated the expression

of IFN-g stimulated transcription factors (especially IRF8) (100).

Among the nine IRF members regulating interferon signaling, the

expression of IRF8 in HCC was associated with inferior prognosis of

HCC patients (101). In addition, MWA combined with aPD-L1
treatment promoted the production of CXCL9 and blocked IFN-g/
CXCL9/CD8+ T axis which could promote tumor progression

(100). Tumor cells will induce the expansion of TAMs, which

requires TAMs to express IRF8. Specific deletion of IRF8 in

TAMs blocks T-cell exhaustion and inhibits tumor growth (102).

Therefore, TAMs participate in the process of T cell exhaustion by

upregulating IRF8. The study of Wu H et al. demonstrated that

IRF8 downregulated the expression of CCL20 by inhibiting c-fos

transcription and mediated the immunosuppressive effect of TAMs

recruited in the TME (101).
2.4 DCs

In the TME, immunosuppressive cells Tregs, MDSCs, and

TAMs cooperate with each other, but CD8+ T cells are not in a

helpless situation. DCs will cooperate to participate in the anti-

tumor immunity in the TME and help the anti-tumor immunity of

CD8+ T cells through antigen presentation (103). The crosstalk

between DCs and T cell exhaustion is mainly concentrated on

interferons (type I interferons and type II interferons) and IL-2. The

dual role of IL-2 still needs further exploration.

2.4.1 Interferon
2.4.1.1 Type I interferon

As antigen-presenting cells, DCs must go through the following

processes to achieve effective anti-tumor immunity: professional

antigen-presenting cells (pAPCs) absorb tumor neoantigens and

promote the maturation and development of immature T cells

through cross-presentation. This process is mainly participated by

DCs (103). According to the dynamic changes of TME, DC subsets

(conventional type 1 dendritic cells (cDC1), conventional type 2

dendritic cells (cDC2), plasmacytoid dendritic cells (pDCs)) affect

the progression of tumors through various mechanisms (104).

Among them, cDC1 is essential for anti-tumor immunity, which

allows tumor antigens to be presented cross-presentatively to

activate T cells (105). cDC2 has also been shown to drive

protective anti-tumor CD4 T cell immunity (106). pDCs can

produce type I interferon in the TME to promote the maturation

of cDC1 and type I interferon also enhances the ability of CD8+ T

cells (107, 108). However, TME also induces pDCs to express

immunosuppressive molecules to encourage the formation of

tumors. Chemotherapy carboplatin-resistant tumor cells recruited

pDCs and upregulated pDC immune checkpoint ligand inducible
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costimulator ligand (ICOS-L) expression to maintain MDSCs-

dependent immunosuppressive ability and promote Tex in the

TME (48). Excessive type I interferons produced by pDCs also

drive T-cell exhaustion. According to Wu T et al., the transcription

factor TCF-1 induced B-cell lymphoma 6 (BCL6) to antagonize

IFN-a/b signaling mediated Tex and maintain the stem cell

properties of T cells (109).

2.4.1.2 Type II interferon

After sensing the production of IFN-g by neighboring T cells,

activated DCs produce IL-12 to stimulate anti-tumor immunity

(110). The specific recognition of antigen peptides on tumor cells by

CD8+ T cells require the presentation of major histocompatibility

complex (MHC or HLA) class I molecules. IFN-g signaling is a key
pathway to regulate the expression of HLA-I and HLA-II, and its

destruction is one way that tumor immune evasion works (103).

HLA-DR is a class II MHC molecule expressed by CD8+ T cells.

After being stimulated by tumor antigens, T cells show a multitude

of cytokines including IFN-g, TNF-a, and IL-2 (111). The defect in

IFN-g production means that T cells have entered the exhaustion

phase (112).

2.4.2 IL-2
IL-2 is a significant cytokine that regulates Tex. IL-2 in the TME

is mainly secreted by CD8+ T cells and activated DCs. IL-2 exerts its

immunomodulatory effect mainly by binding to IL-2R. Various

conformations of IL-2R mediate the downstream effects of IL-2.

Due to the variable conformation of IL-2R, IL-2 shows a dual role of

both immunostimulatory and immunosuppressive, which is related

to interleukin-18 (IL-18) and Tregs.

