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Introduction: Despite continued improvement in post-sepsis survival, long term

morbidity and mortality remain high. Chronic critical illness (CCI), defined as

persistent inflammation and organ injury requiring prolonged intensive care, is a

harbinger of poor long-term outcomes in sepsis survivors. Current dogma states

that sepsis survivors are immunosuppressed, particularly in CCI. Investigation of

this immune suppression in heterogeneous immune populations across distinct

clinical trajectories and outcomes, along with limited sampling access, is

accessible via single-cell RNA sequencing (scRNA-seq).

Methods: scRNA-seq analysis was performed on healthy subjects (n=12), acutely

septic patients at day 4 ± 1 (n=4), and those defined as rapid recovery (n=4) or

CCI (n=5) at day 14-21. Differential gene expression and pathway analyses were

performed on peripheral blood lymphocytes at both a population and annotated

cell subset level. Cellular function was assessed via enzyme-linked

immunosorbent spot (ELISpot), cytokine production analysis, and T-cell

proliferation assays on an additional cohort of septic patients (19 healthy, 68

acutely septic, 27 rapid recovery and 20 classified as CCI 14-21 days after

sepsis onset).

Results: Sepsis survivors that developed CCI exhibited proportional shifts within

lymphoid cell populations, with expanded frequency of CD8+ and NK cells.

Differential expression and pathway analyses revealed continued activation in

T cells and NK cells, with generalized suppression of B-cell function. Both T and
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478471/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478471/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478471/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478471/full
https://orcid.org/0000-0003-4620-3607
https://orcid.org/0000-0002-4331-2202
https://orcid.org/0000-0002-3931-650X
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1478471&domain=pdf&date_stamp=2024-12-03
mailto:philip.efron@surgery.ufl.edu
mailto:maigan@ufl.edu
https://doi.org/10.3389/fimmu.2024.1478471
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1478471
https://www.frontiersin.org/journals/immunology


Barrios et al. 10.3389/fimmu.2024.1478471

Frontiers in Immunology
NK cell subsets displayed transcriptomic profiles of exhaustion and

immunosuppression in CCI, particularly in CD8+ T effector memory (TEM) cells

and NK cells. Functional validation of T-cell behavior in an independent cohort

demonstrated T cells maintained proliferative responses in vitro yet exhibited a

marked loss of cytokine production. IFN-g production at the acute phase (day 4 ± 1)

was significantly reduced in subjects later classified as CCI.

Discussion: Sepsis patients exhibit unique T-, B-, and NK-cell transcriptional

patterns that are both time- and clinical trajectory-dependent. These

transcriptomic and pathway differences in sepsis patients that develop CCI are

associated with exhaustion in CD8+ TEM cells and NK cells. Understanding the

specific immune system patterns of different cell subsets after sepsis at a

molecular level wi l l be key to the development of personal ized

immunotherapy and drug-targeting intervention.

Clinical trial registration: https://clinicaltrials.gov/, identifier NCT02276417.
KEYWORDS

lymphocytes, single-cell RNA sequencing, chronic critical illness, sepsis, human
1 Introduction

Increasingly, surgical sepsis patients are surviving their initial

infectious insults. Although in-hospital mortality has declined due

to earlier recognition of sepsis and improved implementation of

best practices (1), chronic survival and restoration of functional and

cognitive performance has been less successful. Long-term recovery

appears to be determined, at least in part, by the duration and

complexity of in-hospital clinical trajectories (2, 3). Importantly,

sepsis survivors who do not rapidly recover but instead develop

chronic critical illness [CCI, characterized by >14 days in the ICU

with persistent organ dysfunction (4)] exhibit dismal outcomes and

increased mortality (5). As approximately 1/3 of septic surgical

patients experience CCI (1), recent research and clinical practices

focus on early identification and potential interventions for patients

destined to develop CCI.

Current dogma argues tha t seps i s surv ivors are

immunosuppressed, characterized by an increased incidence of

secondary infections and increased readmissions for sepsis after

discharge (6, 7). In such patients, it is presumed that T-cell

exhaustion results in loss of function followed by cell death (8, 9).

B-cell and NK-cell dysfunction also occurs after sepsis, although

this is less well understood (10). However, immune suppression in

sepsis is complex and may not be uniformly exhibited across all cell

types and cohorts of patients.

In an era of precision medicine, single-cell RNA sequencing

(scRNA-seq) has emerged as a powerful tool to better understand

the diversity of transcriptomic changes across different immune cell

subsets in surgical sepsis patients (11). Only recently has this

technology been applied to discriminating the immune response in
02
sepsis patients with different clinical trajectories and outcomes (12,

13). Previous research has identified transcriptomic differences in

myeloid cells between patients who develop CCI and those that

rapidly recover after sepsis (12). Here, we have used scRNA-seq to

examine the transcriptomes of individual lymphoid subsets after

sepsis in survivors with different clinical trajectories and have

compared a subset of those results to lymphocyte functional measures.
2 Materials and methods

2.1 Study design

The following study design is summarized from our previous

publication (13). This prospective, observational cohort study was

performed at a tertiary care, academic research hospital and is

registered on clinicaltrials.gov (NCT02276417). The objective of the

study was to identify unique transcriptomic signatures in various

immune cell subsets in patients who developed CCI after surgical

sepsis compared to those who rapidly recovered. Patients were

classified as CCI if they had ICU length of stay ≥14 days with

persistent organ dysfunction (as measured by the Sequential Organ

Failure Assessment (SOFA) score) or ICU length of stay <14 days at

this institution but were transferred to another hospital, long-term

acute care facility (LTAC), or hospice with persistent organ

dysfunction (14, 15). Patients who otherwise recovered were

classified as rapid recovery. Additionally, cells were analyzed at

two different post-sepsis time points (i.e., day 4 ± 1 and days 14-21).

