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In the present review, we focused on recent translational and clinical discoveries

in asthma immunology, facilitating phenotyping and stratified or personalized

interventions for patients with this condition. The immune processes behind

chronic inflammation in asthma exhibit marked heterogeneity, with diverse

phenotypes defining discernible features and endotypes illuminating the

underlying molecular mechanisms. In particular, two primary endotypes of

asthma have been identified: “type 2-high,” characterized by increased

eosinophil levels in the airways and sputum of patients, and “type 2-low,”

distinguished by increased neutrophils or a pauci-granulocytic profile. Our

review encompasses significant advances in both innate and adaptive

immunities, with emphasis on the key cellular and molecular mediators, and

delves into innovative biological and targeted therapies for all the asthma

endotypes. Recognizing that the immunopathology of asthma is dynamic and

continuous, exhibiting spatial and temporal variabilities, is the central theme of

this review. This complexity is underscored through the innumerable interactions

involved, rather than being driven by a single predominant factor. Integrated

efforts to improve our understanding of the pathophysiological characteristics of

asthma indicate a trend toward an approach based on disease biology,

encompassing the combined examination of the clinical, cellular, and

molecular dimensions of the disease to more accurately correlate clinical traits

with specific disease mechanisms.
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1 Introduction

Asthma is a familiar, chronic, noncommunicable lung disease

affecting approximately 300 million people worldwide (1), including

45.7 million adults in China (2). The prevalence of asthma

considerably varies across different countries and regions; the

prevalence is higher in urban areas and individuals with some

risk factors, including allergies, smoking, and air pollution

exposure. Although asthma incidence appears to be stabilizing

after decades of rapid growth in many developed countries, its

prevalence is increasing rapidly in low- and middle-income

countries. This increase in prevalence may be owing to the

worsening of fossil fuel pollution and the adoption of

Westernized lifestyles. Furthermore, the absence of accurate

diagnosis and standardized treatments in these developing

countries increases the asthma burden on patients, their families,

and society as a whole (3).

An expiratory airflow limitation is the primary feature of

asthma; however, this limitation is generally reversible but related

to airway lumen diameter narrowing. The narrowing occurs

because of chronic inflammation in the walls of the airway, which

is marked by the infiltration and activation of different immune

cells, including eosinophils, neutrophils, lymphocytes, dendritic

cells (DCs), innate lymphoid cells (ILCs), and mast cells, inducing

processes such as bronchial hyperresponsiveness, mucus

hypersecretion, and airway remodeling.

The clinical traits of asthma, i.e., dyspnea, coughing, wheezing,

chest tightness, loss of lung function, exacerbation tendency, and

asthma severity, suggest that the disease encompasses distinct

underlying mechanisms, in which structural and immune cells

interact to manifest the pathogenetic features of asthma.

However, the relative contribution of these features may differ

among patients with asthma, coupled with remarkable differences

in genetic variations and environmental exposure; this results in

significant heterogeneity in clinical manifestations and

inflammatory biomarker expression.

Asthma has different clinical characteristics (“phenotypes”) and

underlying causative mechanisms (“endotypes”) (4). Historically,

clinicians have categorized asthma into two phenotypes: intrinsic

(nonallergic) and extrinsic (allergic) (5). The primary difference

between these two phenotypes is that allergic asthma generally

occurs during childhood, whereas nonallergic asthma usually begins

in adulthood. Allergic asthma typically manifests as acute episodes

with increased airway responsiveness after allergen stimulation; it is

more responsive to inhaled corticosteroids (ICSs) compared with

nonallergic asthma (6). More recently, various clinical parameters,

including onset age, condition severity and duration, frequency of

acute exacerbation, impairment in respiratory function, level of

symptom control, biomarkers, and treatment response, including

potential hormone resistance, have been utilized to classify the

phenotypes of asthma.

Some of the most common phenotypes, including allergic

asthma, nonallergic asthma, adult-onset (late-onset) asthma,

asthma with persistent airflow limitation, and obesity-associated

asthma, have been listed in the updated 2023 and 2024 Global
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Initiative for Asthma (GINA) guidelines (7). Simultaneously,

researchers in the field of basic medical sciences, particularly

immunologists using murine models of allergic asthma and/or

inflammation, have confirmed the pivotal role of the elements of

the T helper (TH2) immune pathway in exacerbating inflammation

and airway hyperreactivity (8, 9). TH2 cells are involved in the

generation of cytokines that induce the different essential

characteristics of asthma, including tissue eosinophilia

(interleukin [IL]-5), bronchial hyperresponsiveness (IL-13), and

goblet cell metaplasia (IL-4 and IL-13) (10). Recent studies have

extended this understanding and suggested that apart from TH2

cells, other innate immune cells, including mast cells, basophils,

group 2 ILCs, IL-4- and/or IL-13-activated macrophages (“M2”),

and a small portion of IL-4-secreting natural killer (NK)/NKT cells,

also contribute to TH2 cell induced cytokine production in asthma;

as a result, the terminology has gradually shifted from “TH2 cell-

high” to “type 2-high” asthma (11). However, this “type 2-high”

profile, primarily characterized by eosinophilia, is only observed in

roughly 50% of patients with asthma (12). The remaining patients,

categorized as “type 2-low” asthma, without eosinophilia, exhibit

distinct immune features, including airway neutrophilia, obesity-

associated systemic inflammation, or minimal immune activation

signs in some cases (13).

In patients with asthma, there is specific chronic inflammation

in the lower airway mucosa. Although the major cellular

components associated with this inflammation type have been

ascertained, the interplay between the inflammatory cells in

different spatial and temporal dimensions remains unclear (14);

furthermore, it is not known how this inflammation translates into

asthma symptoms. Similar to other atopic diseases, asthma

pathogenesis involves several factors, including genetic

predisposition, the airway initiation of specific IgE (sIgE) to

respiratory allergens, and an overactive immune system that

produces excessive amounts of inflammatory mediators. To date,

the acute inflammatory changes observed in asthma have garnered

considerable attention; in this chronic condition, inflammation

persists for many years in most patients. Superimposed on this

chronic inflammatory state are acute inflammatory episodes, which

correspond to exacerbations of asthma.

Moving from patients to animal or cellular models and back

represents an iterative process by which we can elucidate the

intricate pathophysiology of asthma. Herein, we focus on the

underlying immunological aspects of asthma in the context of

recent insights into its extraordinary heterogeneity by

summarizing the findings from human studies on particular

pathways along with rigorous basic experimentation that has

collected a surplus of molecular details.
2 Pro-inflammatory and anti-
inflammatory arms of the immune
landscape in asthma

Under the guidance of locally released chemokines, many

inflammatory cells are recruited to the lungs from the
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1478624
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2024.1478624
bloodstream; these cells exert functional properties for asthma

development. Furthermore, airway structural cells, including

epithelial cells, fibroblasts, and airway smooth muscle cells

(SMCs), are essential inflammatory mediator sources that actively

participate in the inflammatory process. In individuals with asthma,

both innate (mast cells, DCs, eosinophils, neutrophils, basophils,

ILCs, monocytes, and macrophages) and adaptive (T and B

lymphocytes) immunities are involved in the inflammatory cell

profile (15).

A landmark study conducted in the mid-1980s reported the

classical CD4+T lymphocyte subsets (TH1 and TH2 cells) (16); since

then, it is well-known that TH2 cells orchestrate eosinophilic airway

inflammation by producing abundant amounts of IL-4, IL-5, and

IL-13 (17). IL-4 is required for allergic sensitization and IgE class

switching, IL-5 is warranted for eosinophil survival, IL-13 exerts

multifunctional effects in the lungs, including a vital role in

controlling mucus production, goblet cell metaplasia, bronchial

hyperresponsiveness, and airway remodeling (18). In contrast,

TH1 cells release IL-2, interferon (IFN)-g, and tumor necrosis

factor (TNF)-a, possibly conferring a protective role in asthma

because they can directly antagonize pathologic TH2 responses to

control eosinophilic inflammation (19). To support this, IL-12, a

pro-TH1 cell cytokine, administration in mice suppresses antigen-

induced airway hyperresponsiveness and inflammation by

producing IFN-g via TH1 cells (20, 21). However, recent studies

on the phenotype of type 2-low asthma have demonstrated the

dominance of IFN-g+TH1 cells in severe disease forms, which is

potentially associated with corticosteroid refractoriness (22, 23).

In addition to TH2 cells, TH17 cells and their produced cytokine

IL-17A are prominent and extensively studied in the context of

asthma, particularly in severe, steroid-resistant cases (24). These

TH17-derived cytokines, including IL-17 and IL-22, are related to

increased neutrophil recruitment in the airways (25). To this end,

neutrophil extracellular traps and cytoplasts further promote TH17

polarization and neutrophilic inflammation in severe asthma (26).

However, the precise roles of TH17 cells and IL-17 in mouse asthma

models remain unknown primarily because IL-17 may play dual

regulatory roles: it plays a protective role in the challenge stage but

worsens asthma under other conditions (27, 28). In chronic asthma

models, IL-17A induces the proliferation of fibroblasts (29), inhibits

the anti-inflammatory effects of regulatory T cells (Tregs) (30), and

directly contracts bronchial SMCs (31).

Increasing evidence in animals indicates that a major hallmark

of several autoimmune disorders, including asthma, is functional

defects in Tregs (32). In a broader perspective, as a diverse

population, Tregs comprise CD4+CD25+ forkhead box (Fox)p3+

natural and inducible Tregs, IL-10-producing Tr1 cells,

transforming growth factor (TGF)-b-producing TH3 cells, and

other minor subsets with suppressive functions, including

CD4−CD8− T and gdT cells (33). In children with asthma, both

CD4+CD25hi Tregs and Foxp3 mRNA expression decrease in the

peripheral blood and bronchoalveolar lavage fluid (BALF); this

phenomenon can be reversed following treatment with inhaled
Frontiers in Immunology 03
glucocorticoids (34). Recently, a study has revealed that numerical

and functional deficiencies in Tregs may increase the asthma risk in

children and young adults; however, the association between Tregs

and the risk or severity of asthma in the elderly may be weaker (35).

The discovery of a distinct cohort of IL-9-secreting CD4+T cells,

called TH9 cells, has enhanced the intricacies of T cell subsets. These

cells are produced in response to IL-4 and TGF-b (36). These TH9

cells facilitate the binding of the transcription factors PU.1 and

interferon-regulatory factor (IRF)-4 to the Il9 promoter (37).

