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Institute of Sports and Health, Nanjing, China
Introduction: The identification of peptides eluted from HLA complexes by mass

spectrometry (MS) can provide critical data for deep learning models of antigen

presentation prediction and promote neoantigen vaccine design. A major

challenge remains in determining which HLA allele eluted peptides

correspond to.

Methods: To address this, we present a tool for prediction of multiple allele (MA)

presentation called LRMAHpan, which integrates LSTM network and ResNet_CA

network for antigen processing and presentation prediction. We trained and

tested the LRMAHpan BA (binding affinity) and the LRMAHpan AP (antigen

processing) models using mass spectrometry data, subsequently combined

them into the LRMAHpan PS (presentation score) model. Our approach is

based on a novel pHLA encoding method that enables the integration of

neoantigen prediction tasks into computer vision methods. This method

aggregates MA data into a multichannel matrix and incorporates peptide

sequences to efficiently capture binding signals.

Results: LRMAHpan outperforms standard predictors such as NetMHCpan 4.1,

MHCflurry 2.0, and TransPHLA in terms of positive predictive value (PPV) when

applied to MA data. Additionally, it can accommodate peptides of variable lengths

and predict HLA class I and II presentation. We also predicted neoantigens in a

cohort of metastatic melanoma patients, identifying several shared neoantigens.

Discussion: Our results demonstrate that LRMAHpan significantly improves the

accuracy of antigen presentation predictions.
KEYWORDS

biomedical engineering, neoantigen prediction, deep learning, multi allelic HLA, MHC,
antigen processing
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Introduction

Peptide-HLA (pHLA) complexes consist of peptides that attach

to human leukocyte antigens (HLA) and are presented to

specialized immune cells, thereby initiating an immune response.

HLA molecules are crucial for this process, as they present antigenic

peptides on the cell surface for recognition by T cells (1, 2). This

antigen presentation allows T cells to identify and attack infected or

mutated cells. Infections can act as etiological factors in the

development of various cancers. HLA molecules are integral to

the anti-cancer immune response, playing key roles in the

management of multiple cancer types, including lung, prostate,

breast, and colon cancer (3–8).

HLA-I genes are highly polymorphic, with HLA heavy chains

encoded by three genes: HLA-A, HLA-B, and HLA-C. All three

genes are polymorphic, constituting the most distinctive feature of

HLA molecules, which leads to variability in peptide presentation

(typically 8-11 amino acids) among individuals (9, 10).

Additionally, HLA-II molecules, located on human cells and

consisting of three loci on chromosome 6 (DR, DQ and DP), are

involved in the presentation of exogenous antigen (usually 13-25

amino acids) (11). The binding of peptides to HLA is the most

critical and selective step in antigen presentation (12), making the

identification of pHLA essential for developing effective

immunotherapeutic cancer vaccines and studying infectious

disease (13, 14). This highlights the need for in silico algorithms

capable of accurately predicting pHLA molecules.

Several tools have been developed to address the challenges of

neoantigen prediction, employing two main types of computational

methods: single allele (SA) and multiple allele (MA) predictors. Both

types typically consist of two predictive models: HLA-I binding

affinity (BA) (15–18) and antigen processing (AP) (19–21)

predictors. Recent advancements in mass spectrometry (MS)

technology have facilitated the identification of peptides in high-

throughput experiments, creating opportunities for developing

neoantigen predictors. MHCflurry 2.0 (22) has integrated AP and

BA predictors to significantly enhance prediction accuracy.

Traditionally, published models segment MA mass spectrometry

(MS) sequences into SA MS sequences for independent integration

of pHLA into predictive models. Conversely, our approach directly

integrates MA and peptides into the model as a cohesive entity,

enhancing prediction accuracy through interactions betweenMA and

peptides. Furthermore, combining peptide sequences with MA

predictors (22, 23) offers greater intuitiveness and alignment with

real human environments. However, studies utilizing multi-allelic

(MA) data remain limited. Specifically, when considering the use of

MA data as a whole input based on input patterns, the only available

MA predictor is LRMAHpan.

ResNet (24) has been successfully applied in image recognition,

yet the challenging of using ResNet for antigen presentation

prediction has not been thoroughly explored. The shortcut

connections of ResNet network significantly reduce the

complexity of training deep neural networks (25, 26). The ResNet

architecture consists of multiple similar residual blocks arranged in

series. The Coordinate Attention (27) (CA) mechanism captures
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location and channel relationships, enabling the network to gather

information from a larger area without significant resource

consumption (28–30).

