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The biology of natural killer (NK) cells in commonly usedmousemodels is discussed

in this review, along with their crucial function in a variety of immunological

responses. It has been demonstrated that the formation, maturation, subtype

variety, and immunological recognition mechanisms of NK cells from various mice

strains exhibit notable differences. These variations shed light on the intricacy of NK

cell function and offer crucial information regarding their possible uses in treating

human illnesses. The application of flow cytometry in mouse NK cell research is also

covered in the article. Improved knowledge of the biology of NK cells across species

may facilitate the development of new NK cell-based therapeutic approaches.
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1 Introduction

An integral part of the immune system, natural killer (NK) cells are vital for both antiviral

and anti-tumor defense. Ever since their initial identification in 1975 (1), researchers studying

biology and immunology have been interested in the distinct roles and modes of action of NK

cells (2–4). These cells can eliminate aberrant tissue cells while preserving the body’s tolerance

for healthy tissue cells as the presence of various activating and inhibitory receptors on their

surface (5, 6). The potential of NK cells in immunotherapy has grown in recent years due to a

growing understanding of their basic characteristics (7).

Mice share a high degree of genetic homology with humans and are easy to manipulate

and breed, making them an ideal model for studying disease mechanisms (8). Laboratory

mouse models play a crucial role in NK cell research. However, there are significant

differences in development, subsets, and surface receptor expression between mouse and

human NK cells, such as the absence of CD56 expression in mouse NK cells (9, 10), which

limits the direct applicability of mouse models to human studies. Additionally, significant
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phenotypic and functional differences exist among NK cells from

various mouse strains (11, 12). Therefore, a comprehensive

understanding of the biological characteristics of NK cells in

different mouse models is essential for translating basic research

findings into clinical applications.

This review presents a thorough examination of the biological

attributes of NK cells within frequently employed experimental

mouse models, along with their efficacy across various experimental

paradigms (Table 1). By dissecting the ontogeny, maturation,

heterogeneity of NK cells, and their immune recognition processes

within these models, we aspire to provide a comprehensive

understanding of the role of NK cells in immunological research.

This review is intended to serve as a reference for forthcoming studies

in the field.
2 Biological characteristics of NK cells
in commonly used experimental
mouse models

2.1 NK cells in C57BL/6 mice

C57BL/6 mice are widely utilized in biomedical research due to

their genetic homogeneity and stability, making them an excellent

model for investigating the biological properties of NK cells (13).

These mice are characterized by robust interferon production and

complement activity, which provide advantages for investigating

NK cell immune responses (14, 15). However, the C57BL/6 strain is

also known to induce immune tolerance, which may impact the

long-term functionality and stability of NK cells (11, 12).

The functionality of NK cells in C57BL/6 mice tends to become

dysregulated with advancing age. Studies suggest that mature NK

cell counts in the bone marrow, spleen, and blood of older C57BL/6

mice are much lower than those of younger counterparts, increasing

their vulnerability to the mousepox virus (16). Additionally, the NK
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cell phenotype in aged mice undergoes changes, with decreased

expression of maturity-associated markers such as CD43, CD11b,

KLRG1, CD62L, and Ly6C, an increase in the expression of

immaturity-associated markers, including CD27 and NKG2AEC,

among others (17), potentially impacting their immune functions.

Also, aging alters the number and phenotype of NK cells that dwell

in the liver as well as the expression of collagen-binding integrins in

conventional NK cells (18), which are pivotal for NK cell migration,

tissue positioning, and the liver’s immune microenvironment.

2.1.1 Ly49 family in C57BL/6 mouse NK cells
The Ly49 family of mouse NK cells is functionally analogous to

human killer immunoglobulin-like receptors (KIRs) in that both

regulate NK cell activity through interactions with major

histocompatibility complex class I (MHC-I) molecules. However,

they differ in their gene and protein structures (9, 19, 20). Ly49H is a

distinctive activating receptor on C57BL/6 mouse NK cells, capable of

recognizing and binding to specific molecules on the surface of infected

cells, thus triggering an effective antiviral response (21, 22). Ly49H is

crucial not only for antiviral activities but also for genetic resistance to

murine cytomegalovirus (MCMV) (6, 23–25). Ly49H-positive NK cells

utilize mitochondrial-associated proteins BNIP3 and BNIP3L to

recognize and clear dysfunctional mitochondria, enhancing the

survival capacity of antigen-specific NK cells induced by MCMV (26).