Furthermore, IL-25 (i.e., IL-17E) enhances IL-9 secretion from

TH9 cells (38). IL-9 promotes allergic responses, including IgE

production and eosinophilia (39). In allergic inflammation

experimental models, mast cell accumulation is IL-9-dependent

(40); however, lung-infiltrating mast cells and protease expression

in mast cells were significantly decreased in mice with PU.1

deficiency (41). Subsequent studies have demonstrated that the

deletion of a regulatory region in the Il9 locus, which is vital for

initiating the IL-9 expression and TH9 cell maturation, effectively

alleviates allergic lung inflammation (42, 43). Several clinical trials

involving a humanized anti-IL-9 monoclonal antibody (mAb),

MEDI-528, have been successfully completed in individuals with

asthma, demonstrating some degree of efficacy (44, 45).

At present, studies suggest that alveolar macrophages possess

comprehensive immunoregulatory capabilities in asthma, beyond

those of a pathogenic barrier to lung tissues (46). Based on the

stimulation type, surface markers, pattern of secreted cytokines, and

functional characteristics, two main polarized macrophage

subpopulations have been identified: “M1” macrophages, which

are classically activated, and “M2” macrophages, which are

alternatively activated (47). Although controversial, some studies

have demonstrated that M2 macrophages express TH2-associated

cytokines (IL-4 and IL-13) and TGF-b, which participate in type 2

inflammation and airway remodeling in allergic asthma (48).

However, M2 macrophages release high levels of IL-10 and TGF-

b, playing roles in inflammation resolution, wound repair, and

homeostasis maintenance, further complicating the precise function

of M2 macrophages (49).

Despite the well-known heterogeneity of asthma, an imbalanced

immune microenvironment is a prerequisite for its development.

This imbalance encompasses the dynamic interplay of T cells and

macrophages, beginning from the initial stages and continuing until

disease progression. Instead of attributing the disease solely to

specific subsets, alterations in the interactions and functions

between different subgroups may play significant roles (50). Such

interactions and functions may be referred to as “pro-

inflammatory/anti-inflammatory balance regulatory networks”

(Figure 1). Notably, the classical paradigm of TH2-skewed

immune responses remains relevant; however, emerging evidence

suggests that it is considerably more sophisticated in vivo than

previously envisaged, involving extremely uneven cell

subpopulations and different cytokine expression patterns that

dynamical ly fine-tune themselves based on different

spatiotemporal cues.
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3 Mechanisms leading to asthma

3.1 Step 1. Dysregulated epithelial barrier
and early innate immune response

3.1.1 Epithelial injury, activation, and
derived signals

Bronchial epithelial cells, which are strategically positioned at

the host and environment interface, play vital roles in preserving

respiratory mucosal integrity and stability because of mechanical-

physical barriers, ciliary clearance, and immunoregulatory

functions; they serve as the first line of defense against pathogens

and airborne allergens (51). Early investigation of airway asthma

pathology has revealed that epithelial cells are damaged,

disintegrated, and dysfunctional. As a result, the “epithelial

barrier hypothesis” has been established, suggesting that various

allergic and autoimmune diseases have similar triggering

mechanisms (52).

Different asthma phenotypes exhibit airway epithelial

abnormalities, primarily manifesting as increased epithelial

leakage, decreased inflammatory thresholds, ciliated cell shedding,

detached columnar cells (Creola bodies), and impaired intercellular

adhesion (53). Under homeostatic conditions, an impermeable

epithelial barrier is formed; this barrier is maintained primarily

by tight junctions (TJs) at the apical end of columnar cells. This
Frontiers in Immunology 04
barrier is further reinforced via different adhesion mechanisms in

the basal and basolateral surfaces of epithelial cells, including

adherens junctions (AJs) and (hemi)desmosomes (54). The

bronchial biopsies of patients with asthma have revealed that

zonula occludens-1 (ZO-1) and occludin, which are TJ proteins,

are irregular stained, suggesting functional defects in epithelial

connections (55). Compared with control subjects, the cultured

airway epithelial cells of patients with asthma also suggest TJ

protein degradations (55); in contrast, E-cadherin and a-catenin,
AJ proteins, expression is decreased (56).

The vulnerability of the airway epithelium to environmental

irritants and the dysfunctional repair mechanisms after such

injuries are vital for asthma development (57). Aeroallergens such

as house dust mites (HDMs), pollens, and fungi, microbes such as

viruses and bacteria, and environmental pollutants such as cigarette

smoke, particulate matter (PM)2.5, and diesel exhaust, directly

impede the integrity of TJ barriers of the airway epithelium (58).

Furthermore, insufficient antioxidant and antiviral mechanisms in

asthmatic airways may increase the susceptibility of epithelial cells

to oxidative and virus-induced damage.

Genome-wide association studies (GWAS) have confirmed that

the genetic predisposition for asthma development is partially

associated with barrier dysfunction; single-nucleotide

polymorphisms (SNPs) have been identified in multiple genes,

including protocadherin-1 (PCDH1), cadherin-related family
FIGURE 1

Balanced T-cell/macrophage networks and their cytokine milieu in asthma. TH2 cells orchestrate allergic inflammation by secreting TH2 cytokines
such as IL-4, IL-5, IL-9, and IL-13. However, TH1 cells, which are differentiated because of IL-12 and IL-18, inhibit TH2 cells by producing IFN-g. TH17
cells, affected by IL-6 and TGF-b, follow a distinct differentiation pathway. In general, Tregs mitigate the activity of other TH cells by secreting TGF-b
and IL-10; however, their functionality may be compromised under asthma conditions. nTreg, naturally occurring Tregs; iTreg, inducible Tregs; GM-
CSF, granulocyte-macrophage colony stimulating factor; TGF, transforming growth factor; TNF, tumor necrosis factor; IFN, interferon.
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member-3 (CDHR3), and orosomucoid-like protein isoform-3

(ORMDL3) (53). Furthermore, experimental mouse models that

simulate three asthma phenotypes, i.e., type 2high-eosinophilic, type

2low-neutrophilic, and mixed granulocytic, were employed to

differentiate the effects of phenotypes on the disruption of the

epithelial barrier by focusing on TJ proteins and mucins. Many TJ

proteins, including ZO-1 and claudin-18, were decreased in the

asthma phenotypes; however, the degree of reduction was different.

In contrast, claudin-4 is only overexpressed in neutrophilic asthma.

Moreover, phenotype-specific discrepancies are found in mucins:

MUC5AC and MUC5B are overexpressed in the asthma

phenotypes; however, it is more pronounced in neutrophilic and

mixed asthma (59).

In addition to its essential role as a physical barrier, the airway

epithelium also modulates the initial innate immune response

(Figure 2). Epithelial cells express several pattern recognition

receptors (PRRs), rapidly detecting and responding to pathogen-

associated molecular patterns (PAMPs) found in microorganisms
Frontiers in Immunology 05
as well as damage-associated molecular patterns (DAMPs) released

due to tissue injury, cellular stress and cell death (60).

Because of PRR activation on epithelial cells, large amounts of

cytokines, chemokines, and antimicrobial peptides are secreted,

attracting and activating innate and adaptive immune cells. During

bacterial pathogen invasion, bacterial cell wall components can be

sensed via various PRRs on airway epithelial cells, including toll-like

receptor (TLR)-2, which recognizes elements such as lipoteichoic acid

in gram-positive bacteria, TLR4, which recognizes lipopolysaccharide

(LPS) in gram-negative bacteria, and NOD1 and NOD2, which

recognize peptidoglycans. As a result, nuclear factor kappa B (NF-

kB) is activated, initiating immune responses and eventually

regulating bacterial clearance (61).

During viral infection, TLR3, TLR7/8, retinoic acid-inducible

gene I (RIG-I), melanoma differentiation-associated protein-5

(MDA5), and laboratory of genetic and physiology-2 (LGP2)

can recognize nucleic acid patterns (62). Furthermore, the

activation of PRR-dependent epithelial cells results in the
FIGURE 2

Early phase of allergen sensitizations in the airway. Inhaled allergens and air pollutants with protease activity can cleave epithelial TJs and trigger the
PRRs on the epithelial cells; this results in the production of cytokines, including IL-1, IL-25, IL-33, TSLP, GM-CSF, and TNF-a. When these cytokines
are released, DCs migrate toward the T cell region of the adjacent lymph nodes. Here, DCs interact with naive T cells via the TCR, MHC class II
molecules, and co-stimulatory molecules, thereby facilitating TH cell differentiation. HDM, house dust mite; TJ, tight junction; AJ, adherens junction;
ZO, zonula occludens; TSLP, thymic stromal lymphopoietin; mDC, myeloid DCs, MHC, major histocompatibility complex. This illustration was
adapted from Holgate, 2012 (75).
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production of endogenous danger signals (i.e., DAMPs), including

free adenosine triphosphate (ATP), uric acid, and high-motility

group box 1 (HMGB1) protein, and activation of DCs with

granulocyte-macrophage colony-stimulating factor (GM-CSF),

IL-1a, and IL-33 (63).

The contemporary viewpoint suggests that tissue disturbances

are the primary factor responsible for type 2 immunity rather than

direct antigen recognition. In genetically susceptible individuals,

with impaired epithelial barrier function, airways are vulnerable to

viral infections and inhaled allergens in early life. This triggers

immature DCs, guiding TH2 cell responses and sensitization to local

allergens (64). Airway exposure to allergens, pollutants, or

pathogens results in the release of epithelial-derived cytokines

such as IL-33 and IL-25 and thymic stromal lymphopoietin

(TSLP), a member of the IL-2 cytokine family. These cytokines,

commonly called “alarmins,” exert pleiotropic properties; however,

they synergistically activate DCs, ILC2s, memory TH2 cells,

eosinophils, and mast cells, acting upstream in a sustained type 2

immune response cascade (65).

In mice, IL-33 and IL-25 activate OX40-ligand (OX40L, or

CD252) expression on ILC2s, thereby activating ILC2 proliferation

and cytokine production (66); in contrast, TSLP can prime DCs to

improve type 2 immunity by activating T and B cells. If either one or

a combination of these “alarmins” are neutralized, the development

of the salient characteristics of asthma, including eosinophilia,

airway hyperactivity, and peribronchial collagen deposition, may

be inhibited, contingent upon the model allergen used (67–70).