In this study, we address the limitations of preprocessing that

arise from the one-to-one correspondence between peptide

sequences and HLA types by utilizing ResNet_CA-based deep

convolutional neural networks for the BA model and LSTM

neural network for the AP model. LRMAHpan introduces a novel

coding approach that utilizes 6-channel pHLA encoding as input

data for residual networks, with each channel representing one of

the six HLA types. LRMAHpan is the first ResNet_CA-based

method for predicting antigen presentation, leveraging data from

multiple allele (MA) mass spectrometry (MS) datasets to achieve

accurate predictions. By incorporating a CA module, LRMAHpan

effectively captures crucial binding signals directly from MA MS

raw data, thus improving binding accuracy across various alleles

and peptide sequences. The model can handle peptide sequences of

variable lengths (8-11 amino acids), and we also trained and

validated its performance in pHLA-II presentation by adjusting

the number of channels and the length of peptide sequences (13-25

amino acids). Finally, we assembled different AP and BA predictors

to forecast the potential of MA HLA in presenting sequences,

resulting in the development of the presentation score (PS)

(LRMAHpan PS). Our findings indicate that PS predictor

outperforms both AP and BA models, demonstrating superior

performance compared to commonly used tools such as

NetMHCpan 4.1 (31), MHCflurry 2.0 and TransPHLA (32).
Materials and methods

Datasets

We used the multiple allele (MA) mass spectrometry (MS)

datasets curated by EDGE (23), integrating them with an additional

dataset derived from MHCflurry2.0 (22) to train the final version of

our model. Negative samples were generated from peptides sourced

from the reference proteome (SwissProt) that were not detected by

mass spectrometry in the original samples. Specifically, we

randomly sampled two segments from each negative peptide

sequence, with the length of each segment reflecting the

distribution of lengths in the positive dataset. From each sample,

we randomly selected 1,800 data points, ensuring that no peptide

sequences overlapped with those present in the positive dataset.

Consequently, the final dataset maintained a 1:4 ratio of positive to

negative samples, with a training set comprising 221,061 positive

samples. HLA typing for the MA in the training set is detailed in

Supplementary Table S2. Due to the frequent sharing of high-

frequency alleles among patients, our analysis revealed a total of 118

unique HLA typing combinations, each associated with the

presentation of more than 30 peptide sequences.

To mitigate variability associated with data preprocessing, we

utilized existing post-processed training datasets to directly assess

prediction systems (see Supplementary Table S1). The test dataset

was obtained from MULTIALLELIC-RECENT benchmark dataset
frontiersin.org
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of MixMHCpred 2.0.2 (33), which includes mass spectrometry

(MS) data from tumor samples of ten patients. The ratio of

presenting peptides to non-presenting peptides in this dataset is

1:99. As predicted events (i.e., presenting peptides) are rare,

achieving a high positive predictive value (PPV) becomes

increasingly challenging, resulting in a more stringent evaluation

of the model’s performance. To mitigate the impact of negative

sample selection on the results, we also employed multi-allelic

dataset provided by the IEDB database, which includes both

presenting and non-presenting peptides, maintaining a 1:1 ratio

for predictions (see Supplementary Note S2). Importantly, there is

no overlap between the test and training datasets. In the training set,

we excluded data from patients with incomplete HLA typing to

enable the model to learn more accurate features of multi-allelic

types. Consequently, the model prefers complete HLA data during

predictions. If HLA typing information for a patient is incomplete

at the time of prediction, our model can still process the data by

supplementing it with the patient’s known typing information.

Detailed usage instructions are available on GitHub and in

Supplementary Note S2.

Data from cBioportal (34, 35) were retrieved from metastatic

melanoma cohorts to predict neoantigens using LRMAHpan. The

cohort was constructed by sequencing the whole exomes of 38 pairs

of pre-treatment melanoma tumors and normal tissues. This data

includes mutation maps in MAF format for 38 cases and RPKM

expression data obtained from mRNA analysis for 27 cases.

Additionally, the dataset includes results of HLA class I and class

II typing.
HLA representation

HLA typing was carried out using the OptiType 1.3.1 HLA

analysis software packages. This tool was utilized to generate HLA

types from matched normal DNA samples, allowing for accurate

computational HLA typing. HLA class I alleles are represented by a

“pseudo sequence” proposed by NetMHCpan (36). In our

approach, we utilize the pseudo sequence generated by

MHCflurry 2.0, which differs from the NetMHCpan pseudo

sequence in that it has a length of 37. In addition to the 34

peptide contact positions contained in the NetMHCpan pseudo

sequence, we incorporate three new positions (115, 126, and 23).

These additional positions are selected to differentiate alleles that

share the same NetMHCpan pseudo sequence. The pseudo-

sequence of HLA class II is derived from the representation

offered by NetMHCIIpan3.0 (37), which includes amino acid

residues critical for peptide binding. It comprises 15 residues

from the a chain and 19 residues from the b chain of HLA class

II molecules, resulting in specific residues at defined positions. For

the a chain, these positions are 9, 11, 22, 24, 31, 52, 53, 58, 59, 61,

65, 66, 68, 72, and 73. For the b chain, the positions are 9, 11, 13, 26,

28, 30, 47, 57, 67, 70, 71, 74, 77, 78, 81, 85, 86, 89, and 90.

