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Introduction: While most thyroid cancer patients have a favorable prognosis,

anaplastic thyroid carcinoma (ATC) remains a particularly aggressive form with a

median survival time of just five months. Conventional therapies offer limited

benefits for this type of thyroid cancer. Our study aims to identify ATC patients who

might bene t from immunotherapy.

Methods:Our study uses multiple algorithms by R4.2.0, and gene expression and

clinical data are collected from TCGA, GEO and local cohort. In vitro

experiments, such as western blot and immunofluorescence staining,

are performed.

Results: Using a set of five genes uniquely expressed across various types of

thyroid cancer, we developed a machine-learning model to distinguish each

type within the GEO dataset of thyroid cancer patients (GSE60542, GSE76039,

GSE33630, GSE53157, GSE65144, GSE29265, GSE82208, GSE27155,

GSE58545, GSE54958, and GSE32662). These genes allowed us to stratify

ATC into three distinct groups, each exhibiting significantly different

responses to anti-PD1 therapy as determined by consensus clustering.

Through weighted gene co-expression network analysis (WGCNA), we

identified 12 differentially expressed genes closely associated with

immunotherapy outcomes. This led to the creation of a refined signature for

predicting ATC’s immune responsiveness to anti-PD1 therapy, which was

further validated using thyroid cancer cohorts from TCGA and nine

melanoma cohorts from clinical trials. Among the 12 genes, HLF stood out

due to its strong association with various cancer hallmarks.
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Discussion:Our study revealed that HLF impedes ATC progression by down-

regulating the epithelial-to-mesenchymal transition (EMT) pathway, reducing

T cell exhaustion, and increasing sensitivity to sorafenib, as demonstrated

through our in-vitro experiments.
KEYWORDS

anaplastic thyroid cancer (ATC), T cell immunity, machine learning,
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1 Introduction

Although the prognosis for most thyroid cancer patients is

favorable, anaplastic thyroid carcinoma (ATC) remains a notably

aggressive form with a median survival time of only five months

(1, 2). ATC comprises only 2% of all types of thyroid cancers but

accounts for a disproportionate 14% to 39% of deaths associated

with this cancer (3). For patients who outlive the median survival

time, conventional therapies such as chemotherapy and

radiotherapy offer limited benefits (4, 5). Besides, early diagnosis

of ATC presents another significant challenge. Thus, detecting ATC

in its initial stages and finding other effective therapies are both

crucial for improving patient outcomes.

It has been reported that resistance to chemotherapy and

radiotherapy is the main reason for poor survival. For some patients

carrying the BRAF and MEK gene mutation, the combination of

dabrafenib and trametinib has shown promise in extending the

effective treatment period (6). For those patients without these

mutations, immunotherapy (anti-PD-1 and anti-PD-L1) has

manifested a 1-year survival rate of approximately 40%, making it

the most promising known therapy (7). However, more research is still

urgently needed to identify the subgroup of patients who can benefit

from the immunotherapy.

Our study endeavors to identify ATC patients who could

potentially benefit from immunotherapy. Leveraging a set of five

uniquely expressed genes across various types of thyroid cancer, our

research has developed a machine-learning model capable of

distinguishing each type within the GEO dataset of thyroid cancer

patients (GSE60542, GSE76039, GSE33630, GSE53157, GSE65144,

GSE29265, GSE82208, GSE27155, GSE58545, GSE54958, and

GSE32662). Utilizing these genes, we have stratified ATC into

three distinct groups, each demonstrating significantly different

responses to anti-PD1 therapy. Additionally, we employed

weighted gene co-expression network analysis (WGCNA) to

identify 12 differentially expressed genes intimately associated

with both the grouping and immunotherapy outcomes. This led

to the creation of a refined signature that could more accurately

predict ATC’s immune responsiveness to anti-PD1 therapy, which

was further corroborated using thyroid cancer cohorts and 9

melanoma cohorts from the clinical trial. Among the 12 genes

analyzed, HLF emerged as significantly associated with various
02
cancer hallmarks. Our study elucidated the mechanism by which

HLF impeded anaplastic thyroid carcinoma (ATC) progression.

Specifically, HLF down-regulated the epithelial-to-mesenchymal

transition (EMT) pathway, reduced T cell exhaustion, and

increased sensitivity to sorafenib, as demonstrated by our in-

vitro experiments.
2 Methods

2.1 Data collection

Gene expression profiles and clinical characteristics of thyroid

cancer were collected from the cancer genome atlas (TCGA, https://

portal.gdc.cancer.gov) and gene expression omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/). A total of 506 samples with follow-up

data were collected from TCGA, and 715 samples were collected

from GEO datasets GSE27155, GSE58545, GSE76039, GSE82208,

GSE60542, GSE29265, GSE33630, GSE65144, GSE53157,

GSE54958, and GSE32662. Among these, 114 samples were

thyroid non-cancerous tissue (TNC), 78 samples were anaplastic

thyroid carcinoma (ATC), 225 samples were papillary thyroid

carcinoma (PTC), 40 samples were follicular thyroid carcinoma

(FTC), and 54 samples were medullary thyroid carcinoma (MTC).