Moreover, clinical research suggests that after allergen inhalation

for 24 h, the expression level of IL-33, IL-25, and TSLP is increased

in the airway epithelium of patients with allergic asthma, correlating

with the degree of airway obstruction (71). Large-scale GWAS have

confirmed that SNPs in IL33 (located at 9p24.1), IL1RL1 (encoding

the IL-33 receptor; also called suppression of tumorigenicity 2

[ST2], located at the 2q12.1 locus), and TSLP (5q22.1 locus) are

positively associated with the risk of developing asthma;

furthermore, epigenome analysis has revealed that they frequently

exhibit an active chromatin state (72). Therefore, epithelial-derived

alarmins may function as “early signals” in patients with different

asthma phenotypes and can serve as potential therapeutic targets

for allergic airway inflammation. At present, a mAb directed against

TSLP (tezepelumab), has been approved for treating severe asthma

in step 5 of the GINA guidelines (73). Biologic agents targeting IL-

33 such as itepekimab are undergoing clinical trials (74) (Table 1).

3.1.2 DCs deliver immunogenic messages to
naive T cells

The interaction between specialized antigen-presenting airway

DCs and T cells facilitates allergen sensitization. Allergen

processing into small peptides and selectively presenting these

processed peptides to the T cell receptors (TCRs) of naive T cells

via major histocompatibility complex (MHC) class II molecules

(i.e., the “first signal” or antigen-specific signal) are the underlying

mechanisms (75).

Effective allergen signaling warrants co-stimulatory interplay

between DCs and T cells that occurs in local lymphoid collections;
Frontiers in Immunology 06
this results in the differentiation of T cells into TH2-type T cells

(i.e., the “second signal” or co-stimulatory signal) (76).

Specifically, the activation of epithelial cells can result in the

release of chemoattractants (C-C motif chemokine ligand

[CCL]-20, CCL19 and CCL27, the ligands for CCR6, CCR7, and

CCR10, respectively) that attract immature DCs that then

differentiate and activate inflammation and adaptive immunity.

A subset of conventional DCs (cDC2s) that depend on IRF4 for

their development is responsible for initiating TH2 responses in

mouse lungs and other organs (77). Several epithelial-derived

cytokines, including IL-1a (78), GM-CSF (78), IL-33 (79), TSLP

(80), and CSF1 (81), can directly target CD11b+CD172a (SIRPa)+

cDC2s, involved in the differentiation of TH2 cells. However, TH2

responses are not induced by lung-resident CD103+XCR1+ cDC1s

(IRF8 and the basic leucine zipper transcriptional factor ATF-like

3 [Batf3]-dependent) and monocyte-derived DCs (moDCs). In

fact, they may confer protection against asthma development by

producing IL-12, a TH1-associated cytokine, thereby inhibiting

TH2 responses (82). Moreover, plasmacytoid DCs (pDCs) play a

tolerogenic role in allergic lung inflammation, inducing Foxp3+

Tregs in response to inhaled antigens, at least partially by

upregulating programmed death-ligand 1 (PD-L1, or CD274), a

T cell inhibitory ligand (83).

T cell differentiation is driven by the migration of allergen-loaded

cDC2s to the regional lymph nodes from the lung tissues; this may be

regulated by ILC2-derived IL-13 and type I IFNs (84, 85).

Furthermore, epithelial cell-derived cytokines and chemokines,

including IL-25, IL-33, CCL17 (thymus- and activation-regulated

chemokine, TARC), and CCL22 (macrophage-derived chemokine,

MDC), affect the activation of DCs, maturation of TH2 cells, and their

mucosal migration. In asthma models challenged with allergen,

CD11b+ DCs may be an important source of CCL17 and CCL22

(by activating their CCR4 receptors), TH2 cell-attracting

inflammatory chemokines, and eosinophil-selective chemokines

(i.e., the “third signal” or DC-secreted cytokines) (86). In clinical

settings, activated DCs considerably increase in the airways of

individuals suffering from asthma and ongoing inflammation (87);

the high-affinity receptor FceRI is expressed in their lung cDC2s

express (88, 89), with increased levels of CD86 and OX40L (90).

Indeed, because DCs can perceive danger signals, process

antigens, and migrate to draining lymph nodes, they occupy the

intersection between innate and adaptive immunities in the lungs.
3.2 Step 2. Adaptive immune reaction:
features of type 2-high and type 2-
low inflammation

Because tolerance or immune regulation fails in step 1, adaptive

immune inflammation develops in the lung; this comprises CD4+

TH2, TH1, TH17, ILC2, and IgE-producing B cells (Figure 3). TH2

cytokines such as IL-4, IL-5, and IL-13 primarily drive allergic

inflammation. However, pro-inflammatory cytokines, including

TNF-a and IL-1b, augment inflammatory responses and play a

role in more severe diseases. Some cytokines, including IL-10 and
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IL-12, exert anti-inflammatory properties and appear to be

insufficient among individuals with asthma.

Diverse asthma phenotypes are primarily driven by the complex

interaction between type 1 and type 2 immune pathways (Table 2).

In the early 1990s, some years after studies on the immune system
Frontiers in Immunology 07
in mice helped develop the TH1/TH2 T-lymphocyte-focused

paradigm, the concept that airway inflammation in atopic asthma

is associated with activated TH2 cells was first recognized (91).

In another study, GATA3 was identified as a master transcription

factor for TH2 cell development and cytokine production (92).
TABLE 1 Classic and novel treatments developed for asthma.

Pharmacotherapies Mechanism of action Drugs

Traditional drugs

Glucocorticoids Inhibit a variety of inflammatory genes, including cytokines,
inflammatory enzymes, adhesion molecules and inflammatory
mediator receptors

Beclomethasone, budesonide (BUD), triamcinolone (TAA),
fluticasone propionate, flunisolide (FNS)

Short/long-acting b2-
adrenoceptor agonists
(SABA/LABA)

Relax bronchial smooth muscles Salbutamol [1968], terbutaline, formoterol, salmeterol, indacaterol

Short/long-acting muscarinic
antagonists (SAMA/LAMA)

Relax bronchial smooth muscles Ipratropium, oxitropium

Theophylline Suppresses phosphodiesterase (PDE) and increase the
concentration of cyclic adenosine monophosphate (cAMP) in
smooth muscle cells

Aminophylline, diprophylline, cholinophylline, doxofylline

H1-antihistamine Serves as neutral receptor antagonists or inverse agonists of the
histamine H1 receptor, can block the action of histamine

Chlorpheniramine, loratadine, cetirizine, ketotifen

Mast cell stabilizer Inhibits the degranulation of allergic mediators Disodium cromoglycate, tranilast

Leukotriene (LT)
receptor antagonists

Block the cysteinyl LT (cysLT) receptor type I Zafirlukast, montelukast [1998], pranlukast

PDE4 inhibitors Inhibit the activity of PDE4, a specific cAMP hydrolase, thus
increasing the level of cAMP in cells

Roflumilast

Biologics

Anti-IgE antibody Binds free IgE Omalizumab (FDA[2003]-, EMA[2005]-, and NMPA
[2017]-approved)

Anti-IL-4R antibody Fully humanized IgG4 monoclonal antibody (mAb) that targets
IL-4Ra subunits

Dupilumab (EMA[2017]-, FDA[2018]-, and NMPA
[2023]-approved)

Anti-IL-5 antibody IgG1 antibody against IL-5 Mepolizumab (FDA[2015]-, EMA[2015]-, and NMPA
[2024]- approved)

Anti-IL-5 antibody IgG4 antibody against IL-5 Reslizumab (FDA[2016]- and EMA[2016]-approved)

Anti-IL-5R antibody Inhibits binding of IL-5 to IL-5Ra Benralizumab (FDA[2017]-, EMA[2018]-, and NMPA
[2024]-approved)

Anti-IL-9 antibody Blocks IL-9 MEDI-528

Anti-IL-13 antibody Inhibits the dimerization of IL-13Ra1 and IL-4Ra Lebrikizumab

Anti-IL-13 antibody IgG4 mAb targeting IL-13 Tralokinumab

Anti-IL-17 antibody Blocks IL-17 Secukinumab

Anti-IL-17R antibody Anti-IL-17RA mAb, which blocks IL-17A, IL-17F, and IL-17E
(IL-25)

Brodalumab (AMG 827)

Anti-TSLP antibody Human IgG2 mAb against TSLP Tezepelumab (FDA[2021]-approved)

Anti-IL-33 antibody Humanized IgG4 mAb with anti-alarmin activity against IL-33 Itepekimab

Anti-ST2 antibody Fully human IgG2 mAb that binds to ST2 and inhibits IL-
33 signaling

Astegolimab

Anti-DP2 antagonist Highly selective prostaglandin D2 (PGD2) receptor 2
(DP2) antagonists

Fevipiprant

Anti-IL-6 antibody Humanized IL-6 receptor blocker Tocilizumab
FDA, U. S. Food and Drug Administration; EMA, European Medicines Agency; NMPA, National Medical Products Administration of P. R. China.
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Likewise, T-bet (93) and retinoic acid-related orphan receptor gt
(RORgt) (94) are vital for differentiating TH1 and TH17 cells,

respectively. In the last decade, solid data regarding the

mechanisms underlying lineage development and the molecules

associated with ILC subset functions have been obtained, wherein

ILC1s, ILC2s, and ILC3s share and mirror the characteristics of

CD4+ TH1, TH2, and TH17 cells (95). ILC1s, similar to TH1 and NK

cells, generate IFN-g upon IL-12 and IL-15 stimulation and depend

on T-bet for their development. ILC2s depend on GATA3 and

RORa and generate type 2 cytokines such as IL-5, IL-13, and IL-9,

but little IL-4. ILC3 development requires RORgt; they respond to

IL-23 and IL-1b, thereby producing IL-17 and IL-22.

The ability of both CD4+ T cells and ILCs to rapidly release

various cytokines in response to environmental stimuli such as tissue

damage, pathogen invasion, or cellular stress is a fundamental

characteristic. Accumulating evidence indicates that the plasticity

and maintenance of the subsets of TH cells and ILCs are regulated by
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a delicate balance between their transcription factors, which are

activated by differentiation-oriented cytokines; furthermore, they

are affected by epigenetic modifications due to tissue

microenvironment alterations (96). With an in-depth

understanding of these cell types, we can gain invaluable insight

into the mechanisms underlying the development of type 2-high and

type 2-low asthma phenotypes (97).