Sepsis was identified as previously described using Sepsis-3

definitions (9). In short, an existing electronic medical record-
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based system was utilized (the Modified Early Warning Signs-Sepsis

Recognition System, or MEWS-SRS). Once identified via this

system, patients with sepsis were treated with protocolized care

based on the Surviving Sepsis guidelines (9). Inclusion and

exclusion criteria consisted of the following:
Fron
Inclusion criteria:
tiers in
Admission to the intensive care unit (ICU)

Age >17 years

Diagnosis of sepsis or septic shock according to the 2016

SCM/ESICM International Sepsis Definitions

Conference [Sepsis-3] (9)

Initial septic episode while hospitalized

Management of patient via the sepsis clinical

management protocol (16)
Exclusion criteria:
Refractory shock

Inability to achieve source control

Pre-sepsis expected lifespan <3 months

Expected withdrawal of care

Severe congestive heart failure (NYHA Class IV)

Child-Pugh Class C liver disease or undergoing

evaluation for liver transplant

HIV infection with CD4+ count <200 cells/mm3

Prior organ transplant, use of chronic steroids, or

immunosuppressive agents

Pregnancy

Institutionalized or other vulnerable patient populations

Chemotherapy or radiotherapy treatment within 30

days of sepsis onset

Severe traumatic brain injury (defined by radiologic

evidence and GCS <8)

Spinal cord injury with permanent deficits

Unable to obtain informed consent
2.2 Human sample collection

For scRNA-seq, power calculations were previously determined

in the pilot study (11). Whole blood samples were collected from a

total of 25 de-identified subjects in the following cohorts: healthy

subjects (n=12), acutely septic patients (n=4, collected 4 ± 1 days

after sepsis onset), and samples from patients 14-21 days after sepsis

(divided into patients with CCI [n=5] and those who rapidly

recovered [n=4]). All patients had samples collected at the day 14

time point, which was used for scRNA-seq (see below). All acutely

septic patients met criteria for septic shock (9). All septic cohorts

were similar in underlying comorbidities and age (although healthy

subjects trended towards being younger than the sepsis patients)

(Table 1). Following sample collection, peripheral blood

mononuclear cells (PBMCs) were collected using Ficoll-Paque™
Immunology 03
PLUS (Mil l ipore Sigma, St . Louis , MO) and density

gradient centrifugation.

For T-cell proliferation analysis, cytokine production, and

ELISpot analysis, whole blood samples were collected in a similar

fashion to patients included for scRNA-seq analysis in the following

cohorts: healthy subjects (n=19), acutely septic patients at day 4 ± 1

(n=68), and samples from patients 14-21 days after sepsis onset

(CCI n=20, rapid recovery n=27). Some patients contributed

samples while both acutely septic and 14-21 days after sepsis

onset. The acutely septic patients were followed by chart review

in order to determine if they rapidly recovered or if they entered

CCI. Healthy subjects were significantly younger than the septic

patients (healthy mean age= 46, sepsis mean age=61, p=0.0001).

Not all samples underwent all forms of functional analysis testing.

Patients of both sepsis cohorts were admitted to the same

institution and enrolled in studies with overlapping inclusion

criteria. The power analysis for T-cell cytokine production for IL-

4 and IL10 showed low probability (54.5% and 30.7%, respectively)

values; however, despite the small sample size (minimum n=7), high

power probability was achieved for IFN-g (87.6%) to detect a true

difference between these sepsis cohorts. Our approach is adequate

to identify significant differences between these groups, based on a

two-sample two-tailed t-test with a = 0.05.
2.3 scRNA-seq

2.3.1 scRNA-seq reads pre-processing
PBMCs were encapsulated for scRNA-seq using the 10x

Genomics platform. Specifically, gene expression and feature-

barcoding data were generated using 10x Genomics v1.1 5’

chemistry and were sequenced on an Illumina HiSeq with a target

of 5,000 cells per sample (17). Cell Ranger software suite was used to

process the base calls into FASTQ files, which were then checked for

quality control aberrations using FastQC v0.11.7 (18). A spliced +

intronic, or splici, reference transcriptome was generated from the

hg38 reference genome (19). Reads were pseudo-aligned to the

reference transcriptome with alevin-fry v0.8.1; USA mode was used

for the gene expression reads in order to provide separate

quantifications of spliced, unspliced, and ambiguous mRNA

abundance (20–22). The counts of 11 cell surface proteins of

interest were also quantified using alevin-fry. Splicing-aware gene

expression quantification was mapped to Ensembl transcript IDs,

with final count matrices aggregated using Ensembl gene IDs.

2.3.2 scRNA-seq data processing
Downstream data processing and analysis were performed

primarily in R v4.3.1, with some additional processes being

written in Python v3.10 as required (23, 24). After loading the

unfiltered spliced, unspliced, and ambiguous mRNA counts into R

using the fishpond package v2.4.1, we defined total mRNA counts as

the elementwise sum of all three counts matrices and added the

ambiguous counts to the spliced counts matrix (25). Unless

otherwise specified, total mRNA counts were used as input

throughout the analysis. Doublets were then identified and
frontiersin.org
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filtered out using the DropletUtils package v1.18.1 (26, 27). Cells

with an estimated false discovery rate (FDR) of <0.01 were kept for

each sample. Next, the percentage of spliced reads coming from

mitochondrial genes was computed for each cell, and cells with less

than 5% mitochondrial DNA were kept. The final merged dataset

was composed of 36,601 genes and 66,225 cells.