Verified cohorts of clinical trials (anti-PD1) were collected from

GSE115821 (N=37), GSE78220 (N=28), GSE91061 (N=109),

Na thanson_2017 (N=24) , phs000452 (N=153 ) , and

PRJEB23709 (N=91).
2.2 Bioinformatic analysis

2.2.1 Subgrouping signature construction
GEO cohorts of thyroid cancer (TC) were used to identify

differentially expressed genes (DEGs) in ATC using R4.2.0

(package: DESeq2). The ConsensusClusterPlus package in R4.2.0

was employed to perform consensus clustering analysis based on

the 5 DEGs (BCL2, BHLHE40, MICAL2, TGM2, TPO)

(parameters: maxK=10, reps=50). The consensus cumulative

density function (CDF) and delta area indicated that a 3-

subgroup division was the optimal outcome.
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2.2.2 Subtype identification model construction
Decision curve analysis (DCA) was used to evaluate the value of

the 5-DEGs in identifying ATC or other subgroups of TC using the

ggDCA package in R4.2.0. The DALEX, randomForest, kernlab,

xgboost, caret, and pROC packages were applied to construct

identification models.

2.2.3 Tumor immune index calculation
Infiltration immune cell fractions were predicted using

CIBERSORT, ssGSEA (single sample GSEA), and Pompimol

Charoentong’s algorithm in R4.2.0. The immune score was

predicted using the estimate package in R4.0. Tumor Immune

Dysfunction and Exclusion (TIDE) and anti-PD1 response were

predicted using the online tool (http://tide.dfci.harvard.edu). To

assess MeTIL characteristics, the individual methylation values of

MeTIL markers were converted to MeTIL scores using principal

component analysis (PCA). The data were converted to a unit-free

Z-Score by applying the formula (x-m)/s. According to the median

value of PDCD1, the samples were divided into high and low-

expression groups. Wilcoxon Rank Sum Tests were used to

compare the MeTIL scores between the two groups (8).

TIP (Tracking Tumor Immunophenotype) was a meta-server

that systematically integrates two existing third-party methods,

“ssGSEA” and “CIBERSORT”, for tracking, analyzing, and

visualizing the anti-cancer immune state and the proportion of

immune-infiltrating cells in the seven steps of the cancer immune

cycle using RNA-seq or microarray data. Spearman correlation

between genes and TIP scores, as well as the autocorrelation

between TIP scores, were calculated, and the linkET package was

used for visualization (8). The red and green lines represented

positive and negative correlations, respectively, while the gray lines

indicated no significance. The thickness of the lines represented the

absolute value of the correlation coefficient. The correlation in the

triangular region was represented by the color depth and size of the

square: red/blue indicated a positive/negative correlation, with

darker colors signifying more significant P-values, and larger

squares representing greater absolute values of the correlation

coefficient. Easier was a tool for predicting biomarker-based

immunotherapies (Cytolytic score, CYT; Tertiary lymphoid

structures, TLS; IFNy, T cell-inflamed, Chemokines) based on

cancer-specific immune response models, aiming to predict anti-

tumor immune responses from RNA-seq data. The CYT level of

TCGA-BLCA was calculated using the Easier package to evaluate

CYT characteristics. According to the median value of PDCD1, the

samples were divided into high and low-expression groups (9).

Wilcoxon Rank Sum Tests were used to compare the CYT scores

between the two groups.
2.2.4 Cell signaling score calculation
The CancerSEA database collated 14 different functional states

of tumor cells (10). The Z-score algorithm, proposed by Lee et al.

(11), integrated characteristic gene expression to reflect the activity

of a given pathway. Fourteen functional state gene sets were

calculated using the Z-score algorithm in the R-package GSVA.

The values of each gene set were enumerated separately as Z-scores.
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Pearson correlations between genes and the Z-scores of each gene

set were then calculated.

2.2.5 Pan-cancer analysis of HLF expression
The expression level of HLF in pan-cancer was calculated by

R4.2.0 (TCGA cohorts).

2.2.6 The 12-gene signature construction
Firstly, WGCNA (Weighted Gene Co-Expression Network

Analysis) was applied to screen out hub genes using the WGCNA

package in R4.2.0. The most correlated gene sets (both negative and

positive) were collected for subsequent machine learning. AI

modeling for ATC subgroup stratification was developed using six

AI functions: extreme gradient boosting (XGboost, xgboost package

in R4.2.0), support vector machine (SVM, e1071 packages in R4.2.0),

multi-logistic (nnet packages in R4.2.0), random forest (RF,

randomForest package in R4.2.0), deep learning (DL, h2o package

in R4.2.0), and K-Nearest Neighbor (KNN, kknn package in R4.2.0).

Duringmodel construction, 75% of the data was randomly selected as

the training cohort, and 25% was randomly selected as the testing

cohort. Gene expression values were standardized to range from 0 to

1 using the preProcess function (caret and tidyverse packages).
2.3 Biological experiments

2.3.1 Clinical sample collection
Twenty-two thyroid cancer samples were collected from 2021-

12-01 to 2022-08-01. All experiments were approved by the Medical

Ethics Committee of The First People’s Hospital of Xiaoshan

District, Xiaoshan Affiliated Hospital of Wenzhou Medical

University. All patients with ATC were confirmed by at least

two pathologists.

2.3.2 Multiple immune fluorescence staining
The procedures for paraffin embedding, tissue sectioning, and

immunohistochemistry for HLF, CD8, and PD1 expression levels

were performed as previously described (PMID: 23200678 and

20571492). The working concentrations of antibodies against HLF

(Proteintech, Wuhan, China), CD8 (Abcam, Shanghai), and PD1

(Proteintech, Wuhan, China) were 1:150. The protein expression

levels were assessed by Mean of Integrated Option Density (IOD)

with Image-Pro Plus. Briefly, the area of interest (AOI) was detected

to gain the Mean of IOD (IOD/AOI, MI).