3.2.1 Type 2 inflammation
Immunologists use mice to set up an ovalbumin (OVA)-

induced allergic asthma model; this provides a window for

elucidating the pathophysiology of the type 2-high asthma

endotype and developing novel therapeutics (98). This is a pure

TH2 response in which sensitization is achieved by intraperitoneally

injecting the model antigen alum (adjuvant)-emulsified OVA and

challenging with aerosolized OVA; this promotes IL-4, IL-5, IL-9,

and IL-13 production and OVA-specific IgE and IgG1 synthesis.
FIGURE 3

The development of airway inflammation and bronchial hyperresponsiveness in acute asthma. After sensitization, epithelial cells release alarmins
(TSLP, IL-25, and IL-33) that activate DCs and ILCs. Upon the uptake, processing, and presentation of antigens to naive T cells, DCs promote naive T
cell differentiation into TH2 lymphocytes. ILC2s and TH2 secrete IL-4, IL-5, IL-9, and IL-13, exerting vital roles in type 2 inflammation. Pollutants,
cigarette smoke, viruses, and bacteria can damage and stimulate the airway epithelium, thereby releasing IL-1b, IL-6, and chemokines such as IL-8
acting as neutrophil chemoattractants. DCs and macrophages recruit neutrophils and release pro-inflammatory cytokines via TH1/ILC1 and TH17/
ILC3 cells. iNOS, inducible nitric oxide synthase; IRF4, interferon regulatory factor 4; KLF4, Kruppel-like factor 4; ST2, suppressor of tumorigenicity 2;
GATA, GATA-binding protein; ROR, RAR-related orphan receptor; Foxp3, forkhead box protein 3; T-bet, T-box expressed in T cells; PGD2,
prostaglandin D2; MMP, matrix metalloproteinase.
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Using this model, it was discovered that IL-4, via IL-4Ra, can
promote IgE class switch recombination of B cells and plasma cell

differentiation, worsen bronchial hyperreactivity, and induce the

expression of adhesion molecules such as ICAM-1 (CD54) and

VCAM-1 (CD106), priming the vascular endothelium for

eosinophils extravasation (99). Uniquely, IL-4 is critically

involved in the differentiation of naive TH cells into TH2 cells.

IL-5 is an essential cytokine for eosinophil development,

maturation, activation, proliferation, and survival (100). However,

it may not exert chemotactic effects on eosinophils. CCR3 is

selectively activated by eotaxin-1 (CCL11), eotaxin-2 (CCL24),

and eotaxin-3 (CCL26) (101), combined with the expression of

some adhesion molecules, including VCAM-1 (which is

upregulated by IL-4 and IL-13) (102), facilitating the recruitment

of eosinophils from the bloodstream to the lung mucosa

and interstitium.

IL-13 and IL-4 have similar biological properties because both

cytokines can function via the IL-4Ra chain and phosphorylate

STAT6, a downstream transcription factor (103). However, the key

difference is that IL-13 majorly participates in the effector phase of

type 2 immune responses, thereby affecting the development of

several traditional pathophysiological characteristics of asthma

owing to the effects it exerts on lung structural cells, including

epithelial cells (mucus-secreting goblet cell differentiation and

proliferation), SMCs (smooth muscle hypertrophy induction and

enhanced contractility), fibroblasts (extracellular matrix [ECM]
Frontiers in Immunology 09
production), and endothelial cells (vascular remodeling) (8, 104).

Unlike IL-4, IL-13 plays no role in the differentiation of T cells

because IL-13R is not expressed in immature T cells. This disparity

may be because canonical TH2 cells produce high levels of IL-13 at

the effector site of the lungs, whereas IL-4 is primarily produced by

T follicular helper (TFH) cells in the lymph nodes (105).

Furthermore, in airway epithelial cells, IL-13 augments the

expression of inducible nitric oxide synthase (iNOS); iNOS is

primarily involved in generating fractional exhaled nitric oxide

(FeNO), a diagnostic biomarker to examine type 2 inflammation in

the respiratory tract (106).

IL-9 is released by a subset of CD4+ T cells (TH9 cells),

potentially by classical TH2 cells, as well as by ILC2s. IL-9 drives

mast cell survival, bronchial hyperresponsiveness, mucus cell

metaplasia, and airway wall remodeling in mouse models (107).

Therefore, IL-4, IL-5, IL-9, and IL-13, serving as classical type 2

cytokines, share common characteristics; however, each cytokine

exhibits an exclusive functional profile.

The discovery that eosinophil-rich responses could be induced

in mice lacking T and B cells has piqued our interest over the past

few years that ILC2s as an important player in the pathogenesis of

asthma (108). ILC2s are significantly increased in the blood and in

the bronchoalveolar of asthmatic patients (109). Both ILC2s and

TH2 cells belong to the lymphoid lineage and generate similar

cytokine patterns. Their functions considerably overlap in asthma,

although there are some detailed differences. In the presence of IL-
TABLE 2 Asthma phenotypes and cellular mechanism of type 2-high and type 2-low inflammation.

Features T2-“high” T2-“low”

Clinical

Age Early-onset, children Late-onset, adult

Clinical behavior Often associated with allergic rhinitis, positive
skin prick test to aeroallergens or presence of
allergen-specific Ig E

Corticosteroid resistant, absent of eosinophilia

Diagnostic criteria Blood eosinophils ≥150/ml, and/or FeNO ≥20
ppb, and/or sputum eosinophils ≥2%, and/or
asthma is clinically allergen-driven [GINA 2024]

—

Obesity/metabolic dysfunction May be present Often present

Exacerbations Allergen induced exacerbate Cigarette smoke, pollution and viral
induced exacerbate

Medication sensitivity More responsive to corticosteroids
and bronchodilators

Less responsive to corticosteroids
and bronchodilators

Inflammatory
response

Epithelial cells Secrete TSLP, IL-33, and IL-25 Secrete IL-1b and IL-23

DCs DC2 express IL-4, OX-40L, CCL17, and PGE2 DCs secreted IL-6, IL-23, and TGF-b

NKT cells NKT cells secreted type 2 cytokines Monocyte and NKT cells secreted IL-8

TH cells TH2 secreted IL-4, IL-5, and IL-13 TH1 secreted IFN-g and TNF-a

TH9 secreted IL-9 TH17 secreted IL-17

ILCs ILC2s secreted type 2 cytokines ILC3s secreted IL-17

B cells IgE class-switched B cells —

Mast cells Mast cells secreted proteas and PGD2 —

Effector cells Eosinophils secreted IL-4, IL-5, IL-13, granule
proteins (MBP, EPO, ECP, EDN) and
cysteinyl leukotrienes

Neutrophilic or paucigranulocytic
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25 or IL-33, ILC2s can directly control the key features of type 2

asthma, including eosinophilia, bronchial hyperreactivity, and

goblet cell hyperplasia, by producing IL-5, IL-9, and IL-13 (110).

Furthermore, ILCs function as antigen-presenting cells that use

MHC class II molecules to present antigenic epitopes and express

OX40L to support CD4+ T lymphocyte activity (111, 112).

Moreover, in local tissue settings, ILC2s interact with both DCs

and TH2 cells in complex bidirectional crosstalk, modulating the

intensity of type 2 responses to properly respond to perceived

environmental threats (84, 113).

Cellular activation and inflammatory mediator release are

representative characteristics of type 2-high asthma, which can be

observed via mast cell degranulation and eosinophil vacuolation.

The interplay between IgE and high-affinity FceRI on granulocytes,

including mast cells and basophils, results in the initiation of cell

activation and degranulation, releasing multiple preformed and

newly synthesized mediators, cytokines, chemokines, and growth

factors. The ready-made mediators stored in cytoplasmic granules

include biogenic amines (e.g., histamine and serotonin), neutral

proteases (e.g., tryptase, chymase, and carboxypeptidase A),

proteoglycans (e.g., heparin and chondroitin sulfate), and some

cytokines (e.g., TNF-a) and growth factors (e.g., vascular

endothelial growth factor A [VEGFA]) (114). TH2-dependent

trypsin-expression cell (MCT) are the main type of mast cells that

contribute to mild-to-moderate allergic asthma (115). However, in

more severe asthma forms, mast cells containing both trypsin and

chymase (MCTC) become dominant; compared with MCT, MCTC

relies more on stem-cell factors (SCF, i.e., the KIT ligand) for

survival (116).

Lipid-derived mediators can be secreted by FceRI aggregation-
activated mast cells. They are responsible for arachidonic acid

metabolism via the cyclooxygenase (COX) and lipoxygenase (LOX)

pathways, releasing prostaglandins (PGs, particularly PGD2),

leukotriene B4 (LTB4), and cysteinyl leukotrienes (CysLTs,

including LTC4, LTD4, and LTE4) (117). Histamines, PGs,

and CysLTs as potent bronchoconstrictors and can lead to

bronchospasm, vasodilation, plasma leakage, mucus production,

and elevated cellular recruitment in the lungs. PGD2 acts on type 1

PGD2 receptor (DP1) to contract the airway smooth muscle and

CRTH2, a TH2 cell-expressed chemokine receptor, i.e., DP2, to

chemoattract TH2 cells, ILC2s, and eosinophils (118). Several anti-

allergic drugs targeting the abovementioned mediators, including

antihistamines, leukotriene modifiers, mast cell membrane stabilizers,

and DP2-receptor antagonists, have been developed to decrease type

2 inflammation in the airways. These drugs are majorly used as

adjunctive therapies for patients who inadequately respond to regular

treatment strategies for allergic asthma, particularly those with

allergic rhinitis and allergic skin diseases.

In recent years, non-steroidal anti-inflammatory-drug

(NSAID)-exacerbated respiratory disease (NERD) has attracted

increasing attention (119). As a prominent severe type 2-high

asthma phenotype that appears in adulthood, it is characterized

by increased production of CysLTs, high prevalence of coexisting

chronic rhinosinusitis with nasal polyps (CRSwNP), and

hypersensitivity to aspirin, emphasizing that dysregulation of
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arachidonic acid metabolism likely exacerbates the worsening of

upper and lower airway symptoms of asthma.