2.3.3 Dimensionality reduction, normalization and
data integration

The read counts for each gene were log-normalized based on

Ward’s distance (28). Next, the 25 samples were integrated by the

Harmony package v1.2.0 (29). Then, the first 50 principal

components were used as input to generate UMAPs (30). Lastly,

clusters were generated via Louvain modularity optimization using

a resolution of 0.1 and a number of evaluated nearest neighbors of

100 (Supplementary Figure S1A) (31).

2.3.4 scRNA-seq cell annotation
After clustering, multiple methods were executed to perform

the cell annotation in SingleR v2.4.1 and Azimuth 0.4.6.9004. Both

packages perform cell identification by matching individual cells to

a reference dataset of known cell types. Then, a set of informative

genes that distinguish different cell types was generated. SingleR was
Frontiers in Immunology 04
employed to build a predictive model using selected genes from the

reference dataset via a single-sample gene set enrichment analysis

(ssGSEA) approach. Each cell in the target dataset was then

annotated with a predicted cell type label from the reference

dataset (32). A total of 5 different reference datasets were used to

annotate the cells: Blueprint ENCODE data, 259 RNA-seq samples

of pure stroma and immune cells (33, 34); Database Immune Cell

Expression Data (DICE), 1561 bulk RNA-seq samples of sorted cell

populations (35); Human Primary Cell Atlas Data, a community

that has annotated millions of human cells from many different

tissues (36); Monaco Immune Data, 114 bulk RNA-seq samples of

sorted immune cell populations that can be found in GSE10701110

(37); Novershtern Hematopoietic Data, comprising 211 bulk

human microarray samples of sorted hematopoietic cell

populations that can be found in GSE2475911 (38). Azimuth was

also used to annotate, utilizing a publicly available healthy human

PBMC reference with 161,764 cells (39). Cells were annotated by

consensus of 5 out of 6 (>0.80) annotation procedures. This allowed

for more homogenous cell annotation at a higher resolution

of classification (Table 2). Only lymphoid cells were retained

for subsequent analyses, resulting in 18,851 cells (1,451 B

cells, 11,550 CD4+ T cells, 2,371 CD8+ T cells, 3,161 NK cells

and 318 other T cells).
TABLE 1 Patient characteristics between cohorts.

Healthy Subjects
(n=12)

Sepsis Day 4 ± 1
(n=4)

RAP Days 14-21
(n=4)

CCI Days 14-21 (n=5) p-value

Male, # (%) 7 (58) 1 (25) 1 (25) 3 (60) 0.48

Age in years,
(m ± SD)

46 ± 10 67 ± 22 61 ± 16 58 ± 18 0.08

BMI (m ± SD) 39 ± 19 37 ± 20 21 ± 3 0.19

Septic shock, # (%) 4 (100) 1 (25) 4 (80)

Pressor
requirement (%)

4 (100) 3 (75) 4 (80)

Steroid use (%) 1 (2) 0 (0)

CCI (median) 5.5 2 2

Comorbidities (#) Cancer (1), COPD (1),
DM (1), HTN (3)

COPD (1), DM (2), HTN (4) COPD (1), DM (1),
HTN (4)

DM (1), HTN (2)

Admission
Diagnosis (#)

NSTI (1), Choledocholithiasis
(1), SBO (1), Planned
operation (1)

NSTI (2), SBO (2) Planned operation (1),
Complication (1), Intra-
abdominal abscess (1)
Pancreatitis (1), MCC (1)

Site of infection (#) NSTI (2), cholecystitis (1),
intra-abdominal (1)

UTI (1), pneumonia (1),
NSTI (2)

NSTI (1), anastomotic leak (1),
prosthetic infection (1),
pneumonia (1), intra-
abdominal (1)

Pathogens
isolated (#)

Klebsiella (1), candida (1),
enterobacter (1)

Candida (1), staph aureus (1),
strep viridins (1)

Organ
dysfunction (#)

Renal dysfunction (1), altered
mentation (1)

Respiratory failure (2),
altered mentation (1)

Altered mentation (2), Acute
renal failure (2), Respiratory
failure (2), ARDS (1)
fro
Cohorts consist of healthy control patients, acutely (day 4 ± 1) septic patients, and late (days 14-21) sepsis patients who experienced rapid recovery (RAP) and chronic critical illness (CCI). There
were no significant differences in sex, age, or BMI between the groups. BMI, body mass index; CCI, Charlson comorbidity index; COPD, chronic obstructive pulmonary disease; DM, diabetes
mellitus; HTN, hypertension; NSTI, necrotizing soft tissue infection; SBO, small bowel obstruction; MCC, Motorcycle crash. Adapted from Barrios et al. (12).
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2.3.5 Differential expression analysis, functional
enrichment, and pathway analysis

Differentially expressed (DE) genes were identified after

stratification by cell type using a mixed-effects model

implemented in Julia (40). In all analyses, the rapid recovery

subjects were considered as the reference group and CCI subjects

considered the comparison group. Mixed-effects models are

particularly useful when analyzing data that exhibit hierarchical

or grouped structure, as in our case where cells are nested within

individual subjects. These models account for both fixed effects,

which capture population-level effects (such as group differences),

and random effects, which account for variability at the individual

subject level. By incorporating random effects, mixed-effects models

allow for more accurate inference, as they adjust for correlations

between cells from the same individual and reduce the risk of

inflated significance that can arise from treating all cells as

independent observations, which are especially adequate when

dealing with low sample size. The mixed-effects model was

employed to assess the differential expression of genes across

various conditions, while controlling for individual variability.