2.3.3 Reagents
Sorafenib was purchased from CSNpharm (A316727) and

dissolved in PBS. Antibodies against beta-actin (AF7018, Affinity),

CD8 (GB15068, Servicebio), HLF (DF7892, Affinity), N-cadherin

(AF5239, Affinity), E-cadherin (BF0219, Affinity), Vimentin

(BF8008, Affinity), Twist1 (AF4009, Affinity), Snail1 (AF6032,

Affinity), PD-L1 (BF8035, Affinity), phosphorylated-JAK3 (p-

JAK3, AF8160, Affinity), JAK3 (AF0008, Affinity), p-STAT3

(AF3293, Affinity), and STAT3 (BF6294, Affinity) were used for

western blot.
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2.3.4 Cell culture
ATC cell lines (CAL62, TCO1) were obtained from the cell bank

of the Chinese Academy of Science in 2022 with STR matching

analysis. The culture media for both ATC cell lines were DMEMwith

10% fetal calf serum and 100 units/mL penicillin and streptomycin.
2.3.5 Small interfering RNA experiments
5 × 10^5 ATC cells were transplanted into 6-well plates for 24

hours and then transfected with three different sequences of HLF

siRNA (GenePharma, Shanghai, China) for 48, 72, and 96 hours

using Lipofectamine 3000 reagent (Invitrogen, USA) and Opti-

MEM (Life Technologies, USA), according to the manufacturer’s

instructions for optimal transfection efficiency. The three siRNA

sequences for HLF were as follows:
Fron
Sequence-1

Forward (5′-3′): TGCAAAATGTTCAAAATTGAA
Reverse (5′-3′): CAATTTTGACATTTTGCTAA

Sequence-2

Forward (5′-3′): ATTAAAAAAAAACTTTTCGGGTC
Reverse (5′-3′): CGAAAGTTTTTTTTTAATAT

Sequence-3

Forward (5′-3′): AAATGTTGCTGAGCTTTTCCT
Reverse (5′-3′): GAAAGCTCAGCAACTTTTA
2.3.6 Western blot
Total protein extraction: Cells were harvested using a cytology brush

and lysed with RIPA lysis buffer (Sigma, USA) supplemented with

phosphorylase and protease inhibitor mixture (Thermo, USA), and

quantified by the BCA assay. Cytoplasmic and nuclear protein

extraction: Cells were harvested using trypsin (Invitrogen), then

cytoplasmic and nuclear proteins were extracted using the

Cytoplasmic and Nuclear Protein Extraction Kit (Thermo Scientific,

USA) according to the protocol, and quantified by the BCA assay.

Protein samples were separated by SDS-PAGE (EpiZyme, China,

PG113) and transferred to a 0.45 mm or 0.20 mm pore-sized PVDF

membrane (Millipore, USA). The membranes were blocked with Tris-

buffered saline containing 5% skimmilk powder (Biosharp, BS102-500 g,

China) at room temperature for 1 hour, followed by incubation with

primary antibodies at 4°C overnight. The next day, after three washes

with TBST solution, the membranes were incubated with secondary

antibodies at room temperature for 60minutes. Finally, immunoreactive

bands were detected using an enhanced chemiluminescence kit

(Biosharp, BL520B, China). The conjugation yield was calculated via

gel band quantification using Image J software (12).

2.3.7 Migration ability assays
For trans-well assays, 50,000 cells, with or without special

treatments, were transplanted into trans-well plates (24-well,

8.0mm, Corning Incorporated, Corning, NY, USA) with a 10%

gradient of fetal calf serum for 48 hours. After 24 hours of
tiers in Immunology 04
incubation, the cells that had migrated to the lower surface of the

filter were fixed with 4% paraformaldehyde and stained with

hematoxylin and eosin. The stained cells were then observed and

photographed using a light microscope. Quantification of the

passed cell area was performed using Image-Pro Plus (13).

2.3.8 Live & dead cell staining
Live and dead cell staining was carried out using Calcein AM/PI

staining. After being seeded in a 24-well plate and cultured for 24

hours, ATC cells were treated with DMSO or 5mM GEM for

another 48 hours. Then, all cells were co-cultured with Calcein

AM and PI and observed at 480 nm and 525 nm, respectively.
2.3.9 PBMCs extraction
Simply, PBMCs were isolated via Ficoll-Paque density gradient

centrifugation: 5 mL of peripheral blood was collected from healthy

female volunteers, diluted with PBS at a 1:1 ratio, followed by gentle

mixing. Add 10mL of the diluted blood to 2mL of Ficoll liquid (density

1.077). The clear stratification of blood and Ficoll liquid confirmed

success. Carefully transferred the sample to the centrifuge and spin at

500 g for 15 minutes. Removed the centrifuge tube with care, aspirate

the white thin film layer in themiddle, representing individual nucleated

cells. Wash the isolated nucleated cells with 10 mL of PBS, centrifuge at

250 g for 10minutes, and discarded the supernatant. Repeat the washing

step once and the suspended cells were frozen in vials at 100 million

cells/mL in HI FBS with 5% DMSO after washing. Stored in liquid

nitrogen, they were revived gradually and washed in pre-warmed RPMI

with FBS and pen/strep. Following a 4-5 hour incubation at 37°C,

viability was assessed using Trypan blue (0.1%).
2.3.10 Flow cytometry
The co-cultured PBMC were stained with Fixable Viability Stain