3.2.2 Non-type 2 inflammation
Asthma is generally linked to increased eosinophils and TH2

cytokines; however, some patients present with a predominantly

neutrophilic disease, also called “non-type 2” or “type 2-low”

asthma; this asthma phenotype lacks TH2 cytokine signatures but

may exhibit severe glucocorticoid resistance (13). Other features

associated with severe neutrophilic asthma include advanced age,

impaired lung function, decreased reversibility of bronchodilator

responsiveness, microbial infections, tobacco consumption, and

obesity (120). Although the molecular mechanism underlying

airway neutrophilic inflammation remains unelucidated, it

primarily involves the IFN-g-mediated type 1 and IL-17-mediated

type 3 immune pathways (121).

In general, PRRs (such as TLRs) activation in response to

microbial infections leads to a type 1 immune response; it

involves immune cells that can release IFN-g, including CD4+

TH1 cells, type 1 ILCs (ILC1s), NK cells, and CD8+ cytotoxic T

(TC1) cells (122). The development of naïve T cells in the TH1 or

TC1 direction can be induced by intracellular microbes that interact

with the TLRs on DCs in the presence of IL-12 and IL-18 derived

from DCs and IFN-g derived from NK cells or ILC1s. The BALF

cells isolated from patients with severe type 2-low asthma and lung

tissues obtained from corresponding mouse models showed

increased levels of IFN-g and decreased expression of secretory

leukocyte protease inhibitor (SLPI), which correlated with high

airway resistance and steroid insensitivity (123). At present, the

pathogenic roles of type 1 immunity in asthma remain

controversial. IFN-g signaling may be absent in the airway

epithelial cells of patients with asthma (124); this abnormality

increases their vulnerability to viral infections and worsens

asthma (125). In contrast, other studies have demonstrated that

severe asthma episodes are associated with high IFN-g and IL-17A

expression in the airways (126, 127). Despite receiving high-dose

corticosteroid treatment, CD4+ T cells with IFN-g+ (TH1 cells) were

higher in the BALF of patients with severe asthma than in that of

patients with mild or moderate asthma (123, 126).

IL-17 cytokine family members, including IL-17A and IL-17F,

mediate the type 3 immune process. Extracellular bacteria and fungi

induce IL-1b and IL-23 production by myeloid DCs (mDCs); as a

result, primitive CD161+ T cells differentiate into CD4+ TH17 or

CD8+ TC17 cells and trigger ILC3s to generate cytokines (122).

Furthermore, IL-17A, IL-17F, and IL-22 regulate neutrophilic

influx into tissues by inducing airway epithelial and stromal cells to

generate cytokines such as G-CSF, GM-CSF, and IL-6, as well as

chemokines such as CXCL1, CXCL6, and CXCL8 (IL-8); this

promotes neutrophil activation and migration (128). Other cells,

including gdT cells, NKT cells, and granulocytes, are also known to

secrete IL-17 cytokines (129). In some individuals with moderate-to-

severe asthma, these cytokines are increased in the blood, sputum,

and bronchial biopsies, correlating with increased disease severity

(130). In mice and humans, TH17-related cytokines play a role in

airway remodeling by inducing mucous cell metaplasia, promoting
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fibroblast and SMC proliferation, and directly contracting bronchial

SMCs, thereby narrowing the airway (31, 131). Unfortunately, despite

the relatively large amount of evidence via observational studies,

a randomized clinical trial of brodalumab, an IL-17 receptor-

neutralizing antibody, in patients with poorly controlled

moderate-to-severe asthma failed to exhibit significant benefits in

all-comers (132) (Table 1).

3.2.3 Phenotype overlap and
systemic inflammation

Owing to a strong relationship between heterogeneity and

asthma, the dichotomous viewpoint of asthma categorization may

be oversimplified; it only appears at the extremes of the continuous

spectrum (129). Based on asthma endotype complexity, two

primary inflammatory signatures involving TH2 or TH17

cells and their respective cytokines have been categorized as

discrete subpopulations; however, recent evidence suggests the

simultaneous occurrence of type 2 and non-type 2 immune

responses in some patients (133). Most TH cells display a degree

of plasticity that depends on environmental factors and may be

redirected toward other effector CD4+ cells. Interestingly, a study

suggested that the TH2 and TH17 inflammatory pathways are

mutually regulated in patients with asthma; the suppression of

the TH2 pathway promotes a TH17 response; therefore, the dual

blockade of TH2 and TH17 functionalities may be rewarding for

asthma treatment (134).

Historically, IL-17 was considered to be derived from

conventional TH17 cells; however, a novel CD4+ TH2 memory or

effector cell subset that collectively expresses GATA3 and RORgt
and produces TH2 and TH17 cytokines has now been identified; this

subset persists as the predominant IL-17-producing T cell

population during the chronic phase of asthma (135). In

individuals with severe and corticoid-resistant asthma, dual-

positive TH2/TH17 cells (i.e., IL-17-producing TH2 cells) were

significantly increased in the peripheral blood and BALF

(136, 137). These dual-positive TH2/TH17 cells are characterized

by higher levels of IL-4 production and increased expression of

MEK1 (mitogen-activated protein-extracellular signal-regulated

kinase [ERK] kinase 1), mediating resistance to dexamethasone-

induced cell death (136). This can partially explain why a TH2/

TH17
predominant endotype causes more severe asthma compared

with the traditional TH2
predominat and TH2

low endotype (136).

Additional research has demonstrated that IL-1b, IL-6, anti-IFN-
g, and IL-21, which is a cytokine environment that stimulates T cells

in asthma to differentiate into the same biphenotypic cells, promote

dual-positive TH2/TH17 cell differentiation, worsening asthma

(137). Similarly, under specific alterations in the inflammatory

microenvironment, TH17 cells repolarize toward the TH2 profile,

adjusting their cytokine expression to a TH2-like pattern (138).

In a recent cross-sectional study in humans, phenotype

distribution was examined in patients with mild-to-severe asthma

(139). Phenotype overlap is extremely common in patients with

asthma (73.4%), encompassing combinations of type 2-related, non-

type 2-related, and mixed type 2/non-type 2 inflammation. The last

group is particularly concerning; it accounts for approximately 50%

of the total number of patients and exhibits the worst clinical
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outcomes. The average age or onset age is younger in the type 2

group, intermediate in the mixed one, and older in the non-type 2

group and might reflect immune inflammatory status evolution,

beginning from a canonical type 2 signature and progressively

transforming into a more complex mixed type 2/non-type 2

signature. As individuals age, those who develop pure type 2

asthma in the early years may encounter various environmental

stimuli throughout their lives, possibly triggering different pathways

and altering the original type 2 predominance (140).

Asthma is being increasingly acknowledged as a systemic

disease, in which inflammation is not limited to the airways but

remarkably cross-communicates with other distant organs by

releasing inflammatory mediators (141). In patients with asthma,

increased IL-6 and IL-1b levels are markers for systemic

inflammation and are associated with reduced forced expiratory

volume in 1 second (FEV1) and elevated acute exacerbations

(142, 143). The analysis of the clinical traits of patients with

asthma suggested that an imbalanced diet with excessive calorie

intake and the resulting metabolically related inflammation can

affect both innate and adaptive defense mechanisms in the

respiratory tract (144). The burden of obesity-associated

inflammation may increase the risk of developing asthma. White

adipose tissue secretes pro-inflammatory cytokines such as IL-1b,
IL-6, TNF-a, and leptin, which may negatively impact lower airway

function by increasing airway hyperreactivity (145). Interestingly,

increased plasma IL-6 levels and systemic inflammation are

observed in both type 2-high and type 2-low asthma; however,

they are not associated with upstream type 2 inflammation, with no

data for the increase in IL-6 expression in the sputum (143).
3.3 Step 3. Transition from airway
inflammation to structural changes

3.3.1 Chronicity of inflammation
Inflammation persists when humans are continuously or

repeatedly exposed to viruses, bacteria, allergens, air pollutants,

tobacco smoke, and/or oxidative stress; furthermore, there are

many innate immune cells in the bronchial mucosa epithelium,

including eosinophils, neutrophils, basophils, and monocyte–

macrophage lineage cells, as well as blood-derived adaptive

immune cells, including TH2 cells, other T cell types, and B cells.

Chronic inflammation and airway remodeling simultaneously

occur because of the continuous cycle of epithelial damage and

repair; this results in disease chronicity, which is a characteristic of

asthma. In general, the inflammatory process of asthma is primarily

confined to the conducting airways. However, with disease

progression to a more chronic state, inflammatory cells infiltrate

the proximal of the trachea and larynx and distal of the

smaller airways, periodically involving neighboring alveoli. The

inflammatory responses in the small airways may primarily occur

outside the airway smooth muscle, whereas submucosal

inflammation is predominant in the large airways.

Microscopically, inflammation can affect all layers of the airwall

in patients with chronic asthma. The epithelium does not exhibit

the normal pseudostratified appearance and may be stripped, with
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only the basal layer remaining. The basal cells are hyperplastic, with

squamous metaplasia. Furthermore, goblet cell hyperplasia is

observed. Characteristically, the basement membrane of the

epithelium is thickened and hyalinized. Moreover, mucous glands

in the bronchial submucosa are hyperplastic. In addition, the

submucosa is edematous and contains a mixed inflammatory

infiltrate, with different numbers of eosinophils. Bronchial smooth

muscle hyperplasia and hypertrophy are the most typical features of

status asthmaticus. In all bronchial tube wall layers, eosinophil,

monocyte, lymphocyte, and plasma cell infiltration is observed. In

some cases of fatal asthma, mucus plugs comprising mucin

glycoproteins and plasma proteins may block the airways;

furthermore, Charcot–Leyden crystals, the disintegrating product

of eosinophils, are often observed in the tube walls and mucus

plugs (146).

Of note, several reinforcing feedback loops promote the

perpetuation of chronic airway inflammation among patients
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with asthma (Figure 4). For example, in type 2-high asthma,

TH2 cells and ILC2s are significant IL-4, IL-5, and IL-13

sources; furthermore, infiltrating mast cells, eosinophils, and

basophils play vital roles in producing type 2 cytokines.

