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Esophageal squamous cell carcinoma is a cancer with high morbidity and

mortality. The advent of immune checkpoint inhibitors has significantly

increased complete response rates and postoperative R0 resection rates after

neoadjuvant therapy. These drugs can largely reverse the suppression of the

immune system caused by the tumor microenvironment, allowing

the reactivation of anti-tumor immune infiltrating cells, significantly improving

the patient’s tumor microenvironment, and thus preventing tumor development.

However, there are still some patients who respond poorly to neoadjuvant

combined immunotherapy and cannot achieve the expected results. It is now

found that exploring changes in the tumormicroenvironment not only elucidates

patient responsiveness to immunotherapy and identifies more reliable

biomarkers, but also addresses the limitations of prediction with imaging

examination such as CT and the instability of existing biomarkers. In light of

these considerations, this review aims to delve into the alterations within the

tumor microenvironment and identify potential predictive biomarkers ensuing

from neoadjuvant immunotherapy in the context of esophageal squamous

cell carcinoma.
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neoadjuvant therapy, tumor microenvironment (TME), tumor immune
microenvironment, tumor-infiltrating lymphocytes (TILs), biomarkers
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478922/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478922/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478922/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478922/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478922/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478922/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1478922/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1478922&domain=pdf&date_stamp=2024-12-05
mailto:guochangying@ncmc.edu.cn
https://doi.org/10.3389/fimmu.2024.1478922
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1478922
https://www.frontiersin.org/journals/immunology


Qiu et al. 10.3389/fimmu.2024.1478922
1 Introduction

Esophageal cancer has a high incidence and mortality rate, with

esophageal squamous cell carcinoma(ESCC) being the predominant

histological subtype (1–3). Neoadjuvant chemotherapy is widely

applied in the perioperative management of ESCC, yet the outcomes

have not been entirely satisfactory. Since the introduction of immune

checkpoint inhibitors (ICI), they have been extensively applied in the

treatment of various cancers. In the field of ESCC, numerous large-

scale clinical trials have shown that neoadjuvant immunotherapy

improves the pathological response rate(pCR) and extends patient

survival. Moreover, neoadjuvant chemotherapy and immunotherapy

(nCIT) can increase the chances of surgery and enhance the rate of R0

resections, offering hope to patients.

Surgery following neoadjuvant chemoimmunotherapy (nCIT)

is considered the optimal treatment approach (4). However, because

esophageal cancer is a hollow viscus tumor, there are certain

limitations when using the immune-related Response Evaluation

Criteria in Solid Tumors (iRECIST) to assess the efficacy of

neoadjuvant therapy before surgery for resectable esophageal

cancer. The invasiveness of endoscopy and its costs also restrict

the widespread application of endoscopic assessment (5).

Concurrently, there remains a subset of patients who do not

benefit from this combined therapy, delaying surgical

opportunities and leading to a poorer prognosis (6, 7). Therefore,

it is significant to investigate the alterations and potential
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biomarkers in the tumor microenvironment (TME) of ESCC

following nCIT. Recently, Existing biomarkers predictive of nCIT

efficacy, including the tumor proportion score (TPS) for PD-L1,

have shown limited sensitivity or specificity in predicting

therapeutic outcomes (8). Researchers are increasingly focusing

on the impact of TME after nCIT and utilizing Single-cell RNA-

sequence to analyze various immune cells. Thus, cells and genes

with significant alterations are expected to become more specific

and sensitive biomarkers. Therefore, We provide a brief overview of

the current status of research on nCIT, summarize the alterations

and potential biomarkers on the TME of ESCC after nCIT, and

discuss future research directions in this field (Figure 1).
2 Current status of neoadjuvant
immunotherapy research

Following the introduction of neoadjuvant therapy, large-scale

clinical trials, such as the CROSS trial (9) and the NEOCRTEC5010

trial (10), have established neoadjuvant chemoradiotherapy (nCRT)

as a first-line treatment new option for resectable locally advanced

esophageal cancer. Furthermore, clinical studies including

CheckMate 648, ESCORT, and KEYNOTE-181 have revealed the

excellent efficacy of immune checkpoint inhibitors (ICIs) in

unresectable advanced or recurrent esophageal cancer, prompting

researchers to focus on the nCIT (11–13).
FIGURE 1

Graphical Introduction. Created in BioRender. Ka, X. (2024) https://BioRender.com/v51n660.
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At present, prospective studies, such as NICE (14)and Neo-