Consequently, the final length of the pseudo-sequence for HLA

class II molecules totals 34 residues (15 from the a chain and 19

from the b chain).
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Peptide-HLA encoding

The input to the LRMAHpan BA network was generated by

scanning six HLA allele pseudosequences and peptide sequences

(see Figure 1A). For each peptide sequence, a 3-dimensional feature

matrix M (size 6×59×22) was constructed, comprising six channels

of size 59×22, with each channel corresponding to one HLA allele

type. This design aims to capture the signal from HLA peptide

binding. Here, 59 represents the sum of the corresponding peptide

length, pseudosequence length, and reverse peptide length, with all

peptides padded to a maximum length of 59 using padding

characters. Furthermore, 22 represents 20 common amino acids

sequences, along with the padding marker <PAD>. Each amino acid

in the peptide sequence was vectorized using a one-hot encoding

scheme (20 common amino acids + <PAD>). Consequently, each

allele peptide is represented by a two-dimensional vector of size

(59, 22).

The peptide lengths range from 8 to 11 amino acids (AA), as

this range encompasses about ninety-five percent of HLA class I

presented peptides. The LSTM model employed the nn.Embedding

module from PyTorch, which initializes embedding weights

randomly. In the LRMAHpan AP mode, peptide sequences were

vectorized using a parameterized embedding method, and peptides

of multiple lengths (8-11 AA) were represented as vectors of fixed

length by adding amino acid alphabets with padding characters and

ensuring that all peptides were filled to a maximum length of 11 (see

Figure 1B). For the HLA class II data, peptides with lengths ranging

from 13 to 25 amino acids were included.
The construction of neural networks

The LRMAHpan BA model incorporates a Coordinate

Attention (CA) module into the ResNet residual block module

(see Figure 1C). It accepts any intermediate feature tensor X =

½x1, x2,…, xC� ∈ RC�H�W as input and outputs a transformed

tensor with augmented representations Y = ½y1, y2,…, yC� of the

same size as X. To balance data volume and model size, we utilize a

ResNet18 model comprising 17 convolutional layers and one fully

connected layer, structured as follows (see Figure 1D). The input

matrix is processed through the initial convolutional layer with a

kernel size of 3×3, followed by four series of Residual Blocks, and

then passed through AdaptiveAvgPool2d. The output of the final

block is fed into a fully connected layer with an output size of 2,

predicting whether the peptide can be presented by HLA.

The LRMAHpan BA model adds a CA module after the

BatchNorm layer in the residual block module to enhance the

feature representation. This CA approach addresses the challenge of

location information loss from 2D global pooling by partitioning

channel attentions into two parallel 1D signature encodings,

effectively integrating spatial coordinate information into

resultant attention maps. Notably, the CA technique features

adaptability and a lightweight design, leveraging collected location

data for precise region-of-interest capture and effectively capturing

inter-channel relationships.
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In channel attention mechanisms, global pooling is typically

employed to comprehensively encode spatial information.

However, this approach compresses global spatial data into a

channel descriptor, which poses challenges in retaining positional

information. To facilitate attention blocks in capturing distant

spatial interactions with precise positional details, Coordinate

Attention (CA) Blocks decompose global pooling into a pair of

1D feature encoding operations, as shown in Equation 1. Given

input X, we utilize two spatial extents of pooling kernels (H, 1) or (1,

W), to encode each channel along the horizontal and vertical

coordinates, respectively. The squeeze step for the c-th channel
Frontiers in Immunology 04
can be expressed as follows:

zc =
1

H �Wo
H

i=1
o
W

j=1
xc(i, j) : (1)

Thus, the output of the c-th channel at height h can be

formulated as:

zhc (h) =
1
W o

0≤i<W
xc(h, i) (2)

Similarly, the output of the c-th channel at width w can be

expressed as:
FIGURE 1

The structure of LRMAHpan PS predictor, LRMAHpan BA predictor and LRMAHpan AP predictor. (A) BA model input representations, for example,
AYTSGLEY coding+ HLA pseudosequence coding+ YELGSTYA coding. Notably, each BA model input consists of six such data representations.
(B) The input scheme accommodates peptides with variable lengths, capable of handling peptides of any length by selecting the maximum length,
set here at 11. (C) The major sub-module (CA module) of BA predictor. (D) The LRMAHpan BA predictor adopts a Resnet structure. (E) The
LRMAHpan AP predictor employs an LSTM structure. (F) The LRMAHpan PS predictor is proposed as a composite of two models (D, E). The
LRMAHpan PS model is designed to predict neoantigens, combining multiple AP and BA models through the calculation of mean values.
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zwc (w) =
1
H o

0≤j<H
xc(j,w) (3)

Here, zc denotes the output associated with the c-th channel.

The input X is derived directly from a convolutional layer with a

fixed kernel size, representing a set of local descriptors. The squeeze

operation facilitates the aggregation of global information.

Upon obtaining the aggregated feature maps generated by

Equations 2, 3, we concatenate them and pass them through a

shared 1 × 1 convolutional transformation function F1, yielding:

f = d F1(½zh, zw�)
� �

: (4)

where [·, ·] denotes the concatenation operation along the spatial

dimension, d is a non-linear activation function, and f ∈ RC=r�(H+W)

is the intermediate feature map that encodes spatial information in

both the horizontal and vertical directions. We then split f along the

spatial dimension into two separate tensors f h ∈ RC=r�H and f w ∈
RC=r�W . Two additional 1 × 1 convolutional transformations, Fh and

Fw, are utilized to separately transform f h and f w to tensors with the

same channel number as the input X, yielding.