Collectively, these cells maintain the environment needed for

the survival of type 2 cytokines, thereby supporting chronic

disease development. IL-4 neutralizes the suppressive function

of Tregs and inhibits their generation, allowing the differentiation

of IL-4-producing TH2 cells or ILC2s (147, 148). The co-

engagement of sIgE bound to FceRI receptors on mast cells and

basophils results in the massive release of IL-4, a major mediator

of B cell class switching and IgE synthesis. IL-5 mediates

eosinophil differentiation and function, whereas eosinophils, in

turn, secrete large amounts of IL-5. Alarmins that activate TH2

cells and ILC2s are released by damaged airway epithelial cells,

leading to cytokine (IL-4 and IL-13) production; this significantly

increase the expression of histone deacetylases (HDACs) and
FIGURE 4

Relationship of epithelial–mesenchymal communication to airway inflammation and remodeling in chronic persistent asthma. The chronicity of
inflammation is associated with repeated damage–repair responses that contribute to establishing the EMTU, which, in turn, provides a continuous
tissue environment (“soil”) for TH2 cell/ILC2-related inflammation (“seed”). The interdependency among chronic inflammation, altered immunity, and
structural changes, involving epithelial cells, (myo)fibroblasts, SMCs, and their secretory ECM, microvasculature, and neural networks, can describe
why chronic airway inflammation persists even if obvious environmental stimuli are absent, as well as the reason for the failure to obtain complete
therapeutic responses to anti-inflammatory drugs at the more severe and chronic end of the asthma spectrum. FGF, fibroblast growth factor; IGF,
insulin-like growth factor; PDGF, platelet-derived growth factor; EGF, epidermal growth factor; HBEGF, heparin-binding EGF-like growth factor;
VEGF, vascular endothelial growth factor; NGF, nerve growth factor; TGF, transforming growth factor; Cys-LTs, cysteinyl leukotrienes.
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silent information regulator genes (SIRTs), whose activities are

inversely correlated with the integrity of the epithelial

barrier (149).

To break the abovementioned vicious cycle and inhibit

continuous asthma progression, several anti-inflammatory drugs

have been developed (Table 1). However, the redundancy of

cytokine sources and overlapping effects of inflammatory

mediators increases the robustness of the pro-inflammatory

network, making treatment with a single targeted therapy (e.g.,

cytokine-specific monoclonal antibodies) challenging. To date, the

inhaled administration of glucocorticoids remains the most effective

treatment modality for asthma; they modulate (mostly

downregulate) the expression of approximately 200 genes to exert

anti-inflammatory effects.

Recently, the concept of “trained innate immunity” has

garnered attention to explain the pathological mechanisms

underlying chronic inflammation in asthma (150). Immunologic

memory, long considered a specific feature of adaptive immunity,

primarily depends on antigen receptor gene rearrangements and

lymphocyte clone production. However, emerging literature

suggests that the innate immune system can exhibit memory

features (151). Abnormal innate immune memory frequently

exacerbates the inflammatory responses observed in asthma.

Furthermore, repeated exposure to different non-specific stimuli

can result in conditionally trained immunity in innate immune

cells, including airway epithelial cells, DCs, ILC2s, mast cells,

monocytes, macrophages, and NK cells. Depending on the

upregulation of pro-inflammatory factors such as IL-1, IL-6,

TNF-a, and CCL17 or anti-inflammatory mediators such as IL-

10, these cells develop into a pro-inflammatory or anti-

inflammatory state. Signaling pathways impinging on

transcription factors and an intricate interconnection between

epigenetic modifications and metabolic reprogramming may help

maintain this state, possibly favoring (pro-inflammatory state) or

preventing (anti-inflammatory state) asthma development or

progression (152).

3.3.2 Bronchial epithelial–mesenchymal
transition and lung tissue remodeling

Airway remodeling, an outstanding feature of chronic asthma,

is characterized by aberrant epithelial repair and fibroblast

accumulation, contributing to ECM deposition, which results in

fixed bronchial obstruction (153). EMT is a dynamic approach in

which epithelial cells acquire mesenchymal characteristics and lose

their epithelial phenotype; it plays a vital role in normal

development, tissue remodeling, fibrosis, and cancer progression.

Based on its functional significance, EMT can be classified into

three types: type I EMT presents during embryonic development,

type II EMT participates in wound healing and organ fibrosis, and

type III EMT is related to the metastasis of malignant tumors and

transformation of tumor phenotypes. Among these types, type II

EMT participates in asthmatic airway remodeling (154).

In general, epithelial injury and ciliopathies; mucosal edema;

goblet cell hyperplasia; basal membrane thickening; increased blood

vessel supply; increased mass of subepithelial fibroblasts,

myofibroblasts, and airway SMCs; and ECM protein deposition
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are the pathological changes that occur during airway remodeling.

These events result in excessive airway reactivity, with mucus

formation and plugging extending into the small airways,

resulting in airway trapping and overinflation; this ultimately

results in decreased lung function in patients with chronic

asthma (155).

As a hallmark of airway remodeling, subepithelial fibrosis is

proportional to disease severity and duration (156). Through EMT,

airway epithelial cells lose apical–basal polarity, undergo

cytoskeletal changes, and lose intercellular adhesion and TJs;

furthermore, the expression level of epithelial markers, including

E-cadherin, is decreased and that of interstitial markers, including

a-smooth muscle actin (a-SMA) and vimentin, is increased

(157, 158); this results in airway epithelial cell differentiation into

myofibroblasts, thereby exacerbating the degree of subepithelial

fibrosis (159). Among the signaling pathways involved in EMT,

the TGF-b1/Smad, Wnt/b-catenin, and Sonic Hedgehog signaling

pathways have been extensively studied and occupy a central

position (160).

The prevailing view is that inflammation is the primary driver

and amplifier of most airway remodeling processes. Various

cytokines, chemokines, and growth factors released from

inflammatory and tissue cells in the airways form a complex

signaling milieu, driving structural changes in the lung tissue. In

type 2-high asthma, activated eosinophils release cytotoxic granular

proteins, including eosinophil cationic protein (ECP), major

binding protein (MBP), eosinophil peroxidase (EPO), and

eosinophil-derived neurotoxin (EDN), LTC4, and platelet-

activating factor (PAF), leading to airway constriction, mucus

secretion, and increased blood permeability (161). Furthermore,

eosinophils are a major source of TGF-b, inducing subepithelial

fibrosis, airway smooth muscle hypertrophy, and goblet cell

proliferation (162). Epithelial damage and delayed repair

stimulate the production of several growth factors, including

epidermal growth factor (EGF), TGF-b, and VEGF, which driving

airway fibrosis and SMC, neuronal, and capillary proliferation,

resembling a chronic wound scenario (163). SMCs are the

primary structural cells present in the bronchial airways. During

asthmatic airway inflammation, airway SMCs undergo continuous

proliferation and hypertrophy, along with deposition of ECM and

differentiation of goblet cells (164). Based on these structural

changes, SMCs also participate in inflammatory and remodeling

processes via the expression of cell adhesion molecules (CAMs),

cytokine receptors, chemokine receptors, and TLRs (165).

Furthermore, by releasing cytokines such as IL-4, IL-9, and IL-13,

TH2 cells and ILC2s promote subepithelial fibrosis, epithelial goblet

cell metaplasia, and SMC proliferation (166). In another striking

animal study, the researchers reported that when airway

inflammation levels were almost similar, mice without TH17 cells

had lesser airway remodeling than controls. Therefore, TH17 cells

induce airway remodeling in a TH2 response-independent

manner (30).

Although airway remodeling is frequently associated with

inflammation, this perspective is being challenged and should not

be assumed to occur downstream from a single (or central)

mechanism. First, airway remodeling can occur in early disease
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stages or preschool-aged children; however, modeling is less

pronounced in adult-onset asthmatic airways (167), suggesting

that it is simply not a consequence of inflammation. Second,

more severe tissue remodeling, characterized by the excessive

deposition of connective tissues with gradual lung function loss, is

rare in moderate-to-severe asthma and only develops over time in

patients receiving insufficient therapy (54). Lastly, anti-

inflammatory treatment may partially reverse airway remodeling

and airflow obstruction; however, it generally requires long-term

rehabilitation (168).

A new hypothesis about persistent asthma has emerged in

which epithelial damage in individuals with asthma triggers

abnormal communication between the epithelium and basal

myofibroblast sheaths, which is mediated via growth factors,

thereby driving airway remodeling; this is called activation of the

“epithelial–mesenchymal trophic unit (EMTU)” (169). In contrast,

the cytokine milieu generated by the EMTU endows a favorable

environment for sustained chronic inflammation. This leads to

several functionally significant alterations in the architecture of the

affected tissue, including considerable airway wall thickening

(including the epithelium, lamina reticularis, submucosa, and

smooth muscles), ECM protein deposition (including periostin

(170), fibronectin (171), tenascin-C, osteopontin, and “repair-

type” collagens I, III, V, and VI), and goblet cell hyperplasia; this

is linked to increased mucus production. In individuals who have

such airway wall thickening, bronchoconstriction severely narrows

the airway lumen compared with that occurring in normal

thickness airway walls.

Irrespective of the underlying mechanism, repeated

bronchoconstriction, in and of itself, upregulates pro-fibrogenic

cytokines and deposits subepithelial collagen (172). Therefore, in

addition to chronic inflammation and tissue injury response,

changes in mechanical stress may also lead to airway wall

remodeling via the action of epithelial-inducible proteins such as

YKL-40 (encoded by the gene CHI3L1; i.e., chitinase-3-like

protein 1) (173), resistin-like molecule-b (RELMb) (174), and

members of the plasminogen activator system (175).

A groundbreaking endoscopic treatment has highlighted the

importance of airway remodeling and mechanical transduction as

drivers of asthma pathogenesis. Bronchial thermoplasty (BT) is a

non-pharmacological intervention in which therapeutic radio-

frequency energy is applied in a controlled manner to the

bronchial walls to heat the tissues; BT can decrease the frequency

and severity of asthmatic attacks (Evidence B) (176). This

temperature-controlled radio-frequency energy is locally delivered

to the proximal airways to produce clinical effects and alleviate

patient symptoms by decreasing the mass of smooth muscles.