PLANET (15), have demonstrated excellent pathological complete

response (pCR) rates for nCIT in esophageal squamous cell

carcinoma (ESCC), ranging from 21.2% to 40.0% (16). Xu et al.

included 9 trials in a meta-analysis, pointing out that the pCR rate

of nCIT significantly reached 26.9% (OR, 4.24; 95% CI, 2.84-6.32),

which is more than three times higher than the 8.3% observed in the

group receiving chemotherapy alone (nCT) (17). Similarly, in the

field of lung cancer, Sorin et al. included 43 trials in a meta-analysis

and indicated that in comparison with nCT, nCIT has significantly

increased the pCR rate to the range of 20% to 40%(RR, 5.52; 95% CI,

4.25-7.15) (18). In the gastric cancer field, the combined pCR rate

increased to 24% (95% CI: 19%–28%) (19). In the field of
Frontiers in Immunology 03
melanoma, the pCR rate increased to 57%, with a 2-year RFS

range of 94% to 100% (20). Regarding the pCR rate of ESCC is

lower than that of melanoma, most researchers believe that

melanoma has a higher immunogenicity, making immune cells

easily activated and having a good response rate. However, the

efficacy of ESCC is similar to that of NSCLC and gastric cancer, with

significant improvements including other observed indicators such

as pCR, MPR, and OS. At the same time, these studies indicate that

nCIT has controllable treatment-related toxic effects, and the rate of

R0 resection after surgery has also increased, further demonstrating

that nCIT is a better choice for neoadjuvant therapy. To this end, we

have also summarized the ongoing clinical trials on neoadjuvant

therapy for ESCC, as shown in Table 1.
TABLE 1 Ongoing clinical trials of neoadjuvant immunotherapy for resectable ESCC.

Trial No. Phase Country Design Targeted ICIs Start date

FRONTiER
NCT03914443

I Japan Two-arm Nivolumab 2019-04-11

NICE-2
NCT05043688

II China Three-arm Camrelizumab 2021-09-01

NICCE
NCT05028231

NA China Single-arm Sintilimab 2021-06-05

NEOCRTEC2101
NCT05357846

III China Two-arm Sintilimab 2022-11-01

JS001
NCT04848753

III China Two-arm Toripalimab 2021-06-23

iCROSS
NCT04973306

II-III China Two-arm Tislelizumab 2022-03-02

NICE-RT
NCT05650216

II China Single-arm Camrelizumab 2022-12-25

ETNT
NCT05189730

II China Single-arm Tislelizumab 2021-07-01

NATION1907II
NCT04215471

II China Single-arm SHR-1316 2022-07-01

KEYSTONE-002
NCT04807673

III China Two-arm Pembrolizumab 2021-12-01

REVO
NCT05007145

II China Two-arm PD-1 Inhibitor 2021-08-15

NCT05281003 II China Single-arm Pembrolizumab 2023-02-20

NCT04520035 II China Single-arm Camrelizumab 2020-08-20

NCT04767295 II China Single-arm Camrelizumab 2021-03-01

NCT05213312 II-III China Two-arm Nivolumab 2022-06-01

NCT05476380 II China Single-arm Camrelizumab 2021-02-19

NCT05182944 II China Four-arm Camrelizumab 2022-01-15

NCT04937673 II China Two-arm Camrelizumab 2021-07-01

NCT05176002 I-II China Single-arm Camrelizumab 2021-09-23

NCT04666090 II China Single-arm Camrelizumab 2020-11-23

NCT05355168 I-II China Single-arm Camrelizumab 2021-11-01

(Continued)
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3 Alterations in the
tumor microenvironment

Numerous studies indicate a potential correlation between TME

and pathological response (21, 22). In the TME, immune checkpoint

blockade (ICB) or immune checkpoint inhibitor (ICI) targets

immunosuppressive molecules of tumor cells, thereby reactivating

exhausted T cells to resist tumor cells (23). However, the composition

of the TME in ESCC is complex. Although tumor-infiltrating CD8+ T

cells and NK cells exert antitumor effects, the regulatory T cells (24)