(Thermo, L34965) and Fc receptor blocking reagent [Ultra-LEAF™

Purified anti-mouse CD16/32 (101320, BioLegend)]. Next, they

were stained with CD-3 (BD 557943), PD-1 (BD 561273), and

CD8 antibody (thermo, A15448). The prepared single-cell

suspensions were filtered through 40-mm nylon meshes (352340,

Corning). Results were then acquired using BD Calibur, BD

Fortessa, or Miltenyi MACSQuant systems. Data were analyzed

with FlowJo_V10 software (TreeStar).
2.4 Statistical analysis

All data analyses were performed in R4.2.0. Pearson’s test was

used to calculate the correlation between different genes. Wilcox

rank sum test and Kruskal-Wallis rank sum test were used to assess

differences in continuous variables. Univariate Cox regression was

performed to calculate the hazard ratio (HR), and the log-rank test

was used to compare survival differences. Heatmaps were generated

using the pheatmap package in R4.2.0. Receiver operating

characteristic (ROC) curves and AUC values were generated

using the pROC package in R4.2.0. GO and KEGG analyses were

performed using the clusterProfiler package in R4.2.0. P<0.05 was

considered to indicate a statistically significant difference.
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3 Results

3.1 Five distinct genes were expressed
significantly between any pair of thyroid
cancer subtypes

The main available gene expression data of 537 thyroid cancer

samples from GEO database (GSE60542, GSE76039, GSE33630,

GSE53157, GSE65144, GSE29265, GSE82208, GSE27155, GSE58545,

GSE54958, and GSE32662) were extracted for analysis of differentially

expressed genes between different subtypes of thyroid cancer

(Figure 1A). Multiple comparisons between each group identified

five genes (BCL2, BHLHE40, MICAL2, TGM2, TPO) that are

significantly differentially expressed (P value > 0.05 and a fold

change (|FC|) > 2) in any pair of all the subtypes (thyroid carcinoma

(TCA), differentiated thyroid carcinoma (DTC), anaplastic thyroid

carcinoma (ATC), papillary thyroid carcinoma (PTC), medullary

thyroid carcinoma (MTC), follicular thyroid carcinoma (FTC),

thyroid non-cancerous tissues (TNC) (Figures 1B–F).
3.2 The model based on the 5 genes by
machine learning can distinguish each
subtype well

BCL2, BHLHE40, MICAL2, TGM2, and TPO were further

employed to make a model to differentially diagnose TCA from

TNC (Figures 2A–C), ATC from DTC (Figures 2D–F), MTC from
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DTC (Figures 2G–I), and FTC from DTC (Figures 2J–L). Different

machine learning algorithms, for instance, Random Forest (RF),

Support Vector Machine (SVM), eXtreme Gradient Boosting

(XGB), Generalized Linear Model (GLM), Gradient Boosting

Machine (GBM), Kernel k-Nearest Neighbors (KKNN), Neural

Network (NNET), Least Absolute Shrinkage and Selection Operator

(LASSO) were used to select the best model. With six of eight AUC

values more than 0.9 (Figures 2B, E, H, K, I, L), the model based on RF

was validated as the best one in both TCGA and GEO databases.
3.3 The immune cell infiltration varied
significantly among the ATC subgroups C1,
C2, and C3

The immune cell infiltration between TNC and ATC, calculated by

three methods (Pompimol Charoentong’s algorithm, ssGSEA and

CIBERSORT), was presented in a heatmap. A majority of immune

cell types could infiltrate the tumor microenvironment in ATC

(Figure 3A). Consensus clustering based on the previous 5 genes was

harnessed to categorize ATC into three distinct groups: C1, C2, and C3

(Figure 3B). The immune cell infiltration in the three ATC subgroups

was further calculated using three well-recognized methods.

Approximately 85% of the immune cell types, including activated

CD4 T cells, central memory CD8 T cells, effector memory CD8 T

cells, dendritic cells, and macrophages, exhibited differential infiltration

among C1-C3. Significant differences in activated CD8 T cell infiltration

were observed in the results from the first two methods (Figures 3C–E).
FIGURE 1

The 5 distinct genes were expressed differently in each type of thyroid cancer. (A) Flow chart illustrating the thyroid dataset acquisition and comparison
strategies in TCA. (B) The analysis of differentially expressed genes was conducted between various thyroid cancer subtypes and NC. The comparisons
included TNC vs. PTC, TNC vs. FTC, TNC vs. ATC, TNC vs. MTC, MTC vs. FTC, MTC vs. PTC, MTC vs. ATC, ATC vs. FTC, ATC vs. PTC, and PTC vs. FTC.
The criteria for significance were set at a P value > 0.05 and a fold change (|FC|) > 2. (C) The number of differentially expressed genes in each
comparison was listed, with 5 genes consistently differentially expressed across all comparisons. (D) The expression levels of these five genes were
compared among ATC, FTC, MTC, PTC, and TNC. (E) The expression levels of these five genes were compared among ATC, DTC, and TNC. (F) The
expression levels of these five genes were compared among ATC, DTC, and TNC thyroid carcinoma (TCA), differentiated thyroid carcinoma (DTC),
anaplastic thyroid carcinoma (ATC), papillary thyroid carcinoma (PTC), medullary thyroid carcinoma (MTC), follicular thyroid carcinoma (FTC), thyroid
non-cancerous tissues (TNC), fold change (FC) P value < 0.0001 (****).
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3.4 The predicted immunotherapy
response differed among the ATC
subgroups C1, C2, and C3