However, the other effects of BT on airway remodeling and how

it provides clinical benefits remain unclear, potentially involving the

downregulation of cytokines such as TGF-b and RANTES (CCL5)

(177), inhibition of RBM (reticular basement membrane) thickness

and ECM deposition (178), modulation of innervation and

vascularization, and improvement of the regenerative capacity of

the airway epithelium (179). Nevertheless, evidence regarding its

effectiveness and long-term safety is limited, and, at present, it can
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only be leveraged in research trials or within the scope of national

registries as an additional treatment for some adult patients with

moderate-to-severe asthma.
3.4 Step 4. Turning point: disease
exacerbation or remission

3.4.1 Allergen-induced exacerbation of type 2-
high asthma

As previously discussed, in stable type 2-high asthma, the

airway epithelium releases TSLP, IL-25, and IL-33, differentiating

DC-activated TH2 cells. Therefore, IL-5 and GM-CSF are secreted

by these TH2 cells, which along with epithelial-derived eotaxins,

monocyte chemotactic proteins (MCPs), and RANTES regulate

eosinophil production, maturation, recruitment, and activation.

Ultimately, the local degranulation of lung eosinophils damages

the airway epithelium. Meanwhile, IL-9 and IL-13, as TH2

cytokines, induce goblet cell metaplasia (62).

Several other factors, including indoor allergens such as dust

mites, pet fur, and cockroaches; outdoor allergens such as catkins,

pollen, fungi, and cold air; and dietary allergies such as aspirin and

some high-protein fish, shrimp, crabs, and eggs, can aggravate

inflammatory responses during the acute worsening of type 2-high

asthma. The PRRs in the airway epithelium can detect allergens and

other environmental stimuli. PM2.5 extracts can acutely exacerbate

allergic lung inflammation in an inflammasome-dependent manner

via the TLR2/NF-kB/NLRP3 pathway (180). Overlaid on the general

type 2-high inflammatory response, epithelial cells produce TARC

(CCL17), a major chemokine for recruiting TH17 cells; TARC

enhances the pro-inflammatory effects of TH2 cells by releasing IL-

17 and secreting IL-8, leading to neutrophil recruitment (Figure 5).

Evidence suggests that TARC levels are significantly elevated in the

BALF of individuals with allergen-challenged asthma exacerbation.

The combinations of IL-4, IL-13, and TNF-a elicit TARC release

from airway SMCs, thereby promoting the force generation of

smooth muscles and airway stenosis (181).

Abnormal contraction of the bronchial smooth muscle is a key

pathological process that induces airway hyperresponsiveness in

asthma. The inflammatory cytokines generated during asthma

exacerbation, primarily IL-13, can not only directly act on IL-13

and IL-4 receptors on airway SMCs (182), thereby enhancing

agonist-evoked excitatory effects by upregulating pro-

inflammatory mediators such as IL-1b and TNF-a (183), but also

modulate G protein-coupled receptor (GPCR, e.g., muscarinic

receptor)-related signaling pathways and/or inhibit cAMP

production, thereby altering calcium homeostasis in airway SMCs

(184). Newly synthesized mediators released from airway SMCs

promote immune cell recruitment and activation, thereby

sharpening an ongoing inflammatory response. Persistent airway

inflammation helps enhance the strength generated by airway

smooth muscles, possibly increasing the number and size of

airway SMCs. Understanding the regulation of airway smooth

muscle function and combining this information with the

underlying immunologic processes that drive asthma
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pathogenesis may become an important breakthrough in addressing

the treatment mysteries of asthma (185).

In a very recent study, using a human allergen-induced asthma

exacerbation model, single-cell RNA sequencing (scRNA-seq) was

utilized to compare the lower airway mucosa of patients with

asthma and allergic controls without asthma (186). The airway

epithelium of patients with asthma was highly dynamic, with the

upregulation of the genes involved in mucus metaplasia, matrix

remodeling, and glycolysis; however, antioxidant and growth factor

pathways observed in controls were not induced. In particular,

following allergen exposure, IL9-expressing pathogenic TH2 cells

were observed in the asthmatic airways, along with the enrichment

of cDC2s and CCR2-expressing monocyte-derived cells, which

upregulated the expression of inflammatory mediators and

metalloproteinases. Moreover, a unique TH2-mononuclear

phagocyte-basal cell interactome was discovered in patients with

asthma, characterized by type 2 programming of immune and

structural cells and the involvement of additional signals,

including the TNF family and cellular metabolism pathways.
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3.4.2 Infection-induced exacerbation of type 2-
low asthma

Across all age groups, respiratory tract infections are closely

associated with wheezing illnesses, possibly affecting asthma

development and severity. Airway infection caused by viruses,

chlamydia, or mycoplasma may play a vital role in asthma

pathogenesis: repeated respiratory infections during early

childhood (particularly respiratory syncytial virus [RSV])

encompass the strongest predictors of future asthma risk (187);

on the other hand, to date, viral infections (primarily rhinovirus

[RV]) are the most common reason for the acute worsening of

already established adult asthma; this results in the acute

aggravation of disease symptoms, warranting increased

medication use and emergency department visits and

hospitalization and intensive care measures in some cases (188).

In most patients with asthma, relatively mild respiratory viruses

such as RV, RSV, adenovirus, human metapneumovirus, influenza

viruses, and parainfluenza viruses lead to acute exacerbation. After

infection, host cells such as airway epithelial cells induce
FIGURE 5

Acute exacerbation and remission of asthma. During allergen- and infection-induced asthma exacerbation, the PRRs in the airway epithelium can
detect many other additional factors. Subsequently, epithelial cells in the airway release TSLP, IL-25, and IL-33 to support DC-activated TH2 cell
differentiation; on the other hand, they secrete TARC and IL-8 to recruit TH17 cells and neutrophils, respectively. In turn, the local degranulation of
lung eosinophils and neutrophils damages the airway epithelium, further impairing barrier integrity and enhancing ongoing inflammation. However,
several regulatory immune cell types, including DCregs, Tregs, and Bregs can limit or resolve inflammation, partially via IL-10-, TGF-b-, and IL-35-
dependent mechanisms. DAMPs, damage-associated molecular patterns; PAMPs, pathogen-associated molecular patterns; TARC, thymus activation
regulated chemokine; RANTES, regulated upon activation normal T cell expressed and secreted; Ym1, chitinase-like protein 3; BHR, bronchial
hyperresponsiveness; TNFAIP3, tumor necrosis factor alpha-induced protein 3; IDO-1, indoleamine 2,3-dioxygenase 1, CTLA-4, cytotoxic T-
lymphocyte-associated protein 4.
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inflammatory responses to counteract the viruses. This cellular

response may facilitate the acute exacerbation of asthma.

Cellular responses to viruses are initiated by TLR-3, TLR-7, and

TLR-8, RIG-I, and MDA5 detecting a single-stranded RNA (or else

a double-stranded RNA during replication) (189). The activation of

these receptors drives a vigorous innate immune response via the

induction of primary interferons (e.g., IFN-b), which results in the

activation of NKT cells and alternative activation of macrophages

(M2), thereby maintaining airway pathology through the

production of IL-13 (190). In the lungs, anti-viral immunity

heavily depends on type I (IFN-a and IFN-b) and type III (IL-29

[IFN-l1], IL-28A [IFN-l2], IL-28B [IFN-l3], and IFN-l4) IFN

production, cytokine (such as IL-1, IFN-g, TNF, IL-6, IL-12, and IL-
18) secretion, and chemokine (such as CCL3, CCL5, CXCL8, and

CXCL10) release (191) (Figure 5).

Many studies have suggested that IFN production is either

delayed (192) or deficient (124, 193) in patients with asthma,

resulting in the absence of adequate clearance rates for their

immune responses to viral infections (194). This defect is

associated with epithelial barrier and TJ disruption. Recently,

studies have demonstrated that the exogenous dosing of IFN-b
decreases viral exacerbations in mild-to-moderate asthma by

restoring impaired antiviral innate immunity (195, 196).

Additional factors that affect viral infection severity and asthma

exacerbation risk include the enhanced expression of viral receptors

(such as ICAM-1, low density lipoprotein receptor [LDLR], and

CDHR3) (197, 198), high body mass index of patients (199),

excessive increase in blood eosinophils (patients with type 2-high

asthma) (199), reproducible changes in the DNA methylome

(200, 201), and disturbances in the airway microbiota (202, 203).

Compared with viral respiratory infections, bacterial infections

have a smaller and less important effect. In patients with acute

asthma exacerbation, only a small proportion have isolated bacteria

from their sputum (204).Airway bacterial infections may occur

secondary to viral-induced epithelial barrier disruption, resulting in

increased inflammation and risk of asthma exacerbation (205).

However, there is limited evidence linking bacterial infections to

acute asthma exacerbation. In a large-scale study, the colonization

levels of dominant bacterial pathogens were not statistically

significantly different in children with recurring and acute

wheezing and those without a wheezing history (206).

Notably, the long-term oral administration of low-dose

azithromycin, a macrolide antibiotic, can significantly decrease the

acute exacerbation of eosinophilic and non-eosinophilic asthma,

improve the quality of life of patients with severe asthma, and

decrease the risk of lower respiratory tract infections (207, 208).

Azithromycin exerts antibacterial, anti-inflammatory, and

immunomodulatory properties and is cost-effective. At present,

guidelines recommend using this antibiotic for refractory asthma.

Nevertheless, potential issues such as antimicrobial resistance and

side effects such as cardiac toxicity and gastrointestinal adverse

reactions may restrict the widespread use of this antibiotic (209, 210).

Infection-induced asthma is not always a type 2-low

inflammation. Allergic bronchopulmonary aspergillosis (ABPA) is

a type 2-high inflammatory lung disease caused by an allergy to

Aspergillus fumigatus, commonly presenting with treatment-
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resistant asthma and recurrent pulmonary shadows, which may

be accompanied by bronchiectasis (211). This disease is not rare,

but it is often misdiagnosed or overlooked clinically. Classical

immunology suggests that the usual response of the human host

to fungal clearance is a TH1 CD4+ T-cell response, which mediates

the phagocytic function of macrophages and neutrophils. In

contrast, the immune reaction in ABPA is predominantly

mediated by TH2 cells, which not only cannot eradicate the fungi

but also cause a massive influx and degranulation of mast cells and

eosinophils, releasing various inflammatory mediators and

cytokines, including IL-4, IL-5, IL-13, as well as total and

A.fumigatus-specific IgE. Persistent inflammation will lead to

airway mucus plugging, bronchiectasis, and pulmonary fibrosis. If

not controlled, it can culminate in end-organ damage and clinical

manifestations, which warrants our vigilance.