and M2 macrophages exert immunosuppressive effects, leading to

deficiencies in immune surveillance (25). Furthermore, extensive

fibrosis and extracellular matrix deposition also augment the

tumor’s resistance to immunotherapy (26). Post-treatment with

ICB, the interactions and changes among various cells within TME

remain insufficiently elucidated. The response to immunotherapy

does not always correlate with PD-L1 expression (27, 28). Therefore,

it is crucial to explore the alteration of TME before and after

immunotherapy and identify relevant biomarkers.
3.1 CD8+ T cell

CD8+ T cells are a crucial subset of T cells, showing the most

significant difference after neoadjuvant chemoimmunotherapy

(nCIT) (29). CD8+ T cells are T cells that have undergone

differentiation and maturation to express CD8 molecules. They

can secrete large amounts of IFN-g and granzyme B to synergize

against cancer cells (30). Numerous studies have found that nCIT

increases CD8+ T cell infiltration more significantly than

neoadjuvant chemotherapy (28), prolonging overall patient

survival (31). And the same trend can be observed before and

after nCIT, whereas regulatory T cells (Treg) show the opposite
Frontiers in Immunology 04
trend. One of the studies has indicated that the density of CD8+

tumor-infiltrating lymphocytes (TILs) in the pCR and major

pathological response (MPR) groups is higher than in the

pathological partial response (pPR) and pathological non-

response (pNR) groups. Additionally, the ratio of CD8+ to

FoxP3+ TILs in the pCR/MPR group is significantly greater than

in the pPR/pNR group, suggesting that this ratio could emerge as a

novel biomarker after nCIT in ESCC. Interestingly, in the patients

not achieving pCR, CD8+ TILs were observed to be mostly

distributed in the periphery of the tumor, correlating with a

worse prognosis, while the same cellular distribution was found

in the lymph nodes (32).

Based on the expression of antigenic clusters, CD8+ T cells are

classified into different T cell subpopulations. In addition to the

regulatory CD8+ T cell subset (33), there are Tc1 cells with the most

typical cytotoxic function (34). In the tumor microenvironment,

CD8+ T cells generally resist cancer cells by differentiating into

cytotoxic T cells (29). However, T cells chronically exposed to

persistent antigens or chronic inflammatory environments are

prevented from acquir ing memory ce l l homeosta t ic

responsiveness (34–36). The immediate protection and recall

response to antigens conferred by memory lymphocytes

constitutes a critical component of the organism’s immune

defense (37). Nowadays, studies have shown a decrease in the

ratio of central memory cells (TCM) to effector memory T cells

(TEM) in samples of patients who have achieved pCR/MPR,

reversing the high pre-treatment TCM/TEM ratio (28). The

process of TCM-to-TEM, which occurs on antigenic

restimulation, produces greater anti-tumor capacity (38, 39).
T cells, during their process of progressive exhaustion,

upregulate the expression of inhibitory pathway molecules,

including PD-1 and CTLA-4 (40). Thus, ICB facilitates the

reactivation of exhausted CD8+ T cells by blocking the inhibitory
TABLE 1 Continued

Trial No. Phase Country Design Targeted ICIs Start date

NCT05244798 III China Three-arm Sintilimab 2022-11-01

NCT04280822 III China Two-arm Toripalimab 2020-04-21

NCT04804696 II China Single-arm Toripalimab 2021-02-10

NCT04888403 II China Single-arm Toripalimab 2021-12-31

NCT04644250 II China Single-arm Toripalimab 2020-09-01

NCT05323890 II China Single-arm Tislelizumab 2022-04-20

NCT04974047 II China Two-arm Tislelizumab 2021-08-17

NCT 04437212 II China Single-arm Toripalimab 2020-07-01

NCT05424432 II China Single-arm Toripalimab 2022-04-29

NCT06225921 I China Two-arm
Adebrelimab&
Dalpiciclib

2023-12-29

NCT06637163 II China Two-arm Benmelstobart 2024-10-01

NCT05659251 II China Single-arm Serplulimab 2024-10-01

NCT06508229 II China Single-arm Adebrelimab 2024-07-30
NA, Not available.
The bolded term, such as "FRONTiER," refers to the acronym of the title provided at the time of registration for this large-scale clinical study.
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molecules. However, with an in-depth study, it was found that even