This approach provides a robust framework for identifying DE

genes in datasets where observations are not independent, such as
Frontiers in Immunology 05
single-cell data from different patients. The code used for the

analysis can be accessed at https://github.com/leobalzano/

MixedModelsJuliaCall.R.

The p-values were adjusted for multiple testing using the FDR

method. Due to the relatively low sample size and the desire to

perform pathway enrichment analyses, each cell type comparison

required a different adjusted p-value threshold for the genes to be

considered as differentially expressed. The threshold used was as

follows: padj<0.5 for B cells, padj<0.1 for CD8
+ T cells, and padj<0.01

for NK and CD4+ T cells. Functional enrichment and pathway

analyses were performed using the DE genes utilizing five databases

(DAVID, GO terms, KEGG pathways, Reactome, and CORUM).

The enriched pathways were selected by Fisher’s exact test with

multiple-testing correction (padj<0.05) (41).
2.4 Functional analysis of lymphoid cells

2.4.1 Statistical approach for exhaustion test
For assessing cellular exhaustion, a linear mixed-effects model

was applied to evaluate differences in exhaustion-related gene

expression between patient cohorts. Specifically, we calculated
TABLE 2 Relative cell frequencies by cohort.

Healthy Subjects
(n=12)

Sepsis Day 4 ± 1
(n=4)

RAP Days 14-21
(n=4)

CCI Days 14-21
(n=5)

Total

B cells B naive 251 (2.04) 8 (0.77) 93 (3.82) 84 (2.76) 436

B intermediate 178 (1.44) 7 (0.67) 39 (1.60) 28 (0.92) 252

B memory 140 (1.14) 3 (0.29) 55 (2.26) 17 (0.56) 215

Plasmablast 73 (0.59) 97 (9.29) 198 (8.13) 179 (5.88) 547

CD4+ T CD4+ T naïve 1936 (15.71) 56 (5.36) 21 (0.86) 305 (10.02) 2318

CD4+ T proliferating 20 (0.16) 7 (0.67) 13 (0.53) 3 (0.10) 43

CD4+ TEM 157 (1.27) 11 (1.05) 22 (0.90) 33 (1.08) 223

CD4+ TCM 5683 (46.10) 676 (64.75) 1290 (52.96) 1042 (34.23) 8691

CD4+ CTL 11 (0.09) 0 (0.00) 3 (0.12) 7 (0.23) 21

Treg 149 (1.21) 16 (1.53) 24 (0.99) 36 (1.18) 225

CD8+ T CD8+ T naïve 401 (3.25) 6 (0.57) 20 (0.82) 118 (3.88) 545

CD8+ T proliferating 10 (0.08) 0 (0.00) 11 (0.45) 8 (0.26) 29

CD8+ TEM 926 (7.51) 80 (7.66) 146 (5.99) 453 (14.88) 1605

CD8+ TCM 153 (1.24) 4 (0.38) 14 (0.57) 24 (0.79) 195

Other T cells dnT 60 (0.49) 5 (0.48) 21 (0.86) 10 (0.33) 96

gdT 117 (0.95) 10 (0.96) 12 (0.49) 7 (0.23) 146

MAIT 64 (0.52) 1 (0.10) 12 (0.49) 21 (0.69) 98

NK NK 1815 (14.72) 47 (4.50) 381 (15.64) 595 (19.55) 2838

NK Proliferating 60 (0.49) 5 (0.48) 18 (0.74) 52 (1.71) 135

NK CD56bright 123 (1.00) 5 (0.48) 22 (0.72) 43 (1.77) 193

Total 12326 (100.00) 1044 (100.00) 3044 (100.00) 2436 (100.00) 18851
fro
Reported as absolute cell number (relative proportion). RAP, rapid recovery; CCI, chronic critical illness; TEM, T effector memory cell; TCM, T central memory cell; CTL, cytotoxic T
lymphocytes; Treg, regulatory T cells. dnT, double negative T cells; gdT, gamma delta T cells; MAIT, mucosal-associated invariant T cells; NK, natural killer cells.
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module scores for a set of exhaustion-associated genes in individual

cells from CD8+ TEM and NK cells using the AddModuleScore

function in the Seurat package (42). The module scores were then

used as the dependent variable in a mixed-effects model, with cell

type and patient condition as fixed effects, and donor identity as a

random effect to account for inter-donor variability. This approach

allows for cell-level modeling, maintaining the complexity of the

single-cell data while controlling for donor-specific effects.

2.4.2 Human T-cell isolation and
proliferation assay

These methods were previously reported in Barrios et al. (12).

Briefly, following PBMC isolation, T cells were further isolated by

immunomagnetic negative selection using EasySep™ Human T-

Cell isolation kit (STEMCELL Technologies, Vancouver). CD3+

lymphocytes were labeled with Cell Trace violet (Thermo Fisher,

Waltham, MA) in order to assess T-cell proliferation by dye

dilution. T lymphocytes (1 x 105 CD3+) were seeded into a 96-

well plate and either stimulated with soluble anti-CD3/CD28

antibodies (STEMCELL Technologies, Vancouver) or left

unstimulated. After 4 days, cells were harvested. The division

index was determined as the total number of divisions divided by

the number of cells at the start of the culture calculated via FlowJo™

Software (Becton, Dickinson and Company, Oregon).

2.4.3 Cytokine analysis
Following a 4-day incubation at 37°C and 5% CO2, supernatants

were obtained from the plates for cytokine analysis. Human high

sensitivity T cell magnetic bead 8-plex panels (IFN-g, IL-4, IL-10, IL-
12 (p70), IL-17a, IL-2, TGFb, and IL-23) were used (EMD Millipore,

Billerica, MA) along with xPONENT software for cytokine analysis

(EMD Millipore, Billerica, MA). T-cell cytokine production and

ELISpot cohort medians were compared via Kruskal-Wallis non-

parametric tests, with p<0.05 considered significant.