Recent studies suggest that the expression of Ly49 receptors is

not random but follows a specific differentiation trajectory,

indicating a pattern in NK cell population differentiation. The

surface expression of Ly49I is considered a pivotal step in NK cell

maturation, further influencing their functional state (27).
2.2 NK cells in BALB/c mice

BALB/c mice exhibit a higher liver-to-body weight and spleen-

to-body weight ratio compared to other inbred mice, which
TABLE 1 Comparative characteristics of NK Cells in commonly used mouse models.

Mouse
Model

NK Cell Characteristics Development/
maturation
Changes

Other Related Characteristics Cytotoxicity References

C57BL/6 High interferon production and
complement activity

Decreased number of
mature NK cells with age

Ly49H positive NK cells exhibit genetic
resistance to MCMV

Strong (6, 13–27)

BALB/c High IFN-g expression, yet insufficient
to offset NK cell functional deficiency

Not mentioned High Th2 immune response; Absence of
Ly49H expression; Susceptible to MCMV

Weaker (28–35)

BALB/
c Nude

Impaired NK cell function Activity increases with age Lack of thymus and T lymphocytes Age-related (36–40)

SCID Profuse IFN-g production; NK cell
function is unaffected

Immune function may
recover with age

NK cells confer protective effects against
neurological diseases

Strong (41–45)

NOD/
SCID

Impaired NK cell function, both innate
and adaptive immune deficiencies

Not mentioned Immature NK cells abundant at
fetomaternal interface

Partially
impaired

(43, 46–49)

C3H/He Significant fluctuation in NK cell
proportion and activity with age

Peaks at 6 to 8 weeks,
then sharply declines

Prone to mammary tumors Age-dependent (50, 51)

ICR Activity and number related to rearing
environment and exercise

Related to rearing
environment and exercise

Strong adaptability and rapid growth Variable (52–56)
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correlates with their pronounced Th2 immune response

characteristics (28). Although the innate immune system of

BALB/c mice contributes to infection clearance, its efficacy is

limited and often relies on adaptive immune responses (6, 29, 30).

2.2.1 “Immune deficiency” of BALB/c mouse
NK cells

Research indicates that there are notable differences in CD11c

expression patterns between NK cells and specific immune cells in

BALB/c mice, potentially affecting their immune response to viral

infections (31). Unlike C57BL/6 mouse NK cells, which resist

MCMV infection due to Ly49H receptor expression, BALB/c

mouse NK cells lack Ly49H, exhibiting reduced cytotoxicity and

more severe symptoms upon MCMV infection (6). Despite elevated

interferon-gamma (IFN-g) expression, BALB/c mice cannot fully

compensate for the NK cell functional deficiency, which may

contribute to their increased susceptibility to MCMV (32).

Despite these immune shortcomings, BALB/c mouse NK cells

still contribute to infection resistance (33, 34). Moreover, BALB/c

mouse NK cells may also be implicated in the antidepressant effects

by modulating the release of inflammatory factors secreted by

macrophages (35).
2.3 NK cells in mutant mouse strains

2.3.1 BALB/c nude mice
The BALB/c nude mouse, first developed in 1966, is a mouse

model that exhibits significant immune dysfunction due to a

mutation in the Foxn1 gene, which is distinguished by the

absence of a thymus and T lymphocytes (36, 37). In nude mice,

this mutation causes poor development, reduced fertility, and

increased vulnerability to infection. However, B lymphocytes and

NK cells continue to function in some capacity in BALB/c nude

mice (38). Investigation reveals that NK cell activity in these nude

mice is age-related, with lower activity at 3 to 4 weeks of age and

increased activity by 6 to 8 weeks of age (39), which may be related

to the maturation and functional development of NK cells.