ɡh = s(Fh(f
h)) (5)

ɡw = s(Fw(f
w)) : (6)

Here, s is the sigmoid function, and the output of our

coordinate attention block Y can be written as:

yc(i, j) = xc(i, j)� ghc (i)� gwc (j) : (7)

To enhance the robustness and generalization capabilities of the

BA model, our approach combines Sharpness-Aware Minimization

(SAM) (38) and SGD (39) to achieve a balance between training

duration and generalization capacity. Regardless of the gradient

descent or optimization approach, the goal of training the model is

to identify the parameters that minimize loss value. Notably, in

contrast to other optimization methods, SAM achieves superior

generalization by enhancing the training process through the

simultaneous minimization of both loss value and loss sharpness.

Furthermore, it explores parameters exclusively within neighborhoods

exhibiting consistently low loss values, resulting in a flatter loss

hyperplane compared to alternative optimization methods, thereby

augmenting the model’s generalization capabilities. However, SAM

requires double the training time due to computing the sharpness-

aware gradient twice.

Based on the characteristics of the presented peptides, we propose

a novel antigen peptide processing predictor based on the Bi-LSTM

(40) framework, corresponding to LRMAHpan AP. The LRMAHpan

AP predictor (see Figure 1E) comprises several key layers: embedding,

spatial dropout, LSTM, GRU, Relu (41), maximum pooling, average

pooling, and fully connected layers. SpatialDropout (42) randomly

eliminates several feature dimensions. We utilize embedding-encoded

peptide representations as the input to our model. Notably, the

embedding dimension within the neural network is set at 100,

while the hidden layers of both LSTM and GRU consist of 128

neurons each. Additionally, the largest pooling layer is connected to
Frontiers in Immunology 05
the average pooling layer to facilitate feature reuse, enhancing training

efficiency and serving as input for subsequent layers.

This work introduces LRMAHpan PS as the ultimate

presentation model, achieved by averaging the outcomes of

LRMAHpan BA and LRMAHpan AP (see Figure 1F).
Model training

For model training, we divided dataset (refer to the Dataets

section) into multiple subsets: 95% for training and 5% for validation,

utilizing different random seeds. A larger training dataset enables the

model to learn more effectively and capture diverse binding patterns,

which are crucial for its performance. The remaining 5% of the data is

utilized as a validation set to evaluate the model’s performance and

ensure its ability to generalize to unseen data. This approach aimed to

identify the hyperparameters that minimize the loss value of the

LRMAHpan BA model. We employed early stopping to monitor the

performance metric, halting training when the performance on the

validation set began to deteriorate. The neural network was trained

using the SGD optimizer with a cross-entropy loss function. Training

was conducted with a batch size of 128, an initial learning rate of 0.1

and a momentum value of 0.9. The learning rate was subsequently

reduced to 0.02, 0.004, and 0.0008 at the 60th, 120th, and 180th

iterations, respectively. The total training process encompassed 200

iterations. For optimizing the LRMAHpan AP model, we applied the

same strategy. In this case, we divided the peptides into a training set

(90%) and a validation set (10%), keeping all other training

parameters consistent with those used for the LRMAHpan BAmodel.
Model selection

The imbalance between positive and negative samples poses a

significant challenge in tumor neoantigen prediction, potentially

biasing model predictions towards the majority class. To address

this issue, we employed an effective technique known as

EasyEnsemble (43). This technique integrates undersampling and

demonstrates strong performance in real-world scenarios. We set the

ratio of positive to negative samples at 1:4, training the model with

the sampled negative samples and all positive samples. The F1 score

of the validation set was used as the performance metric for each

model. Subsequently, we selected several top-performing models for

ensemble averaging. The ensemble for LRMAHpan BA comprised

nine models, while the ensemble for LRMAHpan AP included six

models. During testing, the final prediction was generated by

averaging the output probabilities from these selected models.
Quantitative and statistical indicators

The model primarily employed PPV as the performance

metrics, defined as PPV=NTP/(NTP+NFP), where NTP

represents the number of true positives and NFP represents the

number of false positives. The performance evaluation utilized

Average Precision (AP) to assess the average precision and recall
frontiersin.org
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of a classification model at various thresholds. AP is particularly

suitable for imbalanced datasets as it emphasizes the model’s ability

to identify positive samples. For continuous PR curves, the formula

for AP is given by:

AP =
Z 1

0
PRdr (8)

For discrete PR curves, the formula for AP is expressed as:

AP = o
n

k=1

P(k)DR(k) (9)
Contrast with currently available tools

The purpose of this article is to evaluate LRMAHpan BA and

LRMAHpan AP against the most advanced binding affinity

predictor and presentation predictor (NetMHCPan 4.1,

MHCflurry 2.0, TransPHLA). Our approach for assessing single

allele (SA) predictors (NetMHCpan 4.1, MHCflurry 2.0,

TransPHLA) using multiple allele (MA) data involves combining

peptide sequences with each HLA typing separately, in accordance

with the input characteristics of the predictors (see Supplementary

Note S1). This method yields optimal results compared to our

model (see Supplementary Figure S3).