2.4.4 Enzyme-linked immunosorbent spot assay
Diluted whole blood (50 mL) was used in order to measure the

production of IFN-g ex-vivo in stimulated and unstimulated cells

following overnight culture using single-color ELISpot kits

(ImmunoSpot, Cellular Technology Limited, Cleveland, OH). 96-

well plates that were pre-coated with capture antibody were used for

single color enzymatic assays. Plates were prepared with stimulant

diluted in CTL-Test™ Medium (CTLT-005; Cellular Technology

Limited, Cleveland, OH) and were incubated at 37°C and 5% CO2

for 30 minutes prior to cell plating. IFN-g production was induced

via a combination of 500 ng/mL of anti-human CD3 (clone HIT3a;

BioLegend, San Diego, CA) and 5 mg/mL of anti-human CD28

(clone CD28.2; BioLegend, San Diego, CA).

Cells were incubated overnight following plating. A biotinylated

secondary detection antibody, streptavidin-bond alkaline

phosphatase and developer solution were applied to the samples.

Finally, plates were air-dried in a laminar flow hood prior to image
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capture. Samples were analyzed for spot counts and spot size of

IFN-g using ImmunoSpot S6 Entry Analyzer with ImmunoSpot

7.0.30.4 professional software (CTL Analyzers, Cleveland, OH).

3 Results

3.1 Gene expression and pathway analysis
suggest heterogeneous
lymphoid dysfunction

In a combined cohort containing predominantly healthy

subjects (Table 1) to enable robust cell annotation, lymphoid cells

were isolated and assessed by scRNA-seq. Cells passing QC filters

were integrated and broadly annotated (Figure 1A; Supplementary

Figure S1) as CD4+ T cells, CD8+T cells, NK cells, innate-like

“other” T cells, and B cells. We next determined the average

proportional frequencies of cells within the dataset (Figure 1B)

from the different septic cohorts. Given the differential abundance

of the major lymphoid populations, and the paucity of innate-like T

cells, we then focused our analyses on CD8 and CD4 T cells, NK

cells, and B cells to observe their transcriptomic profiles.

Building on previous studies comparing septic patients to

healthy subjects (11), we sought to explore differences in gene

expression profiles between patients that developed CCI compared

to those adjudicated as rapid recovery. DE analyses in annotated

CD8+ T, CD4+ T, NK, and B cells were thus performed (Figure 1C;

Supplementary Material S1). CD8+ T cells had 239 significantly

differentially expressed genes (upper left panel, 197 up- and 42

downregulated). CD4+ T cells had 279 significantly differentially

expressed genes (upper right panel, 262 up- and 17 downregulated).

There were 168 significantly differentially expressed NK cell genes

(bottom left panel, 156 up- and 12 downregulated). B cells had 189

significantly differentially expressed genes (bottom right panel, 131

up- and 58 downregulated).

Pathway analysis was then performed on the DE genes for each

cell type (Figure 1D). CD8+ T cells displayed signs of heightened

responsiveness in patients with CCI, as evidenced by enrichment in

pathways associated with immune response, oxidative stress, and

energy synthesis. CD4+ T cells exhibited a mixed immune response

with enriched activation and proliferation pathways, but reductions

in NF-kB and MAPK signaling pathways. Upregulated pathways in

NK cells included effector functions such as cytotoxicity,

degranulation, and activation. These cells also demonstrated

reductions in response pathways to cytokine stimulus, bacteria,

and viruses, indicating dysfunction within these cells. B cells

generally displayed dampened immune response potential, with

downregulated pathways in both innate and adaptive immune

response, response to TNF, hormones and interleukins, and stress

responsiveness. These results highlighted the heterogeneity of cell

behaviors within the lymphoid compartment in response to sepsis,

and merited deeper exploration of defined cell subsets within these

major populations.
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3.2 Alteration in lymphoid
subset frequencies

Consensus cell type annotations and determination of cell subset

frequencies revealed an impact of disease status on cell abundance

(Figure 2; Supplementary Figure S2). Twenty cellular subtypes were

identified (Figure 2A), which were subsequently compared across the

cross-sectional patient cohorts (Figures 2B, C). Multiple cell types

exhibited altered frequency, with early (day 4 ± 1) septic subjects

displaying signs of generalized lymphopenia, as previously described

(43, 44). However, CD4+ central memory (CD4 TCM, Figure 2C, teal)

cells were increased in early septic subjects, with a decrease in late (days

14-21) septic patients who rapidly recovered or developed CCI. Naïve

CD4+ T cell frequencies (Figure 2C, brown) were increased in healthy

subjects compared to rapid recovery patients (p < 0.01). We also

observed lower NK cell frequencies (Figure 2C, salmon) in acutely (day

4 ± 1) septic patients compared both to healthy subjects and to patients

with CCI, consistent with prior published literature (45). Overall, B cell

frequencies displayed little variation between septic patients with CCI
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or those who rapidly recovered. Plasmablasts were increased in all

subjects post-sepsis compared to healthy subjects, but only reached

significance in rapid recovery subjects (Figure 2C, olive). CCI subjects

had generally elevated plasmablast frequencies, yet they were distinctly

lower in patients with CCI compared to rapid recovery (p < 0.05). Next,

in order to define the context of the phenotypic state of the annotated

cell subsets in sepsis subjects with CCI or rapid recovery, we performed

DE analysis (Supplementary Figure S3). The genes identified largely

reflected continued/chronic immune activation in those cells with

altered frequency.
3.3 scRNA-seq of lymphoid immune cells
reveals immune exhaustion in patients
with CCI