2.4.2.1 Immunostimulatory effect of IL-2

Reduced IL-2 production is considered an early sign of CD8+

Tex. DCs and CD8+ T cells secrete IL-2, which can also affect the

anti-tumor effect of CD8+ T cells. According to Zhang et al.,

histamine H1 receptor (H1R1) antagonists can stimulate T cell

activation and promote IL-2 secretion, thereby inhibiting T cell

exhaustion clinically related to high expression of H1R1 (113). In

addition, IL-2 antagonizes TOX by driving STAT5 activity to exert

anti-tumor immunity that reverses CD8+ Tex (114). In a study of

CAR-T cell therapy combined with infusing aAPC, aAPC infusion

promoted the specific recognition of CAR-T cells to tumor cells and

released more IFN-g, TNF-a, and IL-2. The cytokine mixture IL-2-

9-21 not only inhibits the upregulation of the immune checkpoints

on CAR-T cells but also inhibits the PI3K/AKT signaling pathway

and enhances the JAK/STAT3 signaling pathway. This prevents the

T cell exhaustion made by the CAR-T cells’ constant binding to

tumor antigens in the TME (115).

2.4.2.2 Immunosuppressive effect of IL-2

A high concentration of IL-2 in the TME will activate the initial

multiplication of naive T cells. The activated CD8+ T cells

transiently express IL-2Rabg, a high-affinity receptor for IL-2,

and then are driven by IL-2 to differentiate into CD8+ T cells that

continuously express the medium affinity receptor IL-2Rbg (116).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1476904
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1476904
Due to the different conformations of IL-2R, IL-2 also exerts

immunosuppressive effects. In the study of Feriz AM et al., tumor

cells stimulate immature DCs to migrate to the tumor site through

inflammatory chemokines. DCs infiltrating the TME upregulate

many signaling pathways, such as TNF-a/NF-kB, IL-2/STAT5, and
E2F, while the IL-2 autocrine signal in DCs activates the JAK/

STAT5 pathway to induce apoptosis of mature DCs (86). IL-2 can

also induce the STAT5/TPH1/5-HTP/AhR pathway in CD8+ T

cells, leading to synergistic upregulation of inhibitory receptors and

downregulation of effector molecules, which induces CD8+ Tex

appearance in the TME (117).

2.4.2.3 IL-2 and Interleukin-18 have
dual immunomodulatory

In addition, CD8+ Tex can be induced by IL-18 in the TME via

the IL-2/STAT5/mTOR pathway. IL-18 may promote the

deterioration of pancreatic cancer (118). Conversely, in a study of

CAR-T cell therapy targeting Delta-like protein 3 (DLL-3), IL-18

released by CAR-T cells inhibited the upregulation of immune

checkpoints PD-1, TIGIT, LAG3, and TIM-3 of DCs (119). IL-18

production increases CAR-T and CD8+ T cells’ activation. We

believe that IL-2 may have a role in the dual function of IL-18 in

tumor immunity, and further in-depth study is needed.

2.4.2.4 IL-2 and Tregs have dual immunomodulatory

IL-2 high-affinity receptor (IL-2Rabg) is continuously expressed

on Tregs. Low levels of IL-2 selectively bind to the high-affinity receptor

IL-2Rabg of Tregs but do not activate T cells in the TME. Foxp3 and

CD25 expression of Tregs need to be maintained by IL-2. Because it

cannot produce IL-2, Tregs compete with CD8+ T cells to deplete IL-2

in the TME, thus preventing the anti-tumor immunity of CD8+ T cells

(120). As mentioned above, the impaired effector function of CD8+ T

cells in the TME and the appearance of exhausted phenotype are

positively correlated with the accumulation of Tregs. The study of

Noyes D et al. demonstrated that Tregs mediated the depletion of IL-2

in the TME and further exacerbated the exhaustion of CD8+ T cells

(121). However, in a clinical study of Dasatinib on chronic myelocytic

leukemia (CML), patients taking Dasatinib had significantly reduced

plasma IL-2 levels, suppressed STAT5 phosphorylation in Tregs cells,

and TIM-3-mediated exhaustion of CD8+ T cells (122). How to

stimulate CD8+ T cells without inducing TME Tregs has proven a

significant obstacle in the development of anticancer treatments

targeting IL-2.
3 Immune cell-CD8+ Tex crosstalk in
cancer immunotherapy

Recently, although emerging immunotherapy has made

indisputable great progress in clinical application, there are also

some cases of poor therapeutic effect. T-cell exhaustion directly

affects the efficacy of ICB therapy and ACT therapy. We summarize

the role of immune cells in the TME-CD8+ Tex in ICB and act to

better cope with the challenges of complex TME (Figure 2).
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3.1 ICB