Further research has revealed the complexity of NK cell activity

in BALB/c nude mice. A study by Manďáková et al. found that 3-

acetylpyridine, a neurotoxin, significantly increased cytotoxic

activity in splenic NK cells of BALB/c nude mice (40). This

indicates that even in the context of immune deficiency, the basic

immune mechanisms of NK cells are regulated by innate and

extrinsic factors.

2.3.2 Severe combined immunodeficiency mice
In 1983, Bosma first described in detail a mouse model with

severe combined immunodeficiency (SCID), which lacks functional

T and B lymphocytes. Despite appearing similar to normal mice,

SCID mice have significantly underdeveloped thymi, spleens, and

lymph nodes, with weights typically less than one-third of those of

normal mice, showing clear deficiencies in cellular and humoral

immune functions (41). The function of NK cells remains

unaffected in SCID mice, providing a unique perspective for
Frontiers in Immunology 03
investigating the role of these cells within the immune system

(42, 43). In fact, some SCID mice may exhibit a degree of

immune function recovery with age (44), a phenomenon that is

not yet fully understood. Additionally, despite the lack of adaptive

immune responses in SCID mice, the role of NK cells in these mice

should not be overlooked. Investigation has indicated that NK cells

in SCID mice can produce large amounts of IFN-g and play an

important role in the protection against neurological diseases (44).

Additional research has revealed that during pregnancy, SCID

mice’s NK cells have a particular pattern of development. Hiyama

et al. demonstrated that the absence of functioning T and B cells

may cause the development of NK cells to be delayed in the early

stages of the placenta in SCID mice that are pregnant (45).

2.3.3 NOD/SCID mice
The non-obese diabetic (NOD) mouse serves as a model for

diabetes caused by aberrant T-lymphocyte infiltration and pancreatic

beta cell loss (57). In addition to diabetes, NOD mice show a number

of immunodeficiencies, such as a lack of NK cells and reduced

complement and macrophage activity (58). The NOD/SCID mice

were generated from a cross between NOD mice and SCID mice,

incorporating immunodeficiency traits from both, including the

absence of T and B cells, decreased NK cell function, both innate

and adaptive immunodeficiencies, and a loss of haemolytic

complement activity (46, 47). These features have made NOD/SCID

mice a popular model for studies involving NK cell insufficiency.

However, recent studies have found that while NK cell activity is

compromised in NOD/SCID mice, it is not entirely eliminated (43). A

study by Miao et al. showed that there was no discernible difference in

the percentage of splenic NK cells between NOD/SCID mice and

CB17/SCID mice (a model with normal NK cells but absent B and T

lymphocyte function), indicating that NOD/SCID mice’s NK cell

function is only partially impaired (48). Therefore, care should be

taken while employing NOD/SCIDmice as NK cell deficiency models.

Additionally, studies have found that in pregnant NOD/SCID

mice, there is a large number of immature NK cells at the

fetomaternal interface, which are insensitive to Toll-like receptor

(TLR) agonist stimulation, potentially contributing to the

maintenance of immune tolerance during pregnancy (49).
2.4 NK cells in other mouse models

2.4.1 C3H/He mice
The C3H/He mouse strain originated from the crossbreeding of

albino Bagg female mice with DBA male mice, which are prone to

mammary tumors, followed by inbreeding. Investigations have

indicated that the counts and activity of NK cells in the liver of

C3H/He mice fluctuate significantly with age, emerging at 4 weeks,

peaking between 6 and 8 weeks, and then declining sharply after 9

weeks (50, 51).