Having identified consistent KLRG1 signatures in lymphoid cell

types revealing upregulation of pathways related to stress and

apoptosis, and the extensive overlap of these pathways with
FIGURE 1

Single-cell RNA sequencing of the lymphoid compartment. (A) Uniform Manifold Approximation and Projection (UMAP) of 18,850 total lymphoid
cells in all patient cohorts. (B) Cell type proportions and total cell numbers for each cohort. (C) Differentially expressed genes from the comparison
between CCI and RAP were identified in CD8 T cells, CD4 T cells, NK cells, and B cells and subsequently used for pathway analysis. (D) Pathways
passing significance threshold are displayed, with those upregulated in red, downregulated in blue. Color shading indicates p value. NK, natural
killer cell.
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exhaustion, we subsequently analyzed exhaustion-associated genes in

lymphoid cells. Specifically, we looked to identify if specific genes were

upregulated in mature cell subtypes in patients with CCI compared to

other cohorts, using a published reference as a guide (46). In NK cells,

we observed downregulation of the effector molecules DNAM-1

(DNAX accessory molecule-1) and KLRK1 (killer cell lectin like

receptor K1), along with upregulation of the negative regulators

TIGIT (T-cell immunoreceptor with immunoglobulin and ITIM

domain), TOX (thymocyte selection-associated HMB bOX),

TACTILE [T-cell activation, increased late expression; identified as a

negative regulator of NK cell function in mice, although the current

function in humans is unknown (47)], LAG3 (lymphocyte-activation

gene 3), and LAMP1 (lysosomal-associated membrane protein 1)

(Figure 3A). In contrast, CD16 (Fc gamma receptor III) expression

was not significantly altered in NK cells (Figure 3A). All of the former is

consistent with NK cells in CCI patients demonstrating exhaustion

(46), however, despite a trend towards exhaustion in CCI patients (p =

0.22), there was not a statistically significant difference between the

cohorts. Because CD8+ TEM cells were present in sufficient numbers,

we were able to determine that they also displayed a gene expression

profile [KLRG1, TCF7, TNFSF4, CTLA4, TIGIT, EOMES, TOX, LAG3,
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PDCD1, and HAVCR2 (48, 49)] associated with cellular exhaustion,

with a statistically significant difference between CCI patients and

healthy controls (p < 0.05) (Figure 3B). Gene expression in CD4+ TEM

cells, CD4+ TCM cells, B memory cells, and CD8+ TCMs from CCI

patients was not consistent with cellular exhaustion (Supplementary

Figure S4). These observations led us to investigate T-cell stimulus

response and effector function in vitro.
3.4 T cell cytokine analysis revealed
decreased production in patients with CCI

T cell proliferation and cytokine production in response to T-cell

receptor stimulation were assessed in vitro. Although the scRNA-seq

showed some significant downregulation of activation pathways in

CD4+ T cells, interestingly, we found no significant difference in

either CD4+ or CD8+ T cell proliferation in all septic subjects when

compared to healthy subjects by division index (Figures 4A, B) (50).

However, when considering cytokine production by stimulated T

cells, significantly reduced levels of IL-10, IL-4, and IFN-g were seen
in patients with CCI compared to acutely septic patients at Day 4 ± 1,
FIGURE 2

Lymphoid cell subset frequencies are altered during sepsis. (A) UMAP of cell clustering at higher annotation resolution to identify lymphoid cell
subtypes. (B) Mean frequencies of cell populations identified in A displayed by group. (C) Between-group comparisons of cell subset frequencies
within major lymphoid subsets across disease status groups. Cell frequencies reported as number of each cellular subtype divided by the total
number of lymphoid cells per subject. HS: healthy subjects (n=12), D4: acutely septic subjects sampled at day 4 ± 1 (n=3), RAP, rapid recovery (n=3);
CCI, chronic critical illness (n=5). NK, natural killer cells; TCM, central memory T cells; TEM, effector memory T cells; Treg, regulatory T cells; MAIT,
mucosal-associated invariant T cells; dnT, double negative T cells; gdT, gamma delta T cells; CTL, cytotoxic T cells. *p<0.05, **p<0.01, ***p<0.001,
****p<0.0001; Two-way ANOVA with Tukey’s multiple comparison testing.
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as well as significantly reduced IL-10 and IFN-g in patients with CCI

compared to healthy subjects (Figures 4C–E). This maintained

proliferative response with a loss of cytokine production capacity is

consistent with T cell progression to exhaustion.
3.5 ELISpot in peripheral blood reveals
reduced IFN-g in CCI

In peripheral whole blood collected from the same cohort of

patients who underwent T-cell proliferation and cytokine analysis,
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there were fewer cells producing IFN-g at post-sepsis day 4 ± 1

(Figures 5A, B) than in patients that entered CCI at days 14-21 as

compared to patients that rapidly recovered (p=0.03) (Figure 5A).

Patients sampled at day 4 ± 1 that subsequently entered rapid

recovery, produced less IFN-g per cell after stimulation versus

healthy subjects (p=0.02) (Figure 5B). Interestingly, when the

same stimulus response assay was performed at 2-3 weeks post-

sepsis onset (Figures 5C, D), patients that progressed to CCI did not

have fewer cells producing IFN-g versus patients who rapidly

recovered (p=0.1) (Figure 5C). However, cells from sepsis patients

that developed CCI and experienced rapid recovery (days 14-21)

produced less IFN-g per cell after ex vivo stimulation versus healthy

subjects (Figure 5D). These results indicate early and persistent

dysfunctional stimulus response in septic subjects.
4 Discussion

Previous transcriptomic analyses of lymphoid cells after sepsis

demonstrated unique patterns of gene expression in sepsis

survivors (5). However, despite significant efforts to elucidate the

mechanisms underlying sepsis in humans, functional differences in

the lymphoid compartment are not well understood (51–53). Research

has focused predominantly on CD4+ T cells, resulting in an enhanced

understanding of their phenotype in septic subjects, characterized by an

initial lymphopenia followed by alterations in subtype frequency,

decreased cellular diversity, and changes in effector function (54, 55).