The benchmark proposed by MHCflurry 2.0 was employed for

performance comparison. To ensure a fair evaluation, the training

dataset was omitted from the KESKIN MA dataset, as the

MHCflurry 2.0 BA training process utilized a KESKIN SA cell

line, which could provide an advantage in the MA dataset.

Additionally, the exclusion of these datasets from the benchmark

was motivated by the presence of the MULTIALLELIC-OLD data

within the LRMAHpan training dataset. The final dataset used for

comparison was a set of 10 datasets known as MULTIALLELIC_B,

which contained a total of 18,472 presented peptides.

In the performance comparison, IC50 values were transformed

into probability values ranging from 0 to 1. This facilitated

comparisons between LRMAHpan Presentation Score (PS) and

MHCflurry 2.0 PS, as well as between LRMAHpan BA and both

MHCflurry 2.0 BA and NetMHCPan 4.1 BA. When comparing

LRMAHpan AP with MHCflurry AP, it is important to highlight

that MHCflurry 2.0 utilized a final training set comprising 493,473

MS data points and 219,596 affinity measurements, while

LRMAHpan relied on only 221,061 presented MS data points.

This indicates that our model can extract accurate features and

make precise predictions using limited data.
Results

Prediction performance of LRMAHpan BA

To evaluate the performance of the LRMAHpan BA predictor

based on the ResNet_CA network, we screened ten samples from

MULTIALLELIC benchmark (see Methods for more details), ensuring

the inclusion of six HLA alleles as an independent test dataset (Table 1).
Frontiers in Immunology 06
Each peptide sequence was combined with an HLA pseudosequence

and a reverse peptide sequence, then encoded into a vector (Figure 1A).

Additionally, each peptide sequence could be separately combined with

six HLA typings to form a six-channel data input for training and

testing. A benchmark was established using public datasets of HLA

ligands identified by mass spectrometry (MS) (Supplementary Table

S1). We compared the performance of our model to that of the current

state-of-the-art methods, MHCflurry2.0 BA and NetMHCpan4.1 BA

(Figure 2A), which are widely used for predicting HLA ligands.

LRMAHpan BA demonstrated superior performance compared to

both MHCflurry2.0 BA and NetMHCpan4.1 BA when applied to test

data. The positive predictive value (PPV) was calculated at the recall

rate was 50% on a test set composed of ten subsets with a 1:99 ratio of

positive to negative samples. For instance, the PPV of LRMAHpan BA,

MHCflurry2.0 BA, andNetmhcpan4.1 BAwere 0.477, 0.151 and 0.080,

respectively (see Supplementary Figure S1A). In the dataset 29_14-

TISSUE, which contained the largest number of positive samples, the

PPV of LRMAHpan BA was 8.9 times higher than that of

MHCflurry2.0 BA and 13.9 times higher than that of

NetMHCpan4.1 BA (see Supplementary Figures S1B, G). To assess

whether this advantage was consistent across different datasets, we

tested data with positive to negative ratios of 1:1 and 1:9. The results

indicated that regardless of the ratio, our PPV values were superior to

those of existing tools (see Supplementary Figure S1F). Similarly, in

dataset 637-13-TISSUE, the PPV of LRMAHpan BA was 4.1 times

higher than that of MHCflurry2.0 BA and 7.9 times higher than that of

NetMHCpan4.1 BA (see Supplementary Figures S1C, G). The excellent

performance of the BAmodel in terms of PPVmay be attributed to the

multi-allelic model’s ability to recalled fewer false positive prediction

predictions under the same datasets. Despite undergoing identical

validation procedures, our model is unique in simultaneously
TABLE 1 Independent test sets.

Sample id #Pos #Neg HLA

11-002-S1-TISSUE 946 93654 A0301 A2402 B3503 B4402
C1203 C1203

10-002-S1-TISSUE 431 42669 A0201 A3101 B1302 B5801
C0602 C0701

BCN-018-TISSUE 935 92565 A0201 A2901 B0702 B2705
C0102 C1505

CPH-09-TISSUE 1527 151173 A0201 A3201 B2705 B4402
C0501 C0202

CPH-07-TISSUE 1816 179784 A0201 A0201 B3501 B2705
C0202 C0401

29-14-TISSUE 4049 400851 A0201 A3201 B4001 B1302
C0304 C0602

637-13-TISSUE 2386 236214 A0101 A2402 B5101 B0801
C0701 C0102

LEIDEN-
005-TISSUE

2066 204534 A0201 A2501 B3501 B1801
C1203 C0401

CPH-08-TISSUE 3008 297792 A3201 A2601 B3801 B4002
C0202 C1203

LEIDEN-
004-TISSUE

1308 129492 A0301 A0201 B0702 B0702
C1203 C0702
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considering six alleles, whereas the SA predictor necessitates multiple

iterations involving peptide sequences and HLA typing six times. This

distinction may result in higher recall rates for SA predictors, along

with an increased likelihood of false positives.