The expression of key immune checkpoints was compared

among the three groups (Figure 4A). CTLA4, CD80, and CD86

(CTLA4 system) were most highly expressed in the C2 group and

least expressed in the C1 group (Figure 4B). LAG3 and FGL1

exhibited a similar expression pattern to the CTLA4 system

(Figure 4C). Inhibitory markers of CD8 T cells, including T cell

exhaustion (TEX) and regulatory T cells (Treg), were more highly
Frontiers in Immunology 06
expressed in the C2 and C3 groups, while markers of T cells in a

stress response state (T sr) were relatively higher in the C1 and C2

groups (Figure 4D). Activating markers of CD8 T cells, such as the

cGAS-STING score and CD8 effector T cells (Teff), showed a

similar expression pattern to TEX and Treg (Figure 4E). Other

immune markers, including IFN-gamma, CD80, and dysfunction

score, were also enriched in the C2 and C3 groups (Figure 4F).

According to the Tumor Immune Dysfunction and Exclusion

(TIDE) analysis, patients in the C1 group may benefit from anti-

PD1 therapy, whereas those in the C2 and C3 groups may be more

suitable for cytotoxic T lymphocyte (CTL) therapy (Figure 4G).
FIGURE 2

The machine learning model for thyroid cancer classification based on 5 key genes (A) The standardized net benefit and high-risk threshold were
calculated between TCA and TNC. (B) Machine learning model to distinguish TCA from TNC in GEO datasets based on 5 key genes. (C) Machine
learning model to distinguish TCA from TNC in TCGA based on 5 key genes. (D) The standardized net benefit and high-risk threshold were
calculated between ATC and DTC. (E) Machine learning model to distinguish ATC from DTC in GEO datasets based on 5 key genes. (F) Machine
learning model to distinguish ATC from DTC in TCGA based on 5 key genes. (G) The standardized net benefit and high-risk threshold were
calculated between MTC and DTC. (H) Machine learning model to distinguish MTC from DTC in GEO datasets based on 5 key genes. (I) Machine
learning model to distinguish MTC from DTC in TCGA based on 5 key genes. (J) The standardized net benefit and high-risk threshold were
calculated between FTC and DTC. (K) Machine learning model to distinguish FTC from DTC in GEO datasets based on 5 key genes. (L) Machine
learning model to distinguish FTC from DTC in TCGA based on 5 key genes. RF, Random Forest; SVM, Support Vector Machine; XGB, eXtreme
Gradient Boosting; GLM, Generalized Linear Model; GBM, Gradient Boosting Machine; KKN, Kernel k-Nearest Neighbors; NNET, Neural Network;
LASSO, Least Absolute Shrinkage and Selection Operator.
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3.5 12 innovative genes identified by
WGCNA effectively distinguished C1-C3
groups using machine learning

Based on the weighted gene co-expression network analysis

(WGCNA), the purple gene module was most negatively

correlated with the grouping, TEX, CTLA-4, LAG-3, PD-L1, and

immune dysfunction score, while the yellow module was most

positively correlated with these markers (Figures 5A–D). Further

analysis, overlapping the differentially expressed genes between

each pair of C1-C3 groups (P value > 0.05 and a fold change (|FC|)

> 2) with the combined gene set of both the yellow and purple

modules, identified 12 genes (HLF, BCL2, HHEX, LRP2, FOXE1,

FAM189A2, TSHR, EPB41L4B, OCLN, NEBL, ATP8A1, and

TMEM30B) that may play an important role in the immune

therapy of ATC (Figure 5E). The expression of these 12 genes

showed consistent patterns within the C1-C3 groups (high in C1,

intermediate in C2, and low in C3) (Figure 5F). Moreover, the

individual expression of these 12 genes was positively related to

TEX (Figure 5G). The subgrouping model by SVM, based on these

12 genes, effectively distinguished the C1-C3 groups with an AUC

over 0.9 (Figures 5H–K).
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3.6 Grouping based on the 12 genes across
9 melanoma cohorts receiving anti-PD1
therapy revealed significantly different
response rates