Eventually, lymphoid cells are reconstituted by proliferation in the

periphery (56, 57). The cellular composition of this renewed immune

compartment has an impact in maintaining immune homeostasis and

facing infectious insults.
FIGURE 3

Assessment of cell exhaustion by gene expression in natural killer
cells (NK) and CD8+ T effector memory (TEM) cells. Dot plots of
genes associated with (A) NK and (B) CD8+ TEM cell exhaustion by
patient cohorts. Genes reported in Roe et al. (45). Statistical analysis
was performed using a linear mixed-effects model, with donor
identity as a random effect and patient condition as a fixed effect.
Only the comparison between CD8+ TEM cells from Control vs. CCI
showed a statistically significant difference (p < 0.05). No significant
differences were detected in NK cells, although a trend toward
exhaustion was observed in CCI patients (p= 0.22). Control, healthy
subjects; RAP, rapid recovery; CCI, chronic critical illness.
FIGURE 4

Functional proliferation and dysfunctional cytokine production in T
cells. T cell proliferation was assessed by flow cytometry and
division indices were calculated for gated CD4+ T cells (A) and CD8+

T cells (B) in healthy subjects (HS, n=16), acute sepsis (AS, n=33),
rapid recovery (RAP, n=8), and chronic critical illness (CCI, n=13).
(C–E) Multiplex cytokine analysis of culture supernatants for
indicated cytokines compared across groups *p<0.05, **p< 0.01.
Kruskal-Wallis test used for statistical comparison.
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Uncovering cellular and molecular signatures that correlate

with improved outcomes may aid in the development of therapies

designed to reduce the refractory period and improve overall

outcomes post-sepsis. For example, transcriptional analysis has

also been used to find associations with hospital-acquired illness

in patients with chronic critical illness (58). Herein, we have

employed scRNA-seq analysis to probe the lymphoid

compartment, with a focus on differential cell responses

associated with poor outcomes after sepsis. We compared healthy

subjects, acutely (day 4 ± 1) septic patients, and septic patients at

days 14-21 who either recovered rapidly or developed CCI. This

comparison revealed unique differential expression patterns among

CD8+ T cells, CD4+ T cells, NK cells, and B cells, which were

subsequently used to conduct pathway enrichment analyses. We

then focused on describing cell-type intrinsic differences between

patients who rapidly recover and those that develop CCI. This

approach revealed altered frequencies and unique cellular responses

to sepsis across lymphoid cell types, and a transcriptomic signature

of cell exhaustion in CD8+ TEM and a trend in NK cells in CCI.

Overall, these results highlight cellular and molecular signatures of

chronic critical illness and rapid recovery, while also emphasizing

the importance of cell-specific functional analyses in understanding

immune dynamics during sepsis.

The role of B cells in sepsis recovery is still emerging – an

expansion in plasmablasts has been noted, with a CD39high subset

proposed to have a negative immunosuppressive role. However, B
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cell deficient mice exhibit poor survival, and provision of exogenous

B cells to RAG deficient mice improves survival (10). These

conflicting reports demonstrate the need for further assessment of

this cell population in the outcome trajectory of septic subjects.

Herein, we recapitulated the finding of plasmablast expansion in

septic subjects, and note that these cells are a substantial proportion

of total B cells in all septic donors. We also found that B cells

displayed signs of a generally suppressed immune response. CCI vs

rapid recovery comparison revealed downregulated processes in

patients with CCI, including decreased cellular activation,

differentiation and proliferation, decreased response to cell

signaling, and decreased immune response in general (59, 60).

Pathway analysis also suggested impaired cellular response to

stress, decreased activation and proliferation, and abnormal

MAPK signaling in B cells of patients with CCI, consistent with

previous studies (61–63).

An innate immunity cell of lymphoid origin, NK cells have

slowly emerged to be important to the host response to severe

infections (64). Fewer NK cells have been previously reported in

acutely septic patients compared to healthy subjects, similar to other

lymphocytes (45). The observed decrease in day 4 ± 1 subjects aligns

with these findings. Differential expression analysis revealed 168 DE

genes in CCI subjects versus rapid recovery, with 156 up- and 12

downregulated. The differential gene expression profile highlighted

continued activation in this cellular subset, with upregulated general

activation as well as effector pathways including cytotoxicity,

degranulation, and defense response. However, functional

impairment was displayed in downregulation of pathways in

bacterial, viral, and wounding response, and response to

cytokines. Although we observed increased NK frequencies in

CCI, we have previously demonstrated via scRNA-seq analysis

that cytotoxic genes (KLRC3, KLRC1, and KLRG1) of NK cells

were downregulated in patients with late sepsis (CCI and rapid

recovery) (n=4), suggesting dysregulation of these cells (11). De

Pablo et al. reported that septic patients with increased NK cell

numbers have conversely lower survival probability (65) [similar

results are seen in critically ill non-septic patients (66)]. Our

findings indicate that, although the proportion of NK cells

between these patients 2-3 weeks after sepsis were similar, they

exhibited signs of impaired function in CCI. Dysregulation in the

NK cell response to infection can either lead to hyper-inflammation

shortly after sepsis onset or immunosuppression later on (67–69).