3.4.3 Suppression and resolution of
airway inflammation

Although asthma cannot be completely cured, it is possible to

further pursue more realistic and achievable goals. Remission is

defined as the long-term absence of disease signs and symptoms,

accompanied or not by the normalization of the underlying

pathology. Clinically remitted asthma requires stable lung

function and the endorsement of patients or clinicians, in

addition to at least 12 months without significant asthma

symptoms and exacerbations; on the other hand, complete

remission (cure) warrants the normalization of the underlying

pathology, including resolution of airway inflammation (212).

Both remission types may be achieved with or without treatment.

Based on the clinical settings and research populations, clinicians

and researchers can flexibly adjust the achievable and measurable

definitions of asthma remission.

The introduction of ICS in the 1980s revolutionized the

treatment of asthma, and to this day it remains the cornerstone

for gaining optimal asthma control. ICS is generally effective in

mitigating symptoms of mild-to-moderate asthma, enhancing lung

function, and preventing exacerbations. The emergence of

combination therapy with ICS, long-acting b2-agonists (LABA),

and long-acting muscarinic antagonists (LAMA) has further

improved asthma management. However, some studies have

indicated that patients with inactive asthma, even when in

complete remission, still exhibit some degree of persistent

subclinical airway inflammation, hyperresponsiveness, and

remodeling (213–215), possibly determining the future risk of

recurrence (216, 217). Furthermore, many cross-sectional studies

have examined the inflammatory markers associated with clinical

and complete asthma remission in different samples such as blood,

sputum, BALF, or endobronchial biopsies and eosinophils,

neutrophils, mast cells, IgE, FeNO, iNOS, histamine, ECP, and

EPO (214, 218–222). Most of these studies have confirmed that

these markers are higher in subjects with asthma remission than in

healthy controls and lower than in those with persistent asthma

(223), although some studies have found no significant differences

between the groups.

Further defining the clinical features and pathophysiology of

asthma remission may be beneficial; however, future studies to
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explore its phenotype and underlying mechanisms are vital (212).

Here, we focus on the immunological aspects of the natural ablation

of asthma inflammation, accentuating the role of allergen

immunotolerance and regulatory immune cells.

In healthy individuals, an overt immune response is not provoked

during exposure to innocuous environmental antigens, if not

combined with tissue damage or danger signals. Mechanistically,

the clonal anergy state of T cells can be induced by isolated TCR

stimulation in the absence of co-stimulatory signals. When the

antigen (allergen) dose is extremely low, lymphocytes cannot be

effectively activated, resulting in the unresponsiveness of the immune

system (low-zone tolerance); in contrast, if the antigen over occupied

TCRs, it may lead to the apoptosis of effector T cells or the induction

of Treg cells that suppress immune responses, thereby also presenting

an unresponsive state (high-zone tolerance). This provides a

theoretical basis for the later proposed “hygiene hypothesis” and

“diet-microbiome hypothesis” (224). The former suggests that in the

urbanized regions of highly industrialized countries, owing to

improvements in sanitation and public health and decreased

exposure to infectious sources during early life, the adaptive

immune system of children may not be fully exercised and

developed, increasing the risk of asthma, allergic diseases, and

autoimmune conditions. In contrast, rural lifestyles and large

families, combined with unhygienic contact with older siblings,

livestock, and soil, confer some level of protection and tolerance

against allergens (225). The latter offers another explanation, i.e., a

decrease in dietary fiber intake and an increase in fat intake and

changes in eating habits and dietary structures will modify the

composition of gut microbiota, leading to a loss of symbiotic

functions of non-pathogenic bacteria and an overall reduction in

microbiome diversity, as well as an increase in allergic reactions (226).

Prior exposure to some environmental factors and microbial

contents, including farm dust, butyrate, LPS, and N-

glycolylneuraminic acid, can suppress the responses of the airway

epithelium to allergens because they induce the expression of TNF-

a induced protein-3 (TNFAIP3, also called A20), a negative

regulator of NF-kB activation (227). This effect inhibits the

production of IL-33, GM-CSF, and the DC chemokine CCL20 by

epithelial cells in response to allergen inhalation, and promotes the

production of tolerance-inducing cytokines such as TGF-b; this
induces tolerogenic or regulatory DCs (DCregs) that promote Treg

development. In particular, the dampening of immunologic

responsiveness and maintenance of allergen tolerance contribute

to regulatory immune cells, notably Tregs and regulatory B cells

(Bregs) (228) (Figure 5). Tregs exert a broad suppressive effect on

several immune cells; this effect is achieved by secreting cytokines

such as IL-10 and TGF-b and other inhibitory factors such as

indoleamine 2,3-dioxygenase (IDO-1), as well as by providing co-

inhibitory molecules such as cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4), programmed cell death protein 1 (PD-1, or

CD279), and PD-L1 (229). Tregs directly suppress mast cells,

eosinophils, basophils, ILC2s, and inflammatory DCs involved in

programming effector T cell subsets (TH1, TH2, and TH17 cells).

Furthermore, In Treg-derived cytokines, primarily IL-10, IL-35, and

TGF-b, induce Bregs and produce IgG4 and IgA antibodies via B
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cells. In addition, Bregs produce anti-inflammatory cytokines,

thereby suppressing effector T-cell responses (230).

A key event in generating normal immune responses to

allergens is redirecting allergen-specific effector T cells toward a

regulatory phenotype; this phenomenon accounts for some degree

of the clinical efficacy of allergen-specific immunotherapy (AIT)

(231). In instances where an immunologically proven allergen-

driven mechanism of asthma, AIT represents the sole etiologic

remedy for allergic manifestations (232, 233). It involves repeatedly

administering high doses of causative allergens, generally via

subcutaneous injection (SCIT) or sublingual application (SLIT),

to induce a permanent state of tolerance and long-term benefits

after discontinuing the treatment (234). AIT can be safely used to

treat adolescents and adults with mild-to-moderate and well-

controlled allergic asthma, not only significantly controlling

symptoms and decreasing acute attacks but also decreasing the

need for ICS dosage. Furthermore, AIT can prevent the further

development of rhinitis into asthmatic symptoms in children (235).

However, caution should be exercised when using AIT to treat

uncontrolled and severe asthma (236).
4 Challenges ahead and
future directions

Despite being in close contact with harmful chemicals and

pathogenic microorganisms in the external environment, the

human lungs can maintain efficient gas exchange. This relies on

the protective role of the immune system of the lung mucosa against

various harmful factors. The dynamic regulation of lung structure

and immune cells is an essential guarantee for maintaining lung

immune homeostasis. The disruption of this immune homeostasis

may result in asthma development. As a heterogeneous condition,

asthma presents with chronic airway inflammation, with the

involvement of various cells and cellular components and

association with airway hyperresponsiveness. If bronchial asthma

is not promptly diagnosed and treated, it can lead to irreversible

airway narrowing and tissue remodeling with disease progression.

In the last few years, a significant paradigm shift has been observed

in our perception of asthma pathobiology, largely because of an

improved understanding of its heterogeneity and different endotypes.

Initially, asthma was considered a unique TH2 cell-mediated disease, a

dogma largely developed from mouse asthma models that drove the

development of several type 2-oriented monoclonal antibodies. As

present, these biologics are successfully used in clinical settings,

primarily to decrease the frequency of exacerbations in patients

receiving conventional therapy. However, this immune process is

absent in 50% of patients; this condition is termed “type 2-low

asthma,” whose existence and definition remain uncertain,

encompassing various asthma subtypes such as neutrophilic, mixed

granulocytic, or paucigranulocytic forms and is characterized by

normal eosinophils and low type 2 inflammation marker expression.

Various aspects of innate or adaptive immunity responses to

allergens, environmental triggers, or viruses are involved in

developing allergen sensitization, asthma symptoms, exacerbations,
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and treatment responses. Extensive crosstalk exists between airway

epithelial and immune cells during disease initiation and persistence,

indicating that epithelial barrier restoration in asthma requires

greater attention. With an increase in the complexity and severity

of disease manifestations, the complexity of the accompanying

immunopathology also increases, with the possible involvement of

additional adaptive immunity elements and structural changes in the

airways. While there has been significant advancement in the

understanding of some of the current immunological advances in

asthma, additional studies are warranted to ascribe the mechanisms

underlying asthma inception and identify additional biomarkers that

facilitate targeted interventions, by prioritizing the development of

tools for the rapid, accurate, and low-cost diagnosis of the endotypes

and sub-endotypes of asthma.

Clinicians have begun to realize that the one-size-fits-all

“stepwise approach to therapy” cannot entirely meet the optimal

diagnostic and therapeutic needs of all patients, particularly those

with severe or refractory asthma. The concept of “treatable traits

(TTs)” has been proposed as a way to address the diverse

pathophysiological factors involved in severe asthma and overcome

the limitations of existing treatment strategies (237). This notion of

personalized medicine, which advocates multidisciplinary teamwork

and is based on multidimensional assessment, represents a shift

toward precision medicine. By offering greater flexibility and

comprehensiveness in treatment, this concept can significantly

improve health-related quality of life and asthma control while

decreasing acute exacerbations (238, 239).

Immunological advances have always resonated with the progress

of clinical asthma research, mutually complementing each other.

However, new curative or even preventive treatments that can control

symptoms in patients with asthma are warranted in the future, to

alleviate the significant burden it places on society. For example,

motivated by the marked success of an adoptive cellular

immunotherapy based on the chimeric antigen receptor (CAR) for

treating various malignant tumor types, a research group developed a

cytokine-anchored CAR-T (CCAR-T) cell system using chimeric IL-

5/CD28/CD3z receptors and revealed the targeted killing effect of IL-
5-anchored CCAR-T cells on eosinophils in vivo and in vitro, as well

as their protective effect on allergic airway inflammation, significantly

surpassing the quintessential therapeutic window of current mAb-

based treatments in clinical settings (240). This research group

innovatively employed the CCAR-T cell system to treat severe

eosinophilic asthma, which may be a milestone achievement in

future research on various intractable allergic diseases.

A unified and innovative approach is required to address the

challenges posed by asthma. Contemporary cutting-edge methods,

including but not restricted to single-cell sequencing, phenomics,

genetic lineage tracing, tissue imaging systems, and organoid

technology, which can achieve obtain highly multiplexed information

with subcellular spatial resolution, and their in-depth computational

analysis may help better define asthma in the forthcoming years. It is

imperative to underscore that the key to the successful development of

personalized and phenotype-specific asthma treatments lies in

continuously collaborating with clinical experts and immunologists

and integrating bench and bedside approaches.
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