The grouping model based on the 12 innovative genes was

validated in available clinical trial cohorts. Except in the melanoma-

PRJEB23709 cohort, the actual response rates to anti-PD1 therapy

in the C2 and C3 groups were much lower than in the C1 group,

consistent with our results (Figures 4G; 6A–D). The correlation of

individual gene expression with the predicted response rate to anti-

PD1 therapy, as determined by TIDE, was further analyzed

(Figure 7A). HLF, ATP8A1, and NEBL stood out due to their

correlation coefficients over 0.4 and AUC values over 0.75

(Figures 7B, C). All components of the 12-gene signature were

down-regulated in the TCGA thyroid cancer samples compared to

the non-cancer samples (Figure 7D). Of the three genes, only HLF

was of prognostic significance in the disease-free interval (DFI) of

TCGA thyroid carcinoma (THCA) patients (Figure 7E). More

importantly, its pro-survival role in prognosis was further

corroborated in overall survival (OS) from three head and neck

squamous cell carcinoma (HNSC) cohorts (GSE41613, GSE65858,
FIGURE 3

Immune cell infiltration analysis among anaplastic thyroid cancer (ATC) subgroups based on 5 key genes. (A) Immune cell infiltration was calculated
by Pompimol Charoentong’s algorithm, ssGSEA, and CIBERSORT compared in TNC and ATC. (B) Consensus clustering based on the previous 5
genes divided the ATC into 3 three subgroups (C1, C2, C3). (C) Immune cell infiltration calculated by Pompimol Charoentong’s algorithm was
compared among C1, C2, and C3. (D) Immune cell infiltration calculated by ssGSEA was compared among C1, C2, and C3. (E) Immune cell
infiltration calculated by CIBERSORT was compared among C1, C2, and C3. SsGSEA (single sample GSEA) P value < 0.05 (*), P value < 0.01 (**),
P value < 0.001 (***), P value < 0.0001 (****).
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TCGA). Its role was also validated in disease-specific survival (DSS)

and progression-free interval (PFI) in the TCGA-HNSC

cohort (Figure 7F).
3.7 HLF was a tumor suppressor in pan-
cancer and could promote T-cell
infiltration in ATC

Comparative analysis between cancerous (CA) and non-

cancerous (NC) tissues revealed that HLF expression was

generally lower in CA, observed in 17 out of 20 types

(Figure 8A). The expression of HLF was negatively related to

markers of apoptosis, cell cycle regulation, differentiation, DNA

damage and repair, epithelial-mesenchymal transition (EMT),

hypoxia, inflammation, invasion, metastasis, proliferation, and

quiescence in TCGA-THCA patients (Figure 8B). Significant

differences were also observed in the methylation status of genes

in tumor-infiltrating lymphocytes (MeTIL), cytolytic activity

(CYT), tertiary lymphoid structures (TLS), human leukocyte

antigen (HLA), immunoinhibitor family, immunostimulator

family, immune cell recruitment, and other immune markers
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between HLF high-expression and low-expression groups

(Figures 8C–E).

Knockdown of HLF in ATC cell line CAL62 could greatly

increase the migration of this cell line. A similar trend was also

observed in the treatment of sorafenib in the lower layer (4mM)

(Figure 9A). Dead/live cell staining using PI and calcein AM,

proliferation staining by EDU, along with apoptosis detection

demonstrated that HLF-knockdown CAL62 cells exhibited a

lower proportion of dead cells, a higher proportion of live cells,

an increased proliferation rate, and enhanced resistance to sorafenib

(Figures 9B–E). The EMT pathway was upregulated in HLF-

knockdown CAL62 cells (Figures 10A, B). Co-culturing CAL62

(in the lower layer) with peripheral blood mononuclear cells

(PBMCs) (in the upper layer) using transwells indicated that HLF

knockdown in CAL62 induced more PD1+ CD8 T cells

(Figures 11A, B). Further co-culturing of CAL62/TCO1 ATC cells

(in the lower layer) with Jurkat T cells (in the upper layer) showed

that T cell recruitment decreased following HLF knockdown in the

ATC cell line (Figure 11C). Finally, in 22 ATC clinical samples from

our hospital, CD8 T cells and PD-L1/CD274 were detected,

revealing an increase in PD-L1 and a decrease in CD8 T cells in

the HLF low-expression samples (Figure 12).
FIGURE 4

The immunotherapy response analysis among the ATC subgroups. (A) The expression of key immune checkpoints was compared among C1, C2,
and C3. (B) The expression of the CTLA4 system was compared among C1, C2 and C3. (C) The expression of the LAG3 system was compared
among C1, C2 and C3. (D) The expression of the CD8 T inhibition family was compared among C1, C2, and C3. (E) The expression of the CD8 T
activation family was compared among C1, C2 and C3. (F) The IFN-gamma level, CD80 expression, and dysfunction score were compared among
C1, C2, and C3. (G) The response rates to anti-PD1 or CTL therapy were predicted by TIDE. TEX, T cell exhaustion; T cm, central memory T cell;
Treg, regulatory T cells; T fh, T follicular helper cells; T sr, T cells in a stress response state; T n, naïve T cell; T isg, IFN stimulated regulator T cell;
T eff, effective T cell; TIDE, Tumor Immune Dysfunction and Exclusion; CTL, cytotoxic T lymphocyte. **p<0.01, ***p<0.001.
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4 Discussion

To uncover the most distinct genes in different thyroid cancer

subtypes, we screened BCL2, BHLHE40, MICAL2, TGM2, and TPO
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by comparing each pair of existing subtypes (Figure 1). BCL-2 (B-

cell lymphoma 2) is a protein that plays a crucial role in regulating

apoptosis (14, 15). Some researchers have found that BCL-2 might

help thyroid cancer evade apoptosis, making it a suitable target for
FIGURE 5

A machine-learning grouping model for anaplastic thyroid cancer (ATC) based on the 12 genes most related to the ATC grouping and immune
pathways in WGCNA. (A-D) The WGCNA results were presented based on the grouping, TEX, CTLA-4, LAG-3, PD-L1, and immune dysfunction score.
(E) 12 genes in the purple or yellow module were expressed differently (P value > 0.05 and a fold change (|FC|) > 2) between any pair in the C1, C2,
and C3 group. (F) The expression of the 12 genes in C1-C3 groups was shown by heatmap. (G) The correlation coefficients were calculated between
the individual level of the 12 genes and the TEX. (H-K) A machine learning model based on SVM was used to distinguish C1, C2, and C3 on these 12
genes. T cell exhaustion (TEX). *P<0.05, **p<0.01, ***p<0.001.
FIGURE 6