These processes have been previously reported to be upregulated in

NK cells during immunosuppression due to infection (53, 70). The

NK cells in patients with CCI also exhibited a transcriptomic profile

consistent with immune exhaustion.

Much of our analysis of CD4+ T cells, whose loss and dysfunction

after sepsis are well understood to be related to patient mortality (54),

revealed results similar to the published literature (12). Importantly,

the comparison of CD4+ T cells in CCI versus rapid recovery sepsis

survivors revealed 9 differentially upregulated genes in CCI that are

associated with cell activation and proliferation (CD4, CD27, CEBPB,

DHPS, SLAMF1, LAPTM5, FADD, RASAL3, and TMIGD2) (71). We

noted altered cell frequencies in two CD4+ T subtypes, naive and

central memory cells. Lymphopenia may explain the lower

proportion of CD4+ T naive cells 4 days after sepsis onset (55, 72).
FIGURE 5

Enzyme-linked immunosorbent spot (ELISpot) quantification of IFN-
g production. (A) Number of stimulated cells producing IFN-g
sampled during acute phase (Day 4) [n=24 adjudicated as rapidly
recovered (RAP), n=18 patients adjudicated as chronic critical illness
(CCI)]. Healthy subjects serve as control (n=19). (B) IFN-g production
per cell in samples collected at day 4. (C, D) samples collected at
14-21 days after onset of sepsis (n=7 rapid recovery, n=13 chronic
critical illness). Healthy subjects again serve as control (n=19).
*p<0.05, **p<0.01, HS, healthy subjects; RAP, rapid recovery; CCI,
chronic critical illness. Kruskal-Wallis test used for
statistical comparison.
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Sepsis also causes global changes in expression of transcription

factors that affect CD4+ T cell effector responses that we observed

via pathway analysis. This includes a reduction in the ability to

produce cytokines (45, 73, 74), reduced ability to proliferate (75), and

induction of apoptosis (76). This impairment could affect the

activation of these cells and the overall adaptive immune response

against infections. The compromised ability of CD4+ T cells to

coordinate immune responses and communicate with other

immune cells could contribute to inadequate pathogen clearance

and immune dysregulation, thereby impacting the severity and

outcome of sepsis survivors. Although we did not see a significantly

reduced proliferative capacity in these T cells consistent with T-cell

exhaustion, there was notably decreased production of both TH1 and

TH2 cytokines in CCI subjects. Importantly, lack of T cell IFN-g
production was distinctly reduced in the acute phase in those who

would later be designated CCI, suggesting this may be a candidate

assay for prognostic outcomes.

Although the importance of the CD4+ T cell response after

sepsis has been recognized for some time (77), other host T cells

responses have not traditionally been highlighted after severe

infection, specifically in regard to sepsis survivors with poor

outcomes. Pathway analysis of CD8+ T cells in chronic critical

illness (CCI) versus rapid recovery patients revealed CD8+ T cells as

activated and capable of sustaining effector functions and immune

response. This highlights the complex interaction between innate

and adaptive immunity after sepsis, as our previous publication

showed that human septic MDSCs can suppress CD8+ T cell

proliferation, but not CD4+ T cell proliferation in co-culture ex

vivo (although both lymphocyte types had altered cytokine

expression) (12). It should be noted, though, our current analyses

also indicate some simultaneous reductions in inflammatory

response pro-survival pathways in CD8+ T cells. Overall, the

observed changes in these pathways indicates that CD8+ T cells in

CCI patients are both metabolically active and functionally engaged

in immune responses. However, indicators of chronic activation

were present in scRNA-seq and functional outcomes in vitro,

leading to assessment of exhaustion in this population. T cell

exhaustion does not manifest uniformly, particularly in the

understudied subacute response to surgical sepsis (8). Although

increased in frequency as the dominant population among total

CD8+ T cells, CD8+ TEM cells showed some signs of exhaustion in

gene signature and cellular behavior, consistent with previous

studies (78). We assessed for, and found, transcriptomic patterns

of cellular exhaustion in CCI subjects in CD8+ TEM cells

(downregulation of TCF7 [transcription factor 7] and

upregulation of KLRG1 [killer cell lectin like receptor G1], TIGIT,

EOMES [eomesodermin/Tbr2], TOX, LAG3, and PDCD1

[programmed cell death 1]) (46).

Limitations of this study include its surgical sepsis patients coming

from a single center. Although our treatment of sepsis aligns with

Sepsis-3 guidelines, our exact protocols may differ from other centers,

potentially impacting results. As scRNA-seq is performed on low cell

numbers, the cell quantities are reported as proportional to the

grouped dataset or parent lymphocyte population and are not
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directly quantitative. The observed changes in cell subset abundance

were not reflective of longitudinal collection within subjects, preventing

direct association with disease trajectory. Additionally, sampling

limitations prevented the performance of scRNA-seq in conjunction

with functional assays for direct comparison. Nevertheless, our cohort

sample sizes are adequate when considering prior published literature

and the amount of information generated via scRNA-seq, and, more

importantly, contribute additional data to the broader community

supporting larger integrated studies across centers.
5 Conclusion

Our study integrated different septic cohorts and cell annotation

approaches at multiple levels of identification to reveal the

dynamics of various lymphoid cell populations. Overall, the data

generated support the concept of partial NK and T-cell exhaustion

in patients with CCI, with loss of cytokine production and

maintained proliferation. Distinct molecular signatures exist in

sepsis patients with different clinical trajectories, emphasizing the

importance of cell-specific time series analyses when attempting to

both understand sepsis dynamics and design potential

therapeutic interventions.
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