2.4.2 ICR mice
ICR mice were developed by Hauschka within the Swiss mouse

lineage, targeting high fertility (52). Celebrated for their adaptability,
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rapid growth, and experimental reproducibility, ICR mice are

extensively utilized in pharmacological, oncological, and

immunopharmacological screenings, as well as in pathological model

replications (53, 54). Petitto et al. discovered that ICR mouse strains

with varying aggressive behaviors display differences in cellular

immune responses, with those showing less aggression having

reduced NK and T cell activity and an increased likelihood of tumor

development (55). Furthermore, it has been shown that both male and

female ICR mice can escalate blood NK cell counts with an enriched

environment and exercise, especially under group housing conditions,

where the impact on male NK cells is more pronounced (56).
3 Molecular and functional
characteristics of mouse NK cells

3.1 Developmental and maturation markers
of NK cells

NK cell maturation is marked by shifts in surface marker

expression, pivotal for identifying developmental stages. While

human NK cells use CD56 and CD16 levels to denote maturation

from CD56bright CD16- to CD56dim CD16bright, mouse NK cells

employ CD27 and CD11 (59, 60). Immature mouse NK cells are

distinguished by low CD11b and high CD27 expression

(CD11blowCD27high), transitioning to double-positive status(CD27
Frontiers in Immunology 04
+CD11b+), and culminating in mature NK cells with low CD27 and

high CD11b expression(CD27low CD11bhigh) (61). This maturation

is intrinsically linked to the acquisition of effector functions.

The CD27-CD11b+ and CD27+CD11b-subsets in mice

correspond functionally to theCD56dim and CD56brigh subsets in

humans (62), aiding cross-species understanding of NK cell roles in

immune surveillance and response.
3.2 Diversity of NK cell subsets

Mouse NK cell subset distribution mirrors human diversity,

varying across tissues and peripheral blood (62). Notably, in

C57BL/6 and BALB/c mice, lung lymphocyte NK frequencies

surpass those in other tissues, often presenting a more mature

phenotype. Pulmonary NK cells in mice are critical for sustaining

immune balance, with a high proportion of mature phenotype NK

cells under steady-state conditions (63). In C57BL/6 mice, most

pulmonary NK cells exhibit the phenotype of CD11bhighCD27low,

indicating that they might be important for lung immune

responses (64).

The CD11c+B220+NKcell subset in C57BL/6 mice is particularly

cytotoxic and secretes IFN-g, playing a vital role in tumor cell killing

and MCMV resistance (31, 65). Liver-derived CD11c+B220+ NK cells

also curb pulmonary tumor metastasis by IFN-g secretion and

modulation of the fibrinogen deposition microenvironment (66).
TABLE 2 List of currently recommended antibodies for surface and intracellular staining of mouse NK Cells.

Sources Marker Format Final Concentration Clone Function

BD Biosciences CD3 PE CF594 0.2µg/test 145-2C11 T cell marker

CD45.2 AlexaFlu700 0.1µg/test 104 Leukocyte common antigen

CD19 PE CF594 0.1µg/test 1D3 B cell marker

NK1.1 BV510 0.4µg/test PK136 NK cell activation marker in certain
mouse strains

CD49a AlexaFluor647 0.05µg/test Ha31/8 Used to distinguish CD49b-CD49a+ ILC1s

CD11b BV510 0.05µg/test M1/70 Used to identify the stages of NK cell maturation

NKp46 BV421 0.4µg/test 29A1.4 Activation receptor, specific for NK cells

granzyme B PE 5ml/test GB11 Cytotoxic granule component

eBiosciences NKp46 PerCP-eFluor710 0.4µg/test 29A1.4

CD49b PE-Cy7 0.1µg/test DX5 NK cell marker in certain mouse strains

Eomes APC 0.2µg/test Dan11mag Associated with mature NK cells

Biolegend CD19 APCCy7 0.1µg/test 6D5

NKp46 APC 0.4µg/test 29A1.4

NK1.1 PE-Cy7 0.4µg/test PK136

CD3 FITC 0.5µg/test 145-2C11

IFN-g BV421 0.2µg/test XMG1.2 Cytokine

CD19 FITC 0.5µg/test 6D5
A test is defined as the amount (mg) of antibody required to stain a cell sample in a final volume of 100 mL, with the cell count ranging from 105 to 108 cells per test. ILC: innate lymphoid cell.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1478323
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qin et al. 10.3389/fimmu.2024.1478323
3.3 Balance of NK cell activating and
inhibitory receptors