Immunotherapy response validation by the 12-gene grouping model in TCGA-THCA and clinical cohort of melanoma. (A) The 12-gene signature
was applied in the melanoma cohort from GSE115821 to test the response rate to anti-PD1/CTLA4 therapy. (B) The 12-gene signature was applied in
the melanoma cohort from GSE91061 to test the response rate to anti-PD1 therapy. (C) The 12-gene signature was applied in the melanoma cohort
from PRJEB23709 to test the response rate to anti-PD1 therapy. (D) The 12-gene signature was applied in the 6 melanoma cohorts to test the
response rate to anti-PD1 therapy. All the data of the melanoma cohorts were downloaded from the website (http://tide.dfci.harvard.edu/login/).
*P<0.05, **p<0.01, ***p<0.001.
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therapy (16–18). In our study, BCL-2 levels were relatively lower in

ATC but higher in TNC, suggesting it may not be a promising target

for ATC. BHLHE40 has been reported to be involved in the

aggressiveness of various cancers, including colorectal, pancreatic,

and endometrial cancers (19–22). One study focusing on ATC

revealed that the lncRNA/H19-miR-454-3p/BHLHE40 axis could

potentiate the progression of ATC (23). Consistent with this,

BHLHE40 expression was significantly higher in TCA compared

to TNC, and its expression in ATC was the second highest among

all subtypes. MICAL2 is known as an oncogene in many cancers,

such as pancreatic, ovarian, and gastric cancers (24–26), while there

is no related research on thyroid cancer. Our results indicated that

MICAL2 may also play a role in ATC. A similar phenomenon was

observed with TGM2, which has been proven to be an oncogene

with little research on ATC (27, 28). TPO has been reported to

predict higher metastasis and recurrence in PTC (29). It was nearly

unexpressed in ATC in our results. Our findings revealed that
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BCL2, BHLHE40, MICAL2, TGM2, and TPO were expressed

differently in ATC, FTC, MTC, PTC, and TNC. This inspired us

to construct a signature based on these genes to help differentiate

the subtypes. The model using the RF machine learning method

worked precisely in differentiating TCA from TNC, ATC from

DTC, MTC from DTC, and FTC from DTC (Figure 2). However,

the mechanisms by which these genes differentiate the subtypes and

their roles in ATC, especially MICAL2, still require further research.

Since the five genes were so distinct, we continued to divide the

most aggressive type, ATC, into more subtypes by consensus

clustering, which may provide clues for specific therapy selection.

The great variation of immune cell infiltration in the three subgroups

indicated that immune therapy selection may differ among them.

Further prediction by TIDE implied that the C1 group could more

likely benefit from anti-PD1 therapy, while the C2 and C3 groups

may be more suitable for CTL therapy (Figures 3, 4). Until now,

immunotherapy (anti-PD-1 and anti-PD-L1) has shown the most
FIGURE 7

Immune response and prognosis analysis of the individual gene from the 12-gene signature in thyroid cancer. (A) Predicted response rates to anti-
PD1 therapy, calculated by TIDE, were compared between high-expression (left) and low-expression (right) groups for each gene in the 12-gene
signature. (B) The correlation between the TIDE score and the expression of the individual gene in the 12-gene signature. (C) ROC curves for
predicting anti-PD1 therapy response based on each gene. (D) Comparison of each gene’s expression between cancerous (CA) and non-cancerous
(NC) thyroid tissues in the GEO dataset. (E) Cox regression of each gene for DFI/DSS/PFI in TCGA-THCA (F) Cox regression analysis of each gene for
OS in GSE41613, GSE65858, and TCGA-HNSC, and for DSS and PFI in TCGA-HNSC. NR, No response; ROC, receiver operating characteristic; CA,
cancerous; NC, non-cancerous; DFI, disease-free interval; DSS, disease-specific survival; PFI, progression-free interval; TCGA-THCA, the cancer
genome atlas-thyroid cancer; OS, overall survival; TCGA-HNSC, the cancer genome atlas-head and neck squamous cell carcinoma. *P<0.05, **p<0.01.
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promising 1-year survival rate of approximately 40% for ATC

patients without BRAF and MEK gene mutations (7). There is no

CTL therapy for ATC patients in clinical trials. Our findings imply

that grouping ATC patients may maximize the efficacy of immune

therapy. More real-world clinical data are still needed to test

this hypothesis.

To further characterize the gene expression patterns among C1,

C2, and C3 groups in ATC, WGCNA was used to identify the most

associated gene modules. Twelve genes (HLF, BCL2, HHEX, LRP2,

FOXE1, FAM189A2, TSHR, EPB41L4B, OCLN, NEBL, ATP8A1,

and TMEM30B) were selected from the most related modules due

to their distinct expression among the three subgroups. A more

precise model based on these 12 genes was created to replace the

previous 5-gene signature. More importantly, when the new model

was retrospectively applied to the available real-world melanoma

clinical cohort, it validated that the C1 group was more suitable for

anti-PD1 therapy (Figures 5, 6). However, we must acknowledge

that one result from the nine cohorts did not comply with our

conclusion. In the future, we hope to test the model using data from

ATC patients receiving anti-PD1 therapy or CTL therapy.