with ICB, a large number of exhausted T cells (Tex) still existed in

the TME (41) and it could be divided into ICI-permissive and ICI-

resistant subpopulations (42, 43). However, two clusters of cells,

CD8+ Tex-SPRY1 and CD8+ Tex-XAF1, were found to respond

significantly to ICI treatment. Furthermore, the anti-tumor

signature genes ENTPD1, CXCL13, and HLA-DR genes were

enriched in these two CD8+ Tex subsets. The CD8+ Tex-SPRY1

cells were in the early stage of exhausted T cells and showed high

similarity to progenitor CD8+ T cells. Moreover, these samples from

patients who achieved pCR had higher expression of SPRY1 and

CD8 in the tumor stroma and intra-tumoral regions before and

after nCIT, which was not observed in patients who did not achieve

pCR (Figure 2). It is suggested that patients with high CD8+ Tex-

SPRY1 cell infiltration have a higher sensitivity to nCIT and that

CD8+ Tex-SPRY1 may be a potential biomarker for nCIT in ESCC.
Frontiers in Immunology 05
3.2 CD4+ T cell

CD8+ T cells showed a significant correlation with nCIT, but the

heterogeneity of the TME also limits its stability as a biomarker.

CD4+ T cells, unlike CD8+ T cells that can directly kill tumor cells,

function mainly by releasing different cytokines to regulate other

immune cells and play an equally important role as CD8+ T cells.

CD4+ T cells represent a heterogeneous subset of T cells, and

different levels of CD4+ T cell numbers are associated with different

outcomes. Some studies have noted that a significant increase in

CD4+ T cells is observed after nCIT compared to neoadjuvant

chemotherapy alone and that higher CD4+/CD8+ ratios are

associated with better pathological response (44). However, it has

also been noted that the high level of CD4+ T cell distribution

within a distance of 0-10 mm from the tumor cells predicts a low

survival rate (45). Tumor-infiltrating CD4+ T cells exert their
FIGURE 2

T cell in TME of ESCC. Image created with figdraw.com,ID: IUIUT533a6.
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function by undergoing differentiation into various subsets directed

by functional polarization. Moreover, the differentiation of these

subsets is significantly influenced by the characteristics of the TME

in which they exist. For example, Th1 cells exert antitumor effects,

whereas Th2 cells counteract the effects of Th1 cells, and the Th9 is

unchanged after nCIT (28).

Recently, a single-cell sequencing study classified CD4+ T cells

into six major subsets based on specific markers. Among them,

CD4-C1-CCR7 carries naïve signature genes, including TCF7,

CCR7, LEF1, and SELL. CD4-C6-FOXP3 has the most distinctive

Treg profile, expressing high levels of the Treg signature genes

FOXP3, IKZF2, IL2RA, and CTLA-4. The study noted that Tregs

are heavily enriched in ESCC and that Tregs accounted for more

than 50% of the total CD4+ T cells in the tumors, compared to only

25% in the adjacent normal tissues (46). At the same time,

numerous studies have indicated that Treg cells can significantly

inhibit T cell-mediated antitumor effects (47). The density of Treg

cells in ESCC tissues was higher than that in normal tissues.

However, after nCIT, the number of Treg decreased while CD8+

T cells increased (28). FoxP3+ TILs were found in higher quantities

in tumor samples from patients who achieved pNR compared to

those who achieved pCR (32). It was also found that there exists a

subset of T cells expressing CD4+CD25-CD69+Foxp3-LAP+, which

inhibits T cell proliferation and promotes tumor immune escape by

secreting TGF-b. This subset was positively correlated with the

pathologic response (48). However, only high Treg density in ESCC

tissues is not predictive of patient survival (45). The calculation of

the ratio between Treg and CD4+ T cells is required to observe a

positive correlation with better pathological response (49). Thus,

the ratio of FoxP3+ T cells to CD4+ T cells is expected to be a

biomarker for predicting the response to nCIT, as mentioned

previously for CD8+ TILs/FoxP3+ TILs.
3.3 Macrophage

Macrophages are known as the “scavengers” of the human

organism. They can not only phagocytose pathogens but also exert

the function of presenting antigens by processing antigens to form

MHC complexes. Macrophages migrate into the TME and become

tumor-associated macrophages (TAMs), which play an important

role in the initiation and regulation of antitumor immune responses

(50). Recently, it was found that dendritic cells and macrophages

were mostly distributed within 30 mm from tumor cells and that

patients with closer spatial distance of TAM’s distribution tend to

have better immune responses and longer survival (45). This is

because chemotherapy causes tumor cells to release more tumor-

associated antigens, and the closer the distance between TAMs and

tumor cells, the better for TAMs to be exposed to these more new

antigens, which provide immunomodulatory signals to the T cells to

promote anti-tumor immune responses (51). This suggests that

spatial distances between TAMs and tumor cells are potential

predictive biomarkers (52).