Mouse NK cells, as innate immune cells, express a range of

surface receptors, including Ly49, NKR-P1, and CD94/NKG2 family

members, central to NK cell immune responses (21, 67, 68). NK cell

function is modulated by activating receptors and the equilibrium of

inhibitory receptors, with decreased activating receptor expression

potentially leading to NK cell dysfunction (69). It is noteworthy that

human and mouse NK cells express activating and inhibitory

receptors in quite different ways. Key activating receptors in mouse

NK cells include NKp46, Ly49H, DNAM-1, NKG2D, and NK1.1,

while inhibitory receptors include NKG2A and Ly49C, among others

(9, 19, 70). Similar to human NK cells, a decrease in the expression of

activating receptors can lead to NK cell dysfunction. NKG2D is one

of the key activating receptors in both human and mouse NK cells. In

mouse NK cells, NKG2D can directly trigger cytotoxic responses,

whereas in human NK cells, NKG2D typically requires the

cooperation of additional signals (71). This indicates that the

function of NKG2D in mouse NK cells may be more autonomous.

Although the cytotoxic effect of DNAM-1 in mouse NK cells is

relatively weak, it contributes positively to antiviral and antitumor

activities. DNAM-1 not only promotes the clearance of virus-infected

cells mediated by NK cells but, when absent, may also increase the

risk of tumor cell metastasis (72, 73). Chan et al. found that mice

lacking DNAM-1 expression exhibit a significantly increased rate of

melanoma metastasis (74). Furthermore, the overexpression of

inhibitory receptors can also lead to NK cell dysfunction. J. Wang

et al. found that pulmonary NK cells in mice typically exhibit higher

inhibitory receptors compared to splenic NK cells. In contrast, they

have relatively lower levels of activating receptors. Consequently, the

activation of lung NK cells must overcome a greater threshold of

inhibition (64). However, research on the differences in activating and

inhibitory receptors among various mouse models remains

relatively limited.

Receptor diversity on NK cells also dictates responses to various

tumors, with the C57BL/6 model showing consistent NK cell

responses to different tumor types, suggesting a non-specific,

patterned response (75).
4 Immune recognition of mouse
NK cells

Flow cytometry (FCM) is a vital tool in immunology for

identifying and separating NK cell subsets. Despite commonalities

with human NK cells, functionally analogous subset identification

across species is complex. Human NK cell-specific molecules like

CD56 and certain activating/inhibitory receptors are not present in

mice. Researchers often use NK1.1, NKp46, and CD49b to identify

mouse NK cells (76).

NKp46, part of the natural cytotoxicity receptors (NCRs), is

considered a pan-NK cell marker due to its broad expression across

mammalian NK cells. However, NKp30 and NKp44 are absent in

mice (77), complicating specific NK cell identification. There are
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also strain-specific differences in NK cell surface marker expression;

for instance, C57BL/6 and SJL mice use NK1.1 for identification,

whereas BALB/c mice, due to allelic variations, rely on CD49b and

NKp46 in the absence of NK1.1 responsiveness (76, 78).

Accurate NK cell analysis in flow cytometry hinges on selecting

the appropriate antibodies. Table 2 provides a list of recommended

antibodies for mouse NK cell staining (76), aiding researchers in

precise NK cell subset identification and differentiation.
5 Summary and prospects

In scientific research, the robustness, reliability, and reproducibility

of experimental data are of paramount importance. To enhance the

reproducibility of studies and minimize bias to the greatest extent

possible, researchers must possess a comprehensive understanding of

the potential phenotypic differences among mouse models and select

models that align with their specific research objectives. Investigating

the biology of NK cells in different mouse models serves as a crucial

tool for elucidating the role of these cells in diverse immune responses.

This review aims to provide reference guidelines for studies involving

NK-mediated immunity assays, assisting researchers in selecting the

most suitable models to address specific scientific questions. We hope

that an in-depth study of the properties of NK cells in these models will

establish a more robust scientific foundation for the development of

NK cell-based treatment strategies for human diseases, particularly in

the fields of infectious disease and cancer therapy.
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