In addition, we trained a series of models and found that using

ResNet with CA resulted in slightly higher performance compared to

models without CA (Table 2), demonstrating an average

improvement of 0.02 in the area under the curve (AUC). The PPV

and AUC values of LRMAHpan BA across the ten test sets were

consistently higher than those of MHCflurry2.0 BA and

NetMHCPan4.1 BA (see Figures 2A, G; Supplementary Figures
Frontiers in Immunology 07
S5A, B). These observations illustrate that LRMAHpan BA

possesses powerful feature extraction capabilities, generalizability

and advantages in large datasets. Overall, LRMAHpan BA

significantly improved predictive performance for MA presentation.
Prediction performance of LRMAHpan AP

Comparing the predictive capabilities of LRMAHpan AP and

LRMAHpan BA reveals some interesting insights. The LRMAHpan

AP predictor outperforms MHCflurry 2.0 AP predictor in terms of
FIGURE 2

Benchmarking the performance of the models. (A) Performance comparison of PPV of the BA models against other predictors, with each point
representing a single experiment. (B) AUC values of LRMAHpan. (C, D) PPV of LRMAHpan PS is contrasted with other predictors. (E) Violin plot
display PPV and AUC values of LRMAHpan AP alongside MHCflurry2.0 AP across ten independent test sets. (F) The structural depiction of the
experimental complex involving the epitope IMDQVPFSV presented by HLA-A:02*01, showcasing detailed residue interactions. The a and b chains
within the HLA-A:02*01 structure are highlighted in green and orange, respectively, while non-covalent interactions between HLA and peptide
residues are illustrated by dashed lines using PyMOL. (G) AUC values of 9 models on 10 independent test sets. The symbol ** indicates that the p-
value is less than 0.01.
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PPV and AUC indicators (see Figure 2E; Supplementary Figures

S5C). To investigate whether the AP predictor differs from the BA

predictor in feature extraction, we evaluated LRMAHpan AP and

LRMAHpan BA models using ten test sets from the

MLTIALLELIC_B dataset (see Figures 2A, B). LRMAHpan AP

model solely utilizes mass spectrometry-derived peptide

sequences as input (see Supplementary Figure S3), while

LRMAHpan BA model integrates data from six HLA types along

with peptide sequences (see Figures 1A, D).

Interestingly, nine out of ten LRMAHpan BA samples exhibited

higher PPV compared to LRMAHpan AP (see Figure 2A).

Regarding AUC values, the LRMAHpan AP outperformed the

LRMAHpan BA in six out of ten samples (see Figures 2B;

Supplementary Figures S5D). The mean AUC of LRMAHpan AP

predictor reached 0.92 (0.86-0.96), suggesting that the AP model

effectively captures meaningful signals. Further comparisons of

Recall, Accuracy, and F1 value on independent test sets highlight

performance differences between the LRMAHpan AP and the

LRMAHpan BA models (see Supplementary Figure S2). The

LRMAHpan BA demonstrates higher accuracy and F1 score,

while the LRMAHpan AP shows a higher recall rate.

Overall, LRMAHpan BA outperforms LRMAHpan AP in terms

of predictive performance, partially attributed to the use of MA data

and an improved approach for encoding peptide sequences. This

enhanced performance can be attributed not only to the features of

the training dataset (HLA-presented peptides) but also to the

overall model design. The new model framework allows for

learning connections between multiple alleles, rather than being

limited to a single allele. In contrast, our AP model, which combines

LSTM and GRU layers, exhibits a slight improvement in

performance (see Supplementary Figure S7).
Prediction performance of LRMAHpan PS

Furthermore, we explored whether the combination of the

LRMAHpan AP and the LRMAHpan BA predictors could

achieve superior prediction results. We subsequently compared
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the LRMAHpan PS model with several others, including

MHCflurry 2.0 AP, MHCflurry 2.0 BA, MHCflurry 2.0 PS,

NetMHCpan 4.1 EL, NetMHCpan 4.1 BA, and TransPHLA (see

Figures 2C, D; Supplementary Figures S5E, F). The LRMAHpan PS

exhibits an average PPV higher than those of MHCflurry 2.0 PS,

NetMHCpan 4.1 EL, and TransPHLA, with values of 0.4747,

0.2615, 0.1534, and 0.0642, respectively (see Supplementary

Figure S1D). Across all samples, LRMAHpan PS shows higher

AUC values compared to MHCflurry 2.0 PS, NetMHCpan 4.1 EL,

and TransPHLA, achieving values of 0.9329, 0.8947, 0.8518, and

0.8157, respectively (see Supplementary Figure S1E).

In comparison with MHCnuggets (44) and MixMHCPred,

LRMAHpan exhibited superior performance across both AUC

and AP metrics, as illustrated in Supplementary Figure S6. We

tested our model on well-studied HLA-peptide samples, such as the

IMDQVPFSV epitope presented by HLA-A*02:01, demonstrating

that LRMAHpan accurately predicts the potential presentation of

this peptide by the patient’s HLA (see Supplementary Figure S4A).