TAMs can be activated by M1 and M2 types. M1-TAMs exert

proinflammatory and antitumor effects (53), enhancing the

antigen-presenting capacity of DC and augmenting tumoricidal
Frontiers in Immunology 06
effects of infiltrating T cells (54). Tumor tissues in the pCR group

were observed to have a significant M1 polarization level before

treatment and a significantly higher M1/M2 ratio than in the non-

pCR group after treatment (29, 55). Among M1-type macrophages,

Macro-MMP9 and Macro-FOLR2 subset produced large amounts

of cytokines such as IL-15, CXCL1, and CXCL9, which induced the

activation of CD8+ Tex-SPRY1 subset. Thus Macro-MMP9 and

CD8+ Tex-SPRY1 form a positive feedforward cycle and anti-tumor

ability (29). Whereas M2-TAMs could inhibit M1-TAMs effects to

promote immunesuppression (56), the number of PD-L1+CD163+

cells infiltrated was significantly increased in the non-pCR group

(57). Recently, it has been shown that macrophage migration

inhibitory factor (MIF) promotes the conversion of M1-type

TAMs to M2-type, and patients with high baseline MIF levels are

significantly associated with adverse pathologic responses.

Macrophages exhibit high plasticity and heterogeneity (58).

CCR4+CCR6+ TAM were found to be significantly reduced after

nCIT, while the percentage of total macrophages in the tumor

microenvironment was not changed. The CCR4/CCR6 chemokine

system score was lower in tumor regression grading (TRG) of grade

0/1 compared to patients with TRG2/3, suggesting that the CCR4/

CCR6 chemokine system would be a potential biomarker (28).

Another subset of TAM, TAM-TREM2, has an immunosuppressive

phenotype and is functionally close to the M2 subtype (59). Their

high level of infiltration is associated with worse OS (60). Further

studies showed that TAM-TREM2 expressing key genes of the

complement system, C1Q, APOE, and SPP1, promote infiltration of

Tex and Tregs as well as tumor proliferation (61) (Figure 3).

Meanwhile, the TIDE algorithm predicted that signature genes of

TAM-TREM2 are associated with immune resistance. It is proposed

that this subset is expected to be a predictive biomarker for

nCIT (60).
3.4 Dendritic cell

In TME, dendritic cells (DCs), similar to macrophages, exert

antigen-presenting function and regulate the immune response,

thereby influencing tumor immune surveillance and escape (62).

Among long non-coding RNAs, lncRNA ENST00000560647 has

been shown to inhibit dendritic cell-mediated antigen presentation,

leading to the inactivation of CD8+ T cells and the facilitation of

immune evasion (63). DCs can differentiate into classic dendritic

cell cDC and plasma cell-like dendritic cells pDC in TME (64). The

current study found that the density of pDC in tumor tissues of

patients not treated with nCIT is higher than in adjacent normal

tissues, and then significantly decreased after receiving nCIT. This is

consistent with the fact that pDCs produce IFN-a which leads to

differentiation of Tregs and immune escape (65). The TCGA

database survival analysis also illustrated that the characterized

genes of pDC can differentiate patient survival well. Another DC

subset, cDC, whose quantitative changes are mainly influenced by

classical cDC type 1. cDC1 can activate CD4+ and CD8+ effector T

cells, which are potentially responsive to immunotherapy (66).

Therefore, the regulation of DC to exert its antitumor effects has

become one of the hotspots in immunotherapy, including the use of
frontiersin.org
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tumor vaccines. Tumor vaccines utilize anti-CLEC9A antibodies to