HLF was chosen from the 12 genes for final experimental

validation because it performed well in both immune therapy
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response prediction and prognosis prediction in external cohorts

(Figure 7). As a transcriptional activator, HLF has been validated

as a tumor suppressor in triple-negative breast cancer and

ovarian cancer (30, 31). However, one study indicated that it

could promote the development of hepatocellular carcinoma and

resistance to sorafenib (32). No research on HLF has been found

in ATC. Our study indicated that the knockdown of HLF could

promote the migration, proliferation, survival and sorafenib

resistance of ATC cell lines (Figure 9). The up-regulation of

EMT pathway in the HLF-knockdown group may explain its role

as a tumor suppressor in ATC (Figure 10). The increased T-cell

exhaustion, indicated by up-regulated PD-1 after 48 hours, and

the dampened T-cell recruitment were also observed following

the decrease in HLF expression in ATC cell lines (Figures 11, 12).

More interestingly, PD-L1/CD274 was also up-regulated in the

HLF-low-expression group (Figures 10, 12). These results

suggest that HLF may be necessary for immune cells to

function normally in the ATC tumor environment. Although

further research is needed to explore HLF’s role in the ATC

microenvironment, to our knowledge, this study is the first to

investigate HLF in ATC. We will continue to explore this in our

future studies.
FIGURE 8

Dissection of HLF’s relation with cancer hallmarks in pan-cancer. (A) HLF expression in CA versus NC tissues across BLCA, BRCA, CESC, COAD,
ESCA, GBM, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD, PCPG, PRAD, READ, STAD, THCA, and UCEC. (B) Correlation between HLF
expression and apoptosis, cell cycle regulation, differentiation, DNA damage and repair, EMT, hypoxia, inflammation, invasion, metastasis,
proliferation, and quiescence in TCGA-THCA. (C) Comparison of MeTIL, chemokines, CYT, TLS, IFN-gamma, and inflamed T cells between HLF low-
expression and high-expression ATC. (D) Comparison of HLA, immunoinhibitor family, chemokines, and immunostimulator family between HLF low-
expression and high-expression ATC. (E) Correlation between HLF expression and recruitment of various types of immune cells in TCGA-THCA. CA,
Cancerous; NC, non-cancerous; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma,
endocervical adenocarcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck
squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC,
liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic adenocarcinoma; PCPG,
pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; STAD, stomach adenocarcinoma; THCA,
thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma; EMT, epithelial-mesenchymal transition; CYT, cytolytic activity; MeTIL, methylation
status of genes in tumor-infiltrating lymphocytes; TLS, tertiary lymphoid structures; HLA, human leukocyte antigen. *P<0.05, **p<0.01, ***p<0.001.
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5 Conclusion

In summary, our study identified five genes with distinct

expression patterns across all subtypes of thyroid cancer. A

signature based on these five genes can precisely distinguish
Frontiers in Immunology 12
between the subtypes. Additionally, our group developed a

12-gene signature in ATC that can predict the response to

anti-PD1 therapy to some extent. The tumor suppressor role

of HLF was va l idated in ATC cel l l ines through in

vitro experiments.
FIGURE 10

EMT pathway detection following HLF knockdown in ATC cell line CAL62. (A) EMT pathway detection after HLF knockdown in CAL62.
(B) Quantitative analysis of protein expression as shown in (A). EMT, Epithelial-mesenchymal transition. *P<0.05, **p<0.01.
FIGURE 9

Analysis of cell migration, viability, proliferation, and apoptosis following HLF knockdown in ATC cell line CAL62. (A) Cell migration assay comparing
CAL62 vs. HLF-KD CAL62 and CAL62 treated with sorafenib (4mM) vs. HLF-KD CAL62 treated with sorafenib (4mM). (B) Dead (PI)/live staining (calcein
AM) detection comparing CAL62 vs. HLF-KD CAL62 and CAL62 treated with sorafenib (4mM) vs. HLF-KD CAL62 treated with sorafenib (4mM).
(C) Proliferation assay (Edu staining) comparing CAL62 treated with sorafenib (4mM) and HLF-KD CAL62 treated with sorafenib (4mM). (D) Apoptosis
detection in CAL62 vs. HLF-KD CAL62, and CAL62 treated with sorafenib (4mM) vs. HLF-KD CAL62 treated with sorafenib (4mM). (E) Comparison of
early apoptosis as shown in (D). HLF-KD indicates HLF knockdown by siRNA. *P<0.05, ***p<0.001.
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FIGURE 11

Detection of T-cell exhaustion and chemotaxis following HLF knockdown in ATC cell lines (A) Detection of CD8 T cells in PBMC co-cultured with
CAL62 for 24 hours or 48 hours. (B) Detection of PD1 in CD8 T cells as shown in Q2 of (A). (C) T-cell (Jurkat cells) chemotaxis assay following HLF
knockdown in ATC cell line CAL62 and TCO1. EMT, Epithelial-mesenchymal transition; PBMC, peripheral blood mononuclear cell.
FIGURE 12

T cell infiltration detection in HLF low-expression and high-expression ATC samples. The immunofluorescence intensity of CD8, CD274/PD-L1, HLF,
and DAPI was compared between L-HLF and H-HLF ATC. L-HLF, HLF low-expression; H-HLF, HLF high expression.
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