Correlation analysis with HLA typing (see Supplementary Figure

S4B) using the PSSM matrix (see Supplementary Figure S4C)

indicates that IMDQVPFSV can be presented by either HLA-

A*02:01 or HLA-C*0501. Experimental data further confirm the

binding of IMDQVPFSV and HLA-A*02:01, providing additional

evidence for the reliability of our model (see Figure 2F).

To assess the robustness of our model, we obtained mass

spectrometry data for an ovarian cancer patient from Dao (45),

encompassing a total of 1,874 presentation instances. The HLA

typing included HLA-A*02:01/A*01:01, HLA-B*57:01/B*07:05, and

HLA-C*06:02/C*15:05. We evaluated LRMAHpan PS and

NetMHCpan 4.1 using various performance metrics—AUC,

Recall, Precision, F1, ACC, AP, and Matthews correlation

coefficient (MCC) —across different positive-to-negative sample

ratios (1:1, 1:10, and 1:100), as illustrated in Figure 3B. These

metrics serve distinct purposes, with AUC and AP values providing

threshold-independent evaluations. NetMHCpan 4.1 performs

admirably at a positive-to-negative sample ratio of 1:1 but

exhibits a significant drop in accuracy as the proportion of

negative samples increases. In contrast, LRMAHpan PS

demonstrates commendable performance in terms of precision,

F1, ACC, AP, and MCC. Notably, at a positive-to-negative

sample ratio of 1:100, LRMAHpan PS is poised to predict more

authentic neoantigens due to its higher precision and AP values.

Given the inherent imbalance between presented and non-

presented antigens in real human settings, with non-presented

antigens typically outnumbering presented ones, the performance

metrics at a ratio of 1:100 are more reflective of real-world

scenarios. This underscores the robustness and fidelity of our

model predictions.
Class II model proof of concept

We evaluated whether the prediction model we proposed can

also be applied to class II HLA peptide presentation. We utilized

class II mass spectrometry data from the MARIA (46) dataset,

where each peptide corresponds to two HLA class II alleles, both
TABLE 2 Compare the AUC with and without CA module in the test sets
of the BA predictor.

Sample id ResNet18 ResNet18_CA

CPH-09-TISSUE 0.90 0.92 (+0.02)

CPH-07-TISSUE 0.91 0.93 (+0.02)

CPH-08-TISSUE 0.93 0.95 (+0.02)

10-002-S1-TISSUE 0.95 0.97 (+0.02)

LEIDEN-005-TISSUE 0.92 0.95 (+0.03)

11-002-S1-TISSUE 0.93 0.95 (+0.02)

LEIDEN-004-TISSUE 0.89 0.91 (+0.02)

BCN-018-TISSUE 0.86 0.88 (+0.02)

637_13-TISSUE 0.90 0.91 (+0.01)

29_14-TISSUE 0.95 0.96 (+0.01)
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expressing HLA-DRB1. The preprocessing steps included data

deduplication, after which the dataset was divided into training

and validation subsets. The AUC and AP values of the validation set

were used as evaluation criteria. The model architecture and

training methodology were consistent with those employed for

predicting HLA-I peptide presentation, with the notable exception

of incorporating two channels. Next, we evaluated the performance

of LRMAHpan PS against the K562 DRB1*01:01 benchmark

dataset from MARIA. which comprised 1,361 positive and 1,361

negative samples. We plotted the ROC and PR curves for the

MARIA, NetMHCIIpan 4.0, and LRMAHpan PS, calculating their

respective AUC and AP values. The results were 0.885 and 0.879 for

MARIA, 0.765 and 0.824 for NetMHCIIpan 4.0, and 0.875 and

0.864 for LRMAHpan PS, respectively (see Figure 3A). Comparative

analysis reveals that the AUC and AP values of MARIA and

LRMAHpan PS exceed those of NetMHCIIpan 4.0, with

LRMAHpan PS demonstrating comparable efficacy to MARIA.

These findings underscore the robust generalization and

migratory capabilities of our model framework.
Examples of neoantigen prediction in
metastatic melanoma cohorts

We utilized Maftools (47) to visualize the cohort and assess the

mutation status of all metastatic melanoma samples. The primary

categorization of variations included missense mutation, with single

nucleotide polymorphisms (SNPs) being the predominant variation
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type, characterized notably by the frequent occurrence of C > T

transitions. Each sample exhibited significant variability in

mutation burden, with a median of 497 mutations. TTN (84%)

and MUC16 (78%) emerged as genes with substantial mutational

frequencies (see Figures 4A–F). The waterfall plot demonstrates

that some genes were altered multiple times across different samples

(see Figure 4G). Comparing the mutation burden of metastatic

melanoma to 33 other cancers in the TCGA revealed a notably high

mutation load in melanoma (see Figure 4H).