specifically deliver the immunogenic tumor antigen NY-ESO-1 to

human CD141+ DC cells for anticancer therapy (67). Meanwhile,

overexpression of MAGE-A3 and CALR on DCs to study their

potential for generating anti-tumor immune responses is also one of

them (68).
3.5 Natural killer cell

NK cells are the core cells of the organism’s innate immune

cells. NK cells have a broader-spectrum immune role that not only

is limited to fending off viruses but also has a crucial role in killing

tumor cells (69). CD56+ is the characteristic gene of NK cells, and

NK cells can be further categorized into two major subsets based on

CD56 expression: CD56bright and CD56dim NK cells (70). CD56bright

NK is the precursor cell of CD56dim NK (71), but CD56dim NK

expresses higher levels of FCg receptor III (CD16) and possesses

stronger natural cytotoxicity and antitumor effects (72, 73). The

present study found that CD16+ cells were less in tumor tissues than

in normal tissues and were significantly higher after nCIT, while

CD16- cells exhibited higher exhaustion scores (28). Meanwhile,

CD56dim NK cells were significantly reduced in the responders

compared to non-responders within the nCIT group, whereas no

significant change was observed in the neoadjuvant chemotherapy

group. And, the pCR group had more abundant CD56dim NK cells

in the stromal area than the non-pCR group. These results show
Frontiers in Immunology 07
that CD16+CD56dim NK cells are associated with a better

pathological response (55). ICB could activate numerous PD-1-

expressing NK cells (74, 75), and CD16 could strongly self-activate

NK cells (76). These all support an immunotherapeutic approach

using modified NK cells to resist tumors, known as chimeric antigen

receptor-NK (CAR-NK) cell therapy.

CAR-NK cell therapy, from adoptive cell therapy (ACTs),

involves the transduction of a specially designed chimeric antigen

receptor into NK cells. This enables CAR-NK cells to specifically

recognize antigens on the surface of tumor cells and be activated,

subsequently releasing cytotoxic molecules to eliminate tumor cells

(77). Research on adoptive cell therapy, which began with tumor-

infiltrating T cells, has demonstrated promising efficacy in

hematological malignancies. However, the development of CAR-T

therapy is constrained by issues related to infiltration into tumor

tissues, as well as resistance to the tumor microenvironment (TME).

Compared to CAR-T therapy, CAR-NK therapy can reduce the

cytokine release syndrome (CRS) and neurological toxicities

associated with CAR-T treatment (78). These advantages position

CAR-NK as a potential “universal” product (79). CD19, CD20, and

CD33 are the main targets for CAR-NK cells, which are frequently

expressed in hematological malignancies (80). Additionally, CAR-

NK cells have been shown to be effective against solid tumor targets

such as Her2, EpCAM, and EGFR, which are common in colorectal

and ovarian cancers (81–83). This broadens the applicability of

CAR-NK cell therapy. Currently, CAR-NK cell therapy faces

challenges such as viral transduction difficulties. Researchers are
FIGURE 3

Macrophage in TME of ESCC. Created in BioRender. Q, Z. (2024) https://BioRender.com/b87g297.
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developing CAR-NK cells capable of recognizing multiple antigens

to reduce the risk of tumor escape due to the loss of a single antigen

(84). Moreover, CAR-NK cell therapy is being explored in

combination with other treatment modalities to expand the

applicability of immunotherapy. It is anticipated that ACTs will

also become a milestone in immunological treatment.
3.6 B cells and tertiary lymphoid structure

B cells are the major humoral immune cells, exerting antibody-

dependent cytotoxicity (ADCC) and antibody-dependent cellular

phagocytosis (ADCP) (85). There is growing evidence that tumor-

infiltrating B cells (TIL-B) and plasma cells have a crucial role in

immunomodulation (86). One study showed a significant

infiltration of B cells in a subgroup of “immune activation-

dominant” samples. COL19A1, as a receptor for TIL-B, positively

correlates with pathological responses and is expected to be a

biomarker predicting the prognosis of nCIT (87). The present

study classified TIL-B into five major subsets: naïve B cells

(NBCs); activated B cells (ABCs); memory B cells (MBCs);

germinal center B cells (GCBs), and the ASC (88). Two of these B

cell subsets are sensitive to immunotherapy, GCB-LMO2 and

CD55+ Bm. First, patients with a pathological response showed

higher GCB cell infiltration than pathological non-response

patients, and a significant increase in the interaction between the

GCB-LMO2 and the CD4+ T-CXCL13 subsets was observed. GCB-

LMO2 expresses the conventional GCB cell markers GL-7 and

CD23, which are distributed within TLS and promote an antitumor

immune response. CD55+ Bm belongs to the group of memory B
Frontiers in Immunology 08
cells that express relevant genes such as CD20, which are distributed

outside the TLS. The expression of its signature gene, CD55, is

down regulated with increased expression of LMO2. CD55+ Bm

expresses ADGRE5, which inhibits CD8+ T cells and releases

cytokines that interact with Treg cells to inhibit responsiveness to

immunotherapy (Figure 4). It is illustrated that comprehensive B

cell profile characteristics can predict nCIT responsiveness (89).