ICB therapy has made great progress in tumor treatment, but it

is only effective for a small number of patients. There are many

factors that affect ICB therapy, among which the interference effect

of the immunosuppressive state composed of immunosuppressive

cells (Tregs, MDSCs, and TAMs) in the tumor microenvironment

cannot be ignored. Exhausted CD8+ T cells showed up-expression

of co-inhibitory receptors (CTLA-4, PD-1, TIM-3, LAG-3, etc.) and

downregulation of co-stimulatory receptors (CD28, 4-1BB)

(123–125). The co-stimulatory signal is lacking, and the co-

inhibitory signal is too strong. Immune cells, which are also

engaged in the process of ICB inhibiting Tex, also exhibit

significant expression of these inhibitory receptors. In addition,

we also summarized the common CAR-T targets in tumors and the

combination therapy with ICB (Table 1).

3.1.1 CTLA-4
CTLA-4 is mainly expressed in activated T cells, but also in

Tregs (161). CTLA-4 binds to CD80/CD86 on the tumor surface to

prevent T cell activation in the TME (121). As mentioned earlier,

the exhaustion-like phenotype and the impairment of effectors of

CD8+ T cells are positively correlated with the accumulation of

Tregs. Tregs have a high level of CTLA-4 expression, which is

essential for developing and maintaining the exhaustive phenotype.

In addition, inhibiting CTLA-4 signaling can inhibit the

recruitment of Tregs and relieve the immunosuppressive effect of

Tregs. Ipilimumab and tremelimumab are FDA-approved CTLA-4

inhibitors for clinical use (162, 163). CTLA-4 inhibitors have the

ability to inhibit CTLA-4’s binding to CD80/CD86, promote T-cell

proliferation, and have anticancer effects (164).

3.1.2 PD-1
The surface of activated T cells, NK cells, DCs, and other cells

expresses PD-1. PD-L1 is highly expressed in tumor cells, and the

combination of the two mediates tumor immune escape. PD-1 in

TME can not only mediate TCR to decide the activation and

differentiation of T cells but also activate Tregs. Therefore, PD-1

plays a non-negligible role in the anti-tumor immunity of

remodeling the TME (165, 166). PD-1 is upregulated on T cells of

renal angiomyolipoma and pulmonary lymphangioleiomyomatosis.

Blocking both PD-1 and CTLA-4 together is more efficient than

targeting just one PD-1 inhibitor (167). After the combined

blockade of PD-1 and CTLA-4 in the orthotopic hepatocellular

carcinoma model, PD-1 was expressed in moderate amounts on

Texprog, and Texterm almost disappeared in the TME. Hence, the

combined treatment downregulated PD-1 expression and reversed

the anti-tumor immunity of Tex (168). These studies confirm that

combination therapy is better at reducing CD8+ Tex. Although the

efficacy of combination therapy is better, the immune-related

adverse reactions (irAEs) related to ICB drugs are more serious

(169). Therefore, a significant issue with ICB therapy is how to

balance its effects with the emergence of irAEs, and more research is

needed. In addition, whether PD-1 inhibitors combined with other
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immunotherapies can reverse T-cell exhaustion is a hot topic of

future research (170–172).

3.1.3 TIM3
TIM3 is expressed in Tregs, TAMs, DCS, natural killer cells

(NKs), and mast cells. TIM3 is a key cytokine for Texterm and is at

the junction of T-cell exhaustion and rejuvenation (124, 173). The

interaction between TIM3 and galectin 9 (Gal9) in CD8+ T cells

leads to the reduction of the production of cytokines (IFNg, IL-2,
and TNFa), the inhibition of T cell proliferation, and the inhibition

of anti-tumor immunity (174). The progression of tumors can be

effectively controlled by simultaneously inhibiting TIM3 and PD1.