Antigen presentation prediction was performed using 26 samples

with available RNA expression levels employing LRMAHpan.Within

the metastatic melanoma cohort, 14,462 single nucleotide variants

(SNVs) were identified. Following segmentation around the mutation

sites into 8-11mers, a total of 541,783 peptides were generated. The

distribution of predicted peptides using STMHCPan (48),

STMHCPan-neo, STMHCPan + STMHCPan-neo, LRMAHpan

BA, LRMAHpan AP, and LRMAHpan PS was assessed under the

conditions of TPM > 0, TPM > 1 and TPM > 2 (see Figure 4I). As

TPM thresholds increased, the number of predicted peptides

decreased. Specifically, under TPM>0, LRMAHpan PS projected

8,155 presented peptides; under TPM>1, 5,432 peptides were

predicted; and under TPM>2, 4,905 peptides were anticipated. In

the prediction of presented peptides in tumor patients, combining

TPM with LRMAHpan significantly reduced the false positive rate.

The number of predicted novel antigens for each sample correlated

with the respective SNV mutation burden (see Figure 4J), suggesting

that patients with a higher mutation load may derive greater benefit

from immunotherapy targeting neoantigens.
FIGURE 3

Generalization and robustness validation results. (A) Performance of PS model in predicting pHLA-II. (B) In K562 cell lines, Comparison of AUC,
Recall, Precision, F1, ACC, AP and MCC values of LRMAHpan PS and NetMHCpan4.1 with positive and negative sample ratios of 1:1, 1:10 and
1:100, respectively.
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We observed that most of the mutant peptides are unique,

which may be related to the genetic diversity within the tumor and

the high mutation load of melanoma. However, some shared

neoantigens were detected, indicating peptide presentation across
Frontiers in Immunology 10
multiple samples. Specifically, LRMAHpan PS predicted 10

peptides to be presented in more than two samples (see Table 3),

and 116 peptides were predicted to be presented by LRMAHpan PS

in more than one sample.
FIGURE 4

Mutational landscape of a metastatic melanoma cohort. (A) Overall variant classification by cohort. (B) Overall variant type by cohort. (C) Type of
single nucleotide variation. (D) Number of variants per sample. (E) Cohort variant classification profile. (F) Top ten genes with the largest number of
mutations. (G) Mutant landscape waterfall plot where multi_Hit indicates genes mutated more than once in the same sample. (H) Comparison to
mutational load in a cohort of 33 cancer species already available in TCGA. (I) Distribution of antigen presentation quantities predicted by
STMHCPan, STMHCPan-neo, STMHCPan+STMHCPan-neo, LRMAHPan BA, LRMAHPan AP, and LRMAHPan PS under TPM>0, TPM>1, and TPM>2.
(J) The number of Candidate neoantigen predicted by the model compared to the number of SNV mutations per sample. (K) BRAF mutation
distribution and protein domain in metastatic melanoma cohort.
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Notably, LRMAHpan PS identified the peptide KIGDFGLATEK,

derived from the BRAF V600E mutation, in six samples. The

oncogenic BRAF mutation, found in approximately 40% of

melanomas, leads to sustained activation of the MAPK signaling

pathway, influencing tumor cell differentiation, proliferation, and

metabolism (49). The BRAF V600E mutation, situated within the

protein tyrosine kinase domain, was detected in 7 out of 26 samples

within the metastatic melanoma cohort (see Figure 4K).
Discussion

The prediction of antigen presentation is a pivotal aspect of

anticipation tumor neoantigens. While many models for antigen

presentation prediction predominantly concentrate on a single

allele, the clinical dataset primarily consists of multi-allelic (MA)

peptide sequences. As MA data continues to accumulate, direct MA

antigen presentation prediction becomes feasible.

This study outlines strategies for applying ResNet in

bioinformatics, specifically for predicting HLA class I peptide

binding and presentation. By leveraging existing MA MS

sequence encoding, we devised a representation conducive to

integrating bioinformatics tasks with computer vision techniques.

Utilizing this coding representation, we developed a ResNet-based

architecture for HLA class I peptide binding prediction, which also

yielded commendable results in predicting HLA class II binding.

Notably, our framework enables the accurate prediction of any MA

subtype. Despite being constructed with minimal data, our

experimental findings on benchmark datasets demonstrate that

our approach achieves state-of-the-art prediction performance

across the majority of test sets compared to current models,

particularly excelling on large datasets.
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Initially, we explored data augmentation techniques to enhance

the generalization ability of model. This approach was intended to

increase the variability of the training data and improve

performance on unseen samples. However, extensive validation

revealed that the presence or absence of the data augmentation

module had minimal impact on the overall performance of our

predictive model. Consequently, we decided to remove the data

augmentation step to streamline the computational process without

sacrificing predictive accuracy.

Nevertheless, our model has limitations. In cases where HLA of

patient type is incomplete, it requires supplementation based on

known HLA typing of the patient, which may lead to some loss of

accuracy. Additionally, our model’s capacity to predict neoantigens

is restricted, as our work primarily focuses on HLA class I ligand

presentation without verifying ligand binding to T-cell receptors

(TCR). Future research will explore the potential integration of

these predictors with TCR assessments.
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