Tertiary lymphoid structure (TLS) refers to the organization of

immune cell aggregates that resemble lymphoid tissues, formed within

non-lymphoid tissues. In the physiological state, TLS is not present in

normal tissues and is mainly found in the infiltrative margins of tumors

(90). In recent years, TLS has been found to have a positive effect on the

prognosis of many cancers, including lung cancer (91) and ovarian

cancer (92). However, both RFS and OS were higher in the TLS-

positive group than in the TLS-negative group, and the mature TLS

group containing germinal centers (GCs) had better long-term efficacy

and prognosis (93, 94). After nCIT, TME with abundant TLS was the

most common type among the patients who achieved pCR or MPR

(95, 96). Moreover, a study has developed a pathology image model

using deep learning to quantitatively calculate the TLS ratio for

predicting the pathological response to nCIT in ESCC. In TME, TLS

is constructed by GCBs, T cells, and B cells (7). And it can only be

activated in the presence of GCB-LMO2 cells. Meanwhile, patients with

TLS high in CD55+ Bm cells and low in GCB-LMO2 cells were

stratified as having the worst clinical outcome (89). This indicates that

the antigen-presenting role of GCB cells contributes to the maturation

of cytotoxic T cell (97). Follicular B cells (Bfo-NEIL1), which originate

from GCB and express NEIL1, co-localize with CD8+ Tex-SPRY1

within TLS and exhibit better pathological responses. This co-

localization demonstrates a synergistic interaction that significantly
FIGURE 4

Immature TLS and CD55+Bm. Created in BioRender. Q, Z. (2024) https://BioRender.com/a41h264.
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improves RFS. Bfo-NEIL1 cells express TNF and IL-23 to activate

CD8+ Tex-SPRY1 and promote the positive feedforward cycle between

Macro-MMP9 cells and CD8+ Tex-SPRY1. Additionally, CD4+ T-

CXCL13 cells were induced by B-T interaction to activate the Tfh

phenotype, which in turn activated CD8+ Tex-SPRY1 again. (Figure 5)

Meanwhile, CD8+ Tex-SPRY1 induced the activity of germinal centers

and the TLS, coinciding with the recent studies that the CD8+ response

is present in the TLS (90, 98).
4 Interactions and spatial distribution
of immune cells

It is well known that tumors can be viewed as complex systems

(99). The response of tumor cells to treatment is closely related to

the interaction of TME (100). In TME of ESCC, tumor-associated

fibroblasts CAF expressing fibroblast activating protein (FAP) are

distributed around the tumor. CAF attracts inhibitory TILs through

paracrine signals and influences T cell penetration into the tumor

center through direct physical interactions (101, 102). Within the

TME, secretion of suppressive cytokines by the tumor leads to a

progressive reduction in cytotoxic CD8+ T cells and NK cells, while

concurrently promoting the expansion of Tex, Tregs, and regulatory

B cells. Also, DCs exhibit maturation and functional defects. In

contrast, patient samples that achieved pCR/MPR showed

substantial immune activation and enrichment, which was able to

reverse this TME. From this TME, we can observe the reactivation

of Tex, self-activation of NK cells, positive feedforward loops of M1

macrophages with CD8+ T cells, and B-cell and T-cell interactions

in the TLS. However, such reversal is rarely seen in samples of
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patients who achieved pPR/pNR (Figure 6). Therefore, some studies

have classified TME into metabolic subtypes, mesenchymal,

immune activated, and epithelial subtypes by characterized genes

and noted that immune activated were associated with better

prognosis and better pathological response (87).

To more finely delineate the landscape of TME in ESCC

following nCIT, Yang et al. employed scRNA-seq and scTCR-seq

to analyze samples from 18 patients with ESCC who underwent

nCIT. The study divided the samples into four groups for analysis:

pre-treatment, post-treatment, responders, and non-responders.

Comparing post-treatment to pre-treatment, the study indicated

minimal changes in the relative proportions of T cells, B cells,

myeloid cells, and mast cells across all cellular constituents.

However, significant changes were observed in epithelial cells,

fibroblasts, endothelial cells, smooth muscle cells, and neurons.

Among these, fibroblasts, endothelial cells, neurons, and smooth

muscle cells increased significantly, while epithelial cells decreased.