Datar I et al. indicated that lung cancer patients with TIM3+ CD68+

TAM had shorter survival and worse prognosis than those with

TIM3- CD68+ TAM (175, 176). TIM3+ Treg is also more
Frontiers in Immunology 08
immunosuppressive than TIM3-Treg (177). In addition, the lack

of TIM3 on DCs promotes the proliferation of CD8+ T cells in the

TME (178).

3.1.4 LAG-3
LAG-3 is an inhibitory receptor protein on activated T cells, NK

cells, B cells, plasma cells, and DCs. In the study of Kano Y et al., the

soluble recombinant protein LAG-3-Ig, which inhibits the LAG-3

signal, was combined with a tumor vaccine, and it was found that

they could down-regulate the expression of LAG-3 and other co-

inhibitory receptors on CD8+ T cells, prevent Tex, and boost the

tumor vaccine’s therapeutic impact in concert (179). The expression

level of LAG-3 increases with the stimulation of tumor antigens.

Under long-term stimulation, LAG-3 and other co-inhibitory

receptors are continuously expressed on T cells and mediate the
FIGURE 2

How can good helpers of CD8+ T cells inhibit Tex and assist anti-tumor immunity in the TME? Immature DCs can sense chemokines secreted by
tumor cells to develop into APCs and enter the TME to recognize tumor antigens. Tumor antigens are expressed by APC, which further stimulates
CD8+ T cells to develop into Teff and memory T cells (Tmem). Plasmacytoid pre-dendritic cells (pDCs) secrete IFN-a/b, which can improve Teff
activity and encourage the maturation of APCs into conventional dendritic cell 1(cDC1) to produce IL-2. IL-2 produced by cDC1 will bind to the IL-
2R on Teffs to mediate the STAT5/TOX pathway to inhibit excessive antigen-stimulated Teffs toward exhaustion. In addition, IL-2 can also encourage
CD8+ T cell growth. However, excessive IFN-a/b production by pDCs would promote Teff toward CD8+ Tex.
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exhaustion of T cells (180). Research has demonstrated that LAG3

inhibition can change Tex’s activity. In comparison to single

inhibition, dual inhibition of PD-1 and LAG3 produces higher T-

cell activation and reduces Tex (181, 182).
3.2 ACT

ACT refers to the transformation, expansion, and quality

inspection of immune cells isolated from patients in vitro, and

then reinfused into patients to play an anti-tumor role. The ACT

includes CAR-T and TCR-T, and we emphasize CAR-T therapy.

Tex is a main challenge affecting the therapeutic effect of CAR-T

(183). CAR-T cell therapy can be improved by enhancing chimeric

antigen receptors and concentrating on how immune cells affect

CAR-T cells (184).

3.2.1 CAR-T
Recent years have seen a remarkable development in CAR-T

cell therapy. By collecting isolated T cells, and integrating antibodies

targeting cells, CAR-T cells are generated and reinfused into

patients to kill tumor cells (184). CAR-T can induce the

remission of hematological system tumors effectively, but there is

still a problem of recurrence in some patients (185). When it comes

to treating solid tumors, the therapeutic effect of CAR-T cells is

limited, which is characterized by poor penetration, persistence, and

low proliferation ability. Therefore, choosing a target has been a hot
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subject in CAR-T cell therapy research (186–188). CAR-T cells and

endogenous CD8+ T cells have similar gene expression and

chromatin accessibility, so CAR-T cells will also be stimulated by

sustained antigens during anti-tumor immunity, driving CAR-T

cell exhaustion (189). Furthermore, the immunosuppressive cells

also take part in the CAR-T cells’ exhaustion (23, 190).

3.2.1.1 CD4+/Treg-CAR-T

Tregs may encourage CD8+ T cells’ exhaustion. The

immunosuppressive effect mediated by Tregs is often applied to

autoimmune diseases (191). Recently, CAR-Treg with antigen

specificity has emerged, which is similar to the role of Treg (11).

Interestingly, CAR-Tregs that are chronically stimulated by antigens

will also have a similar exhaustion state and loss of effector function

(10). Tregs as well as CD8+ T cells showed exhaustion-related

elevation of immunological checkpoint molecules (165, 192). Luo Y

et al. indicated that the neoadjuvant treatment of ovarian cancer with

PARP inhibitor (PARPi) can exhaust Tregs in the TME and inhibit

tumor growth (193). Treg exhaustion may lead to the development of

a novel anti-tumor immune cell therapy, despite the fact that Tregs

have the impact of suppressing anti-tumor immunity in the TME.

Increased effector T cells and induction of Tregs can be seen in gut‐

associated lymphoid tissue, which leads to improved clinical

outcomes of cancer immunotherapy with lower incidence of

immune‐related adverse events (194).

It is well known that Tregs is one of the cell subsets produced by

CD4+ T cell differentiation. Boulch M et al. used the functional
TABLE 1 The common CAR-T targets in tumors and the combination therapy with ICB.

Solid Tumor Classify
Normal CAR-

T Target
Combine ICB

Target research
Reference

Thoracic tumors

Lung Carcinoma

EGFR PD-1, PD-L1 (126–130)

ROR1 PD-1, PD-L1 (131)

EphA2, B7-H3 N/A (132–135)

Breast Carcinoma

HER2
PD-1, PD-L1 (136–138)

CTLA-4 (139)

ROR1, KRAS, CEA,
EphA2, Nectin-4, MUC1,

c-Met, EpCAM
N/A (140–142)

Gastrointestinal tumors

Gastric Carcinoma HER2, Claudin 18.2 N/A (143, 144)

Hepatocellular Carcinoma GPC3, AFP, EpCAM N/A (145–147)

Colorectal Carcinoma
CEA TIGIT (148)

GUCY2C N/A (149)

Pancreatic Carcinoma
MSLN, Mesothelin,

Claudin 18.2
N/A (150–153)

Tumors of the reproductive system Ovarian Carcinoma MSLN, MUC1 N/A (154, 155)

Tumors of the urology system
Renal Cell Carcinoma CA9 N/A (156)

Prostatic Carcinoma PSMA N/A (157)

Other tumors
Neuroblastoma CD171 N/A (158)

Glioblastoma EGFRvIII, CD133 PD-1, PD-L1 (159, 160)
N/A, Not Applicable.
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intravital image to find that anti-CD19+ CD4+ CAR-T cells mainly

derived IFN-g that diffuses in the TME and directly acts on tumor

cells in treatment-responsive B-cell lymphoma (195). At the same

time, Kruse B et al. found that TRP-1 CD4+ T cells isolated from

ACT mice receiving CD4+ T could reprogram the myeloid cells

network in the TME, which means IFN-g produced by CD4+ T and

myeloid cell-derived iNOS produced a tumor-killing phenotype

through a synergistic effect (196). In addition, CXCL13+ Th cells,

another cell subset differentiated by CD4+ T cells, and DC cells were

shown to reactivate exhausted progenitor cells to effective

antitumor CD8+ T cells after PD-1 blockade (197). In a recent

study, CD4+ T cells combined with effector CD8+ T on the same DC

cells to form a three-cell-type cluster to promote the toxicity of

CD8+ T cells and eliminate tumor cells (198). The specific

combination of this triad in TME will affect the clinical response

of patients in ICB treatment (198). Therefore, in-depth

understanding and research on the functions and regulatory

mechanisms of CD4+ T cells will help to develop new CAR-CD4+

T anti-tumor therapies.

3.2.1.2 MDSC and CAR-T

The recruitment of MDSCs will promote the development of

Tex. Cytokines can modify CAR-T cells, which can inhibit MDSCs

and improve therapeutic efficacy. CAR-T cells modified by different

cytokines can inhibit MDSCs and enhance the therapeutic effect. In

the study of Sun et al., Olaparib may inhibit the release of SDF1 a
through HIF-1a, further restrict the recruitment of MDSCs to

breast cancer tissues, reduce T-cell exhaustion, and raise CAR-T

cell effectiveness (199). Next, Sun et al. also discovered that CAR-T

cells modified with CXCR4 inhibited the recruitment of MDSCs

through the STAT3/NF-kB/SDF-1a axis, enhancing the therapeutic

effect in pancreatic cancer (200). Similarly, Liu et al. found that

CAR-T targeting fibroblast activating protein (FAP) can also inhibit

MDSCs recruitment, increase Tex, and improve pancreatic cancer

(152). IL15Ra is preferentially expressed in MDSCs of glioblastoma,

and IL15R-modified CAR-T cells can dual target MDSCs and

tumor cells (201). Moreover, targeting TREM2 on MDSCs and

TAMs can improve anti-PD-1 therapy’s effectiveness. Chen et al.

created CAR-T cells secreting PD-1-TREM2 single chain variable

fragment (scFv), which has a good effect on lowering the

recruitment of MDSCs and TAMs in colorectal cancer (202).

3.2.1.3 TAM and CAR-M

CAR-T cells can mediate the elimination of TAMs and increase

CD8+ T cells’ expression. Recently, CAR-modified macrophage

(CAR-M) therapy has garnered a lot of interest. Brown BD et al.

constructed CAR-T cells targeting pan-macrophage marker F4/80,

secreted IFN-g, promoted the upregulation of MHC molecules on

cancer cells and myeloid cells, effectively killed TAMs, and

increased the activity and proliferation of CD8+ T cells (203).

Rodriguez-Garcia A et al. indicated that CAR-T cells mediated

the elimination of TAMs expressing folate receptor b, increased
CD8+ T cells, and inhibited ovarian cancer growth (204). Human
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macrophages are altered by particular CARs to increase their

phagocytic activity and ability to deliver antigens to malignancies.

Compared with CAR-T cells, CAR-M can penetrate deeper into

tumors, promote antigen presentation, and enhance the effect of

CD8+ T cells (205).

3.2.1.4 DC and CAR-T

CAR-T will increase DC infiltration and increase CD8+ T cells.

Conversely, the DC vaccine will also improve CAR-T cell

effectiveness (206). CAR-T promotes the phagocytosis of DCs and

triggers the initiation of endogenous CD8+ T cells. During this

process, CAR-T secretes IFN-g, and its metabolism gradually tends

to oxidative phosphorylation (207). Sun et al. combined the DC-

tumor fusion vaccine with CAR-T cells. DC-tumor fusion vaccine

enhanced the number of CD8+ T cells, attenuated T-cell exhaustion,

and enhanced the therapeutic effect in solid tumors (208).

3.2.2 TCR-T
TCR-T is to transfer the TCR gene sequence into T cells through

genetic engineering technology, specifically recognizes tumor antigens,

and inhibits tumors (184). Similar to the problems faced by CAR-T

cells in the TME, TCR-T cells lack long-term persistence and are

limited by immunosuppressive cells in the TME, resulting in limited

therapeutic effect and TCR-T cell exhaustion (209). According to

Cianciotti BC et al., knocking down the co-inhibitory receptors TIM-

3 and LAG-3 connected to T cell exhaustion can resist the depletion of

TCR-T cells and restore its antitumor effect (210).
4 Discussion and conclusion

T cell exhaustion may be an adaptive response to prevent cell

death induced by overstimulation and activation in the TME and is

regulated by multiple mechanisms during tumorigenesis. In the

TME, immune cells (Tregs, MDSCs, and TAMs) regulate

intercellular information transmission, inhibit the inflammatory

microenvironment and regulate the expression of cell surface-

related molecules, maintain the dynamic changes of the TME,

and weaken the anti-tumor immune effect, metabolism,

transcription and epigenetic regulation of CD8+ T cells. We also

described how CD8+ T cells were coerced to exhaustion by Tregs,

MDSCs, and TAMs after losing the assistance of DCs.

We summarized the crosstalk between immune cells-CD8+ Tex.

Therefore, immunotherapy for tumor patients should not only focus

on the anti-tumor immunity of tumor cells themselves, but also on the

immunosuppressive cells in the TME that help tumor cells survive and

escape. The immunosuppressive cells of the immune system in the

body are not naturally the helper of tumor cells but interfere in the

TME and stand on the opposite side of CD8+ T cells. However, it is not

enough for our review to focus only on the crosstalk of CD8+ Tex with

immune cells in the TME. Because complex TME also includes cancer-

associated fibroblasts and other cells. How these cells together with

immune cells create an immunosuppressive environment can be
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further explored. In addition, we also hope that the research of ICB

therapy and ACT can also pay more attention to the crosstalk between

immune cells-CD8+ Tex to create the possibility of improving effect. In

conclusion, we believe that the immune system of healthy people is in a

process of dynamic balance. The negative effects of immune cells in the

TME need to be reversed in anti-tumor treatment, and new treatment

methods should be found to make it become a roadblock for CD8+ T

cells to become exhausted and a defender of anti-tumor

immune effects.
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