Similarly, when comparing responders to non-responders, the same

effects were observed. This validated the overarching viewpoint of

the paper. Furthermore, the study pointed out that in samples with

responses and post-treatment, cell subpopulations CD8+ Tex-

CXCL13, CD8+ Tex-STMN1, CD4+ Treg-TNFRSF4, tCAF-

MMP11, Macro-SPP1, Macro-EREG, and Macro-STMN1 were

significantly reduced, while CD8+ Tn-IL7R, Bmem_TNFSF13B

cells, TLS, iCAF-CFD, iCAF-CXCL12, and iCAF-PLA2G2A were

significantly increased in the parent cell populations (103).

On the other hand, spatial distance is also the basis for ensuring

immune interactions within the tumor. Before nCIT, PD-1-positive

cells were closer to tumor cells than PD-1- negative cells. CD4+ and

CD8+ T cells that were 100 mm away from the tumor center were more
FIGURE 5

Mature TLS. Created in BioRender. Q, Z. (2024) https://BioRender.com/l91q142.
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likely to be activated with better immune response as well as having

better correlation. Moreover, most DC and macrophage were

distributed within 30 mm from the tumor cells, and patients with

closer spatial proximity tended to have better immune responses (45).

Wang et al. classified the post-treatment primary tumor into four

patterns: Type I, Type II, Type III, and Type IV. In MPR or pCR cases,

residual tumor cells were mainly found in the mucosa and submucosa,

and less frequently in the lamina propria and epithelium, presenting a

Type I pattern. In contrast, in pPR and pNR cases, most residual tumor

cells were distributed in four layers, presenting Type IV (32).
5 Biomarker

The progression of cancer is characterized by heterogeneity, and

the prospects for antitumor immunity within TME may vary

among individual patients (31). Typical biomarkers, such as PD-

L1 expression, microsatellite instability, and tumor mutation

burden, seem to be inconsistent in predicting pathological

responses in neoadjuvant therapies (37). We discuss recent

studies on the alteration of TME in ESCC after nCIT and have

compiled a list of the most recent relevant biomarkers. See Table 2.

Nowadays, many articles have identified certain genes or

constructed models to predict pathological responses or clinical

prognoses from existing databases. Jia et al. identified that

eRNAAC005515.1, an enhancer eRNA, is associated with the local

immune environment of ESCC and maybe a new biomarker for ESCC

prognosis (104). Ma et al. analyzed patients’ clinical information and
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proposed AST, d -d-dimer, and CEA as independent predictors of

objective remission rate after nCIT (105). There are also some

researchers, who proposed different biomarkers from new fields.

Huang et al. analyzed baseline respiratory samples from patients and
FIGURE 6

Different distribution of immune cells in TME. Created in BioRender. Q, Z. (2024) https://BioRender.com/r37r267.
TABLE 2 Biomarker.

Biomarker

Prognostic Value
Biomarker
SourcePathological

Response
Clinical
Prognosis

Muscularis Propria
Invasion
pCR/MPR
ypN0

N/A DFS + Physiology

Ratio of CD8+ to
FoxP3+ TILs

+ N/A TME

CCR4/CCR6
Chemokine Model

– OS - TME

CD8+Tex-SPRY1 + N/A TME

Ratio of Foxp3+T
cells to CD4+T cells

– N/A TME

TREM2+ TAMs – OS PFS - TME

ctDNA Status
at Baseline

+ N/A Transcriptome

PLEK2, IFI6 – N/A Transcriptome

(Continued)
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proposed to predict the pathological response of ESCA patients by

detecting volatile organic compounds (VOCs) in exhaled gas (106). Xu

et al. analyzed stool samples from patients for 16S ribosomal

ribonucleic acid (rRNA) V3-V4 sequencing and proposed the

classification characteristics of the gut microbiome as a potential

biomarker for predicting pathological responses and adverse reactions

(107). Given the limitations of existing biomarkers, these emerging and

novel biomarkers undoubtedly fill an exciting gap in this area.
6 Discussion and future prospects

Here, we discuss the alterations in TME following neoadjuvant

therapy combined with immunotherapy and potential biomarkers

(108). Nowadays, advances in sequencing technology provide more

details about immune infiltrating cell interactions and spatial

distribution. Thus, we have summarized and discussed the major

alterations and interactions of immune cells in the TME of ESCC.

We also compiled predictive biomarkers for the prognosis of

ESCC based on these alterations. These will better and more

finely stratify patients, providing a clear direction for effective

anti-tumor